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Abstract: The present paper deals with the promising energy harvesting applications of a composite
piezoelectric metal support that is properly designed for the rotor of a mechanical system. The aim
is to determine whether the vibrational power coming from the static residual imbalance, which is
generally considered to be an undesired and useless side-effect of the rotation, can be converted
into electric power and then stored to be used in other applications. The analysis, starting from the
Jeffcott rotor model and the piezoelectric constitutive equations, has been carried out by developing
an approximated linear model of a piezoelectric support, in order to theoretically evaluate the
performance and the feasibility of the proposed system. The accuracy of the exploited analytical model
has been validated for both static and dynamic operations by 3D Ansys® Mechanical APDL. Finally,
a MatLab®/Simulink® model has been built to simulate the electric behavior of the piezoelectric
material, and to estimate the power that it is possible to extract via an alternative/direct current
converter (AC/DC converter). The numerical results achieved confirm the effectiveness of the
proposed energy-harvesting system.
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1. Introduction

Energy harvesting based on piezoelectric technology has been developed over the last decades
for charging portable electronic devices and/or for micro-sensors and actuators, where the prominent
aspect is to ensure the operation of the electronic devices [1,2]. Indeed, a literature survey on
piezoelectric energy harvesters shows that they are classified into three groups with reference to
their correspondent sizes: macro- and mesoscale, MEMS (Micro Electro-Mechanical Systems) scale,
and nanoscale [3]. However, this approach seems that neglect the possibility for employing this
technology in order to scavenge and store energy [4]. In an actual energetic context where the global
demand is always increasing [5,6], it is needful to exploit any source of renewable energy, in order
to improve eco-sustainability. This work is focused on the extraction principle of a form of energy
that is usually available in any rotating system: side vibrations. Indeed, via the piezoelectric effect,
which is the capability of some solid materials to convert mechanical energy into electric energy and
vice versa by accumulating electric charge in response to mechanical stress, it is possible to exploit
these vibrations, and, for instance, deliver the extracted energy to a storage device.

Piezoelectric materials are historically associated with micro-actuators/sensors, or, in the last
two decades, micro-power generation [7–11]. The main reasons that have led to their establishment
in these sectors are the simplicity of their shaping, especially for piezocomposites such as PZT (Lead
zirconate titanate), and the impressive performances that are possible to be obtain with their very
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small dimensions [12–17]. In this context, the accuracy with which it is possible to predict the
mechanical/electric responses of these materials has been the key factor to their success. In the last
decade, in particular, the attention of the scientific community has been mainly focused on applications
other than in the sensor field, i.e., the energy harvesting applications.

This paper aims to demonstrate that the piezoelectric phenomenon can be exploited, without
performance losses, in order to scavenge the energy related to the mechanical vibrations of a system
where the main power is delivered through rotation.

2. Materials and Methods

The proposed application employs the direct piezoelectric effect [18,19]: the piezoelectric material
is driven by mechanical vibrations coming from an unbalanced rotor, and the consequently produced
voltage is collected through an AC/DC converter, so that when a load is connected, electrical power can
be generated and/or stored. The motor concept can be seen in Figure 1a. The piezoelectric material is
inserted in a piezoelectric support, modelled in a unimorph-like fashion [12], leading to a double-layered
piezoelectric-steel beam. In particular, each of the four positioned supports is embedded at one end
and rigidly connected to the ball bearings at the other end, as schematized in Figure 1b. Naturally,
in contrast to the motor-operating conditions [18], no additional electric sources are required.
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Figure 1. (a) Ferroelectric rotor–piezoelectric supports (yellow) system with ball bearings (black) on
the fixed base, as realized in SolidWorks; (b) Piezoelectric support scheme with the local coordinate
system (yellow layer: PZT, grey layer: steel).

2.1. Piezoelectric Material Characterization

The employed piezoelectric material for this application is PZT, a lead–titanium–zirconium alloy
belonging to the symmetry class C2v 21 [20–26]. In particular, PZT 850, produced by the American
group Piezo Ltd., has been considered. This material, whose datasheet [26] values are summed up in
Table 1, belongs to the Navy Type II [27], and has been chosen due to its high piezoelectric coefficients
d3i and its good deformability.

Table 1. Properties of PZT 850.

Parameter Symbol Value

Dielectric constant KT
33 1900

Curie temperature TC 360 ◦C

Electromechanical coupling factors

kp 0.63
k33 0.72
k31 0.36
k15 0.68

Piezoelectric charge constants
d33 400 pC/N

d31 −175 pC/N

d15 590 pC/N

Young constants cE
11 63 GPa

cE
33 54 GPa

Density ρ 7.6 g/cm3
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The following form of the constitutive equations, among the four possible forms [23], has been
employed:

Tkl = cE
ijklSij − εS

mklEm,
Dn = εS

mnEm + enijSij,
(1)

The relations (1), derived from the differentiation of the internal energy of a piezoelectric
crystal, require the definition of the tensors sE

ij , ein and εT
nm, while the other mechanical, electric,

and piezoelectric tensors can be consequently derived by using the relations contained in Table 2.
For single-term characterization, the relations contained in [28,29] have been employed.

Table 2. Relations between the electric, piezoelectric, and mechanic tensors.

Elastic Coefficients Piezoelectric Coefficients Dielectric Coefficients

sD
ijkl = sE

ijkl−dmijgmkl gmkl = βT
mndnkl βT

mn = (−1)m+n∆εT
mn

∆εT

cE
ij =

(−1)i+j∆sE
ij

∆sE
emkl = dmijcE

ijkl εS
mn = εT

mn−dnklemkl

cD
ijkl = cE

ijkl+emklhmij hnkl = βS
mnemkl βS

mn = βT
mn+gnklhmkl

cD
ij =

(−1)i+j∆sD
ij

∆sD
hnkl = gnijc

D
ijkl βS

mn = (−1)m+n∆εS
mn

∆ε

By using an orthotropic model for the anisotropic PZT material, and by putting KT
11 = 1980 and

ν31 = 0.39, the compliance tensors sE
ij and ein are derived:

sE
ij =



14.1 −4.9 −7.2 0 0 0
−4.9 14.1 −7.2 0 0 0
−7.2 −7.2 18.4 0 0 0

0 0 0 42.9 0 0
0 0 0 0 42.9 0
0 0 0 0 0 37.8


pm2/N, (2)

ein =

 0 0 0
0 0 0
−10.1 −10.1 11.5

0 13.7 0
13.7 0 0

0 0 0

N/Vm, (3)

2.2. Analytical Model

Since the four piezoelectric devices are arranged symmetrically in two couples of 90◦-shifted
supports, the system behavior can be derived by characterizing the mechanical stress of a generic
couple of supports. Table 3 particularizes the mechanical stress (force or torque) for each support
(lower and upper), depending on the phase shift θ of the rotor mass center with respect to the y axis.
Indeed, for each θ, two kinds of mechanical stress can be identified: a buckling/traction stress (driven
by the inertia force component N along the support axis) and a bending one (driven by the torque T,
associated with the complementary inertia force component).

Table 3. Main mechanical stress for the two supports.

θ [◦]. Lower Support Upper Support

0 Traction Bending
90 Bending Traction

180 Buckling Bending
270 Bending Buckling

The double-layered support has been modeled for static and dynamic analyses as a
one-dimensional beam [30,31] with only one degree of freedom, i.e., the displacement of the free
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end in the direction orthogonal to the axis of the beam. The analysis was performed with reference
to one of the lower supports. Naturally, the relative results can be easily extended to the upper
supports. Moreover, it is assumed that the rotor-generated mechanical stress is equally distributed and
concentrated on the supports’ free ends, whose masses are neglected. In this context, the PZT material
is assumed to be isotropic and characterized by a Young constant: EPZT = 74 GPa. The analytical
analysis was validated by a numerical one in the Ansys® environment, where the actual orthotropic
model of the material and the relative constitutive equations were implemented. The geometric and
mechanical characteristics of the beam are listed in Table 4, while the mono-dimensional scheme is
shown in Figure 2.

Table 4. Composite support-beam geometric and mechanic properties.

Layer PZT Steel

Yield stress 0.3 GPa
Young constant 74 GPa 220 GPa

Thickness 0.7 mm 1.8 mm
Width 8 mm
Length 3.5 cm
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corresponding to half the rotor mass concentrated at the free end.

The amplitude of the force exerted on the free end has been calculated from the bending stress,
constrained to its maximum admissible value TMAX. By imposing the ratio TADM

TMAX
to be equal to 1.25,

the target stress force is found:

F =
Mf
l
= (T MAXW f )/l = 55 N (4)

The mechanical stress due to the normal loads (compressive/tensile), which represents 0.08% of
the total axial stress, has been neglected.

While in the static analysis the force (4) generates a constant displacement along the z-axis of the
beam, in the dynamic one, it represents the amplitude of an alternative stress that produces a motion
of the free end of the beam. In each case, the relation between the free-end displacement and the PTZ
voltage will be derived.

3. Static and Dynamic Analyses

3.1. Static Analysis: Free-End Displacement

With reference to Figure 2, the free-end displacement is computed by the Virtual Work Principle
(VWP). In particular, the strain field S(y, z) and the displacement field v(z, y) along the beam axis are
linked by the relation:

S(y, z) =
∂v(z, y)

∂y
(5)

In a generic system Π, the displacement field can be determined by minimizing the relative potential
energy with the Rayleigh–Ritz method: the displacement field is therefore a linear combination of a
function f(y, z), and its m− 1 differentials via m coefficients are calculated as follows:
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∂Π
∂ci

= 0 i = 1, . . . , m (6)

In the case of the bending beam, according to the Euler–Bernoulli theory, the axial displacement
field can be given as a function of the rotation ϕx and the orthogonal displacement field w(y):

v(y, z) = zϕx = z
∂w(y)

∂y
(7)

with w(y) being a Hermite polynomial function. Since the axial strain field is obtained as the
differential of the axial displacement field v(y, z) with respect to y, the z displacement field has to be a
second-degree polynomial, so that the strain field is at least constant. However, when a continuous
domain is discretized via finite elements that are linked through several nodes, a displacement field is
valid if there is a correspondence between the total degree of freedom of the nodes and the number
of m coefficients used. Therefore, the minimum degree possible for the sought polynomial is the
third degree:

w(y) = c0 + c1y + c2y2 + c3y3 (8)

Given that y ∈ [0, l] and the boundary conditions w(0)= 0 and
.

w(0)= 0 imposed by the joint
configuration, it can be simply verified that the first two constants are null, so that the elastic internal
energy is:

Eel =
1
2

EI
∫ l

0

(
∂2w
∂y2

)2

dy =
1
2

EI
[
4c2

2l + 12c2c3l2+12c2
3l3
]

(9)

Naturally, Eel is related to the displacement of the beam free end by the relation:

Eel = −F × w(l) =
(

Fc2l2+Fc3l3
)

(10)

From (9) and (10), c2 and c3 are determined. In particular:

w(y) =
F

2EI

(
1
3

y3−l
)

(11)

w(l)= − Fl3

3EI
(12)

Once the shape function is introduced:

bs(y) =
w(y)
w(l)

=
3
2

(y
l

)2
− 1

2

(y
l

)3
(13)

the strain field can be written as:

v(y, z) = z
∂w(y)

∂y
→ Sy =

∂v(y, z)
∂y

=
z∂2w(y)

∂y
= z

[
3
l2
− 3y

l3

]
w(l) = g(z, y)w(l) (14)

Concerning the (12), which refers to a homogeneous beam, an equivalent expression can be given
for a composite beam, using an approximated calculation of the stiffness [27]:

K =
F
w

=
3D
l3

(15)

The modeled beam is a composite, so that (15) represents an approximation with respect to the
Classical Lamination Theory. The comparison between the results obtained by the analytical model
and the finite element (FE) model will give a measure of this approximation. The parameter D is the
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equivalent to the Young constant of a homogenous beam multiplied by its bending inertial moment,
so that for a composite beam, it results in the following:

D = Ei × Ii (16)

The inertial moment of the generic layer is related to its thickness, its width, and the orthogonal
distance between its center of mass and the neutral bending axis. The neutral bending axis position
can be found according to the geometric/mechanical properties of the layers considered. Assuming
the lower layer as the steel one, the neutral bending axis coordinate is:

zn = 1.02 mm (17)

Consequently, it results in the following:

ISTE = 3.87 mm4

IPZT = 6.76 mm4 (18)

D = 1.35 Nm2 (19)

Kmech = 94.5 kN/m (20)

w(l) =
F

Kmech
=

54.88
94500

= 0.58 mm (21)

An equivalent stiffness of the PZT material can be determined by using the constitutive
piezoelectric Equation (1). Since:

VA −VB = −
∫ B

A

→
Ex
→
dl (22)

by assuming a mono-dimensional and constant electric field, and by imposing VA = 0, the voltage VB

is obtained:
VB= −E × z→ E = −VB

z
= be(z)× qe (23)

The electric stiffness of the system can be calculated by imposing that the internal work Lint is the
result of the work where the stresses perform for the virtual strains δS, and the one that the electric
displacement performs for the virtual electric field δE. Thus, by expressing the stress and the electric
displacement according to Equation (1), the following relation can be written:

Lint =
∫

V
STcTδS dV−

∫
V

ETeTδS dV+
∫

V
STeTδE dV+

∫
V

ETεTδE dV (24)

Using (14) and (23), the integrals in (24) can be evaluated by assuming a linear behavior, and by
splitting each contribution in the correspondent layer. In particular, the steel layer will contribute only
to the stiffness term, while the PZT one will contribute to all terms. Given the isotropic assumption for
the PZT and that the Young modules are constants, the mechanical stiffness is calculated as:

Kmech =
2

∑
i=1

Ei

∫
A

z2 dA
∫ l

0
g2 dy (25)

where the term g(y) = g(z, y)/z is defined in order to separate the surface and the linear integrals.
The surface integral of z2 is the inertial moment with respect to the x-axis, and it has already

been calculated in (18). By computing the remaining integral, the mechanical stiffness of the beam is
derived:

Kmech =
3
l3
(EPZT × IxPZT + ESTE × IxSTE) =

3D
l3

= 94.5 kN/m (26)

which obviously coincides with (20), since this term is not affected by the electro-mechanical effect.
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The volume piezoelectric coupling constant is given by:

Θ = −
∫

V
gs(z, y) eibe(z)dV (27)

Based on the computed strain along y and electric field along z, by taking into account the
piezoelectric constant e32 = −10.1 NV/m, (27) becomes:

Θ = −e32

∫
V

z
(

3
l2
− 3y

l3

)
∗ 1

z
dV = −e23sPZTb

∫ l

0

(
3
l2
− 3y

l3

)
dy = 2.4 mN/V (28)

Hence, the PZT volume dielectric constant is calculated as:

Cp =
∫

V
be(z)εibe(z)dV (29)

The polarization occurs along z, and it is assumed to be independent of the length and the width
of the beam. The remaining integral can be therefore computed as:

Cp =
ε3lb
sPZT

= 6.73 nF (30)

Analogously, the external work is based on the contributions of the work surface charge density
σe, and the external force F:

Lext =
∫

A
σeδVB dA + FTδw(l) (31)

By constraining Lext to zero, the integral constitutive equation for the beam is derived:{
KmeccW−ΘV = F

CpV + ΘW = 0
(32)

from which the electric equivalent stiffness of the beam is obtained as:

Kelmec= Kmecc

(
1+

Θ2

CpKmecc

)
= 95400 N/m (33)

Equation (33) is higher than the (20). Indeed, the electric properties of PZT tighten up the system
and, consequently, the actual displacement of the free end is lower than (21):

w(l) =
F

Kelmecc
= 0.58 mm (34)

The deformed shapes of the beam have been represented in Figure 3, solving the displacement
field in a Matlab® script.
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After the analytical solution, a 3D model of the support has been produced with Ansys®

Mechanical APDL, to determine both the mechanical and the electric–mechanical responses, in terms
of the free-end displacement of the beam. SHELL281 elements have been used in purely mechanical
analyses, with these being the most suitable for the analysis of a thin composite structure. The deformed
shapes for the isotropic and the orthotropic models are depicted, respectively, in Figure 4.
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Comparing the analytical results (21) with the simulation ones in 4a and 4b, and (34) with 4c and
4b, the deviations in Table 5 have been found:

Table 5. Deviations.

Deviation Mechanical Piezoelectric

Model 1.26% −0.14%
Isotropic approximation 0.15% −1.53%

With reference to the first column of the table, it is evident that in an isotropic condition, the FE
model is stiffer than the analytical one. This aspect can be attributed to the discretization operated
by the meshing process. Naturally, the orthotropic model registers a higher deviation, even though
the accuracy is still acceptable. A purely mechanical analysis has been performed with the SOLID226
model, whose results are consistent with analytical ones.

All of the results from the analytical analyses are summarized in Table 6.
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Table 6. Static analysis results.

[mm].
Analytical Model SHELL281 Model SOLID226 Model

Isotropic Isotropic Orthotropic Isotropic Orthotropic

wmec 0.58 0.57 0.58 0.58 0.58
wel 0.58 0.58 0.58

Kmec 94512 95710 94360 95234 93901
Kel 95385 95250 93935
Del 1.36 1.36 1.34
Eel 7.58× 1010 7.55 × 1010 7.27 ×1010

It should be pointed out that the Young constant derived from the piezoelectric results of the
SOLID226 model gives EPZT = 72.7 GPa.

3.2. Static Analysis: Buckling

When a structure has a preponderant dimension with respect to the other two, an instability may
occurs if the mechanical stress acts along the considered direction. To analysis this aspect in the case of
an embedded beam with an axial force exerted on the free end, the beam equilibrium is considered
with respect to the deformed shape, since the hypothesis of small displacements no longer applies.

The critical buckling load for a composite beam can be evaluated by the Euler relation (16):

Pcr =
1
4
π2D

l2
= 2 704N (35)

where l is the beam length and C is a constrain factor. The evaluated critical load is two orders of
magnitude bigger than the load considered in this context, F = 54.88 N, so that the stability test is
satisfied. By considering the slim ratio l/k, the buckling analysis also has to be extended to the Euler
buckling hyperbole, which is defined by the relation:

Tcr =
Pcr

A
=

1
4
π2E(

l
k

)2 (36)

Finally, the Johnsons critical stress also has to be considered:

Tcr= Ty −
(

Ty

2π

)2 4
E

(
l
k

)2
(37)

The intersection between (36) and the (37), represented in Figure 5a, gives the threshold slim ratio,
such that if the slim ratio of the considered beam is smaller than this limit, the critical stress has to be
calculated with (36), otherwise (37) must be used. In this case, the threshold slim ratio is higher than
the beam slim ratio, so that the critical load is evaluated via (37):

Pcr = 573 N (38)

From (38), it can be deduced that the bucking verification is also satisfied.
The same analysis has been performed on the SHELL281 model, and the eigenvalues in Figure 5b

have been obtained. The buckling analysis can indeed be expressed as an eigenvalues problem
resulting from the deformed shape equilibrium:

(K + λKG)v = λP∗ (39)
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where K is the stiffness matrix of the system, KG is the geometric stiffness matrix of the system,
whose value depends on the baseline load fixed P∗, and λ is an eigenvalue such that the characteristic
polynomial |K + λKG| = 0.

Supposing a baseline load P∗, a static analysis followed by the buckling analysis has been
performed, obtaining the eigenvalues in Figure 5b. It has to be noted that since the beam is a composite,
the instability could be misinterpreted as an excessive bending reaction. With respect to the first
positive eigenvalue, the Euler critical load can be determined as:

Pcr,mod = 49.8 P b = 2733 N (40)

so that the deviation between the analytical model (35) and the FE model (40) can be calculated as:

ε =
2704− 2733

2704
= −1.08% (41)

The software has therefore overestimated the structural resistance, although the deviation
is acceptable.
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3.3. Dynamic Analysis: Fatigue

The mechanical stress applied on the free end of the support is an alternative bending with
amplitude:

Ta =
Tmax−Tmin

2
= 0.24 108 GPa (42)

The frequency of the load is equal to the speed of the rotor, set to 3000 rpm, 4500 rpm,
and 6000 rpm. The amplitude is maintained as a constant for the variation of the speed, by adjusting
the eccentricity value. In this case, the term eccentricity has been improperly used to represent the
product between the mass and the actual eccentricity, i.e., the distance between the center of mass
and the center of rotation. The three load curves have been plotted in Figure 6a with respect to the
period of the slower one, while the Whöler plot of the material has been represented in Figure 6b.
This plot is divided in three successive parts: the first part, low fatigue cycle (LFC), starts from the
ultimate strength of the material, and the third part is a plateau representing the stress magnitude that
corresponds to an infinite life of the component (Cutoff), while for the second part high fatigue cycle
(HFC) the following relation has been used:

ln Sf= ln a + b ln N (43)



Energies 2019, 12, 708 11 of 20

where a and b are two parameters derived by forcing the line (43) to pass through the following points:

A
(
103, Sf

(
103))

B(10 6, Se)
(44)

with Sf(103)
as the maximum stress amplitude that can be applied for 103 cycles before collapse, and Se

as the cutoff stress limit. While Sf(103) can be estimated from the ultimate strength via a factor f < 1,
which decreases as the ultimate strength increases, Se can be assigned once the stress amplitude S′e is
identified. Once S′e, the fatigue limit of a sample that is stressed with alternative bending, is estimated
as being half the ultimate strength of the material, Se is obtained as:

Se= kakbkckdkeS′e= 241 MPa (45)

The Whöler plot parameters and the service life of the component can then be evaluated:

N =

[
Ta

a

] 1
b
= 1.04 × 106 cycles (46)

Inter alia, in this case, since the cutoff limit (45) is above the stress amplitude exerted on the
material (42), the service life of the component has been assumed as being infinite.
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3.4. Dynamic Analysis: Equation of Motion

The rotor-support system can be modeled according to the Jeffcott rotor model, assuming a
rigid rotor suspended on elastic supports. The rotor is assumed to be fixed at the mid-section of the
drive, so that the system is symmetrical with respect to the yz plane. The four supports, assumed
to be identical, have been modeled as a spring-damper system with uniform stiffness and dumping
coefficients in the y and z directions. If the rotor is statically unbalanced, the motion equations can be
written as [28]: {

m
..
z+c

.
z + kz = meω2 cos(ωt)

m
..
y+c

.
y + ky = meω2 sin(ωt)

, (47)

with m as the rotor mass and e as the eccentricity. Given the aforementioned assumptions, the motions
along the two axis are therefore decoupled. In particular, the force amplitude evaluated in (4) is exerted
on each support, so that the following relation applies:

2F = meω2, (48)
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Given that (48) is constant, the three resulting eccentricity values are immediately obtained; they
are listed in Table 7.

Table 7. Static analysis results.

Speed [rpm] 3000 4500 6000

Speed
[

rad
s

]
314 471 628

Frequency [Hz] 50 75 100
m e [kg m] 1.11×10−3 4.94 ×10−4 2.78 ×10−4

Clearly, the eccentricity decreases with progressively smaller decrements as the speed increases.
By considering a rotor with a length of 80 mm and a diameter 50 mm, a balanced mass,

m1 = 1.78 kg, is derived. The eccentricity property is then conferred to the system by removing
n identical masses with a constant phase shift of 15◦, starting from the mass mn at θ = 0◦. Since the
masses are symmetrically positioned with respect to the y-axis, the resultant mass center is simply
shifted along the y-axis. By putting n = 13, and by solving the corresponding system of equations, the
values listed in Table 8 are calculated:

Table 8. Mass and eccentricity values for each rotor speed.

Values 1.11 ×10−3 4.94 × 10−4 2.78 × 10−4

Unbalancing masses [kg] 5.23 ×10−3 2.23 ×10−3 1.31× 10−3

Eccentricity [m] 6.50× 10−4 2.28 ×10−4 1.58× 10−4

Holes radius [m] 1.60 ×10−3 1.08 ×10−3 0.81× 10−3

Rotor mass [kg] 1.71 1.75 1.76

The rotor masses included in Table 8 correspond to twice the mass of the rotor supports, which,
indeed, has been schematized as pinned–pinned beams stressed by a concentrated force applied at
the mid-section. This approximation leads to an underestimation of the resonance frequencies of
the system.

With respect to the system stiffness, each support contributes to the values of the analytic electric
stiffness and the SOLID226 electric stiffness found in Table 6.

Kel,an = 95385 N/m

Kel,SOL= 93935 N/m

Assuming the stiffness constant with the speed, both the resonance frequencies and the critical
dumping coefficients can be evaluated according to the following relations (see also Table 9):

ωn =
√

K/M
CCR= 2

√
KM

(49)

Table 9. Mass and eccentricity values for each rotor speed.

M [kg]. 0.85 0.90 0.91

Model 1D SOLID 1D SOLID 1D SOLID
fM [ Hz] 53.16 52.75 52.58 52.18 52.39 51.99
ωn [rad/s] 334.02 331.47 330.39 327.87 329.15 326.64

n [rpm] 3189.62 3165.29 3154.96 3130.91 3143.10 3119.14
CCR 571.14 566.78 577.41 573.01 579.59 575.17

As expected, as the mass increases at a constant stiffness, and the natural frequency decreases.
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The damping action of the system represents the hysteretic/friction phenomena that occur within
and between the system parts. To calculate the corresponding coefficients, various methods can
be used, and generally, the experimental interpolation of the data collected from the actual system
methods are preferred. In this case, however, the proportional analytical damping model has been
adopted:

C = αM + βK (50)

Once the coefficients are assumed to be equal, the corresponding value can be calculated by fixing
the magnitude of the damping ratio ξ. Inter alia, if ξ < 1 is fixed, the system law of motion will be
an actual vibration, otherwise it would return with an exponential behavior to its initial condition.
This assumes that the system has not been irreparably perturbed, in which case, it can either reach
a new equilibrium state, or remain in a non-equilibrium state that can eventually take it to collapse.
The values of the damping coefficients are reported in Table 10 for different system configurations.

Table 10. Damping coefficients and damping rotations for the three speeds considered for the analytical
model and the FE model.

M [kg] 0.85 0.90 0.91

Model 1D SOLID 1D SOLID 1D SOLID
C [Ns/m] 399.80 393.72 399.80 393.72 399.80 393.72

ξ 0.70 0.69 0.69 0.69 0.69 0.68

From the parameter characterization, it is finally possible to determine the motion law. By focusing
on an upper support (the same results can be extended to a lower support), the dynamic Equation (47)
can be written as:

..
w + 2ξωn

.
w +ω2

nw = − F
M

sinωt (51)

from which:
w(t)= − F

K
χ(β) sin(ωt−ψ(β)) (52)

The value of the gain factor χ, of the speed ratio β = ω
ωn

and of the phase angle ψ are reported in
Table 11 for different speed values.

Table 11. Amplification factors and phase angles of the law of motions for the three considered speeds.

M [kg] 0.85 0.90 0.91

ωF [rad/s] 314 471 628
Model 1D SOLID 1D SOLID 1D SOLID
β 0.94 0.95 1.43 1.43 1.91 1.92
χ 0.76 0.76 0.45 0.45 0.27 0.27

ψ [rad] 1.48 1.49 –1.09 –1.08 –0.78 –0.77

As expected, the gain factor is maximum when the rotor speed equals 3000 rpm, as the resonance
frequency of the system is at 3190 rpm. It should be noted that the piezoelectric materials guarantee the
best electro-mechanical conversion at around their resonance frequency, where indeed, the impedance
of the correspondent equivalent electrical flow is minimized. The time behavior of motion, speed and
acceleration at the three considered speeds is plotted in Figure 7.
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Figure 7. Laws of motion, speed, and acceleration of the free end of the upper support at 50 Hz (a),
at 75 Hz (b), and at 100 Hz (c). Frequency response of the beam according to Ansys® evaluations (d).

The dynamic analyses have been performed on the SHELL281 FE model by including a MASS21
element whose RCs has been derived from the mass values shown in Table 9. With respect to the values
listed in Table 8, the following deviations regarding the natural frequencies have been calculated:

εM1 =
53.15− 52.75

53.15
= 0.75%

εM2 =
51.89− 51.49

51.89
= 0.77%

εM3 =
51.46− 51.07

51.46
= 0.76%

It should be pointed out that all the estimated errors are very small.

4. Electric Analysis

The charge Q that accumulates on the PZT surfaces as an effect of the applied mechanical stress
can be collected by connecting a load, such as a resistor RL, via two electrodes anchored on the PZT
surfaces. The current in the PZT-RL circuit can naturally be expressed as:

IL =
dQ
dt

= +
V
RL

(53)

By discretizing (53) with respect to a sample time interval ∆t, the following relation is obtained:

Qn+1= Qn−V
∆t
RL

(54)
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Equation (54) can be solved once the initial value Q0 is determined. Naturally, the evaluation of
the Qn+1 is an iterative process, whose number of iterations depends on the ratio ∆t/RL. The voltage
V can be computed, starting from the expression of the electric displacement flux density through the
piezoelectric material:

Di = −qc (55)

with qc as the surface charge. The electric displacement can be also expressed as a combination of the
strain and the electric field according to the constitutive Equation (1), where, since only the component
of the strain along the support axis applies, can be characterized by the piezoelectric coefficient e3,2:

e3,2 × Sy(y, z)− εS ∂V
∂z

= qc (56)

By imposing Q0 = 0, by taking into account (14), and by expressing the free-end displacement
according to (52), (56) leads to:

V(y,∆t, RL) =

e2,3
εS

[
s2

PZT
2

(
3
l2
− 3y

l3

)(
− F

Kχ(β)sen(ωt−ψ(β))
)]

1+ ∆t
RL

sPZT
(57)

The voltage on the upper surface of the PZT layer is therefore linear along the length of the beam,
being maximum at y = 0, where the strain also is maximum. From (57), it can be deduced that when
∆t/RL ≤ 10, the voltage value is not affected by variations in ∆t or RL, while when ∆t/RL > 10,
as the resistance value increases, so does do voltage values up to ∆t/RL ≥ 104, at which point the
voltage switches its sign and the solution becomes divergent. The aforementioned considerations are
endorsed by Figure 8a,b, where the voltage is plotted in correspondence with y = l/2. The voltage
behavior along the support axis is depicted instead in Figure 8c.Energies 2018, 11, x FOR PEER REVIEW  14 of 19 
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4.1. Equivalent Electric Circuit of PZT

From an electrical point of view, the mechanical behavior of a piezoelectric material can be
modeled as an RLC series circuit [32,33]:

LM
∂i2

∂t
+RM

∂i
∂t

+
1

CM
i =

∂V
∂t

(58)

where inductance LM is half the rotor mass of the rotor, and resistance RM relates to the damping
mechanical coefficient, while the electric stiffness corresponds to the inverse of the capacitance CM.

Analogously, the piezoelectric behavior can be simply modeled by a capacitor CP series connected
to a current generator that is controlled by the output of the aforementioned equivalent electric circuit.
CP can be calculated as:

CP =
εT

3 bl
2sPZT

= 3.4 nF (59)

The overall circuit is shown in Figure 9a, while all of the parameters are listed in Table 12.
The parameters α and β result from the resonance frequency of the open-circuit configuration f0,
which accounts for an equivalent capacitance that is given by the series CP − RMLMCM:

1
Ceq

=
1

CM
+
αβ

Cp
(60)

By putting the open-circuit resonance frequency at a slightly higher value than the short-circuit
resonance frequency, the sought product of the parameters is obtained, so that by imposing α/β =

50 [30], their values are derived.
From Figure 9b, it can be noted that the voltage output of the piezoelectric layer is not perfectly

sinusoidal, but more square-wave like. The voltage peak is around 153.5 V.
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Table 12. Equivalent electric circuit parameters.

nROT. [rpm] 3000 4500 6000

LM [kg] 0.86 0.90 0.91
CM

[
N
m

]
1.06×10−5 1.06×10−5 1.06×10−5

RM

[
Ns
m

]
0.70 0.68 0.68

Cp [nF] 3.36 3.36 3.36
fM [Hz] 52.75 51.49 51.07
f0 [Hz] 55 55 55
αβ

[
N
V ×

As
m

]
2.75×10−5 4.45×10−5 5.05×10−5

α
[

N
V

]
3.71×10−2 4.72×10−2 5.02×10−2

β
[

As
m

]
7× 10−4 9× 10−4 10× 10−4

4.2. System of Collection and Conversion of the Charge

The PZT surfaces are connected to an AC/DC converter, so that a continuous power POUT can be
produced and then stored by exploiting the piezoelectric effect. The designed converter is a full-wave
single-phase rectifier. An external capacitance CC has been added in order to regulate the conduction
mode, as represented in Figure 10a.
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output power (d).

If the value of the capacitance CC is low, the converter works in continued conduction mode,
and the average voltage value is given by the relation:

Vdio =
1
π

∫ π
0

Vout(t) dt =
2|VP|
π

(61)
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If, on the other hand, the value of the capacitance CC is sufficiently high, the rectifier works
in discontinuous conduction mode, and the output voltage can be approximated with the input
voltage peak.

The time behavior of the rectifier output voltage VL(t) is shown in Figure 10b, while that of the
correspondent load current is depicted in Figure 10c. The extracted active power (see Figure 10d) is
equal to:

POUT= Iav Vav= 0.11 W (62)

Given that the mechanical input power related to the vibration phenomenon can be calculated as:

Pin = πF
(

F
K
χ

)
sinψ × f = 3.8 W (63)

the piezoelectric conversion efficiency can be finally derived:

ηPIEZO =
Pel

Pmecc
= 0.029 (64)

5. Results

The aforementioned analysis has been carried out for a single support, and the results obtained
are summarized in Table 13:

Table 13. Summary of the results concerning a single support.

Stress [GPa] 0.24

Frequency [Hz] 50
Alternative voltage output [V] 150

Rectified voltage output [V] 148
Electric power produced [W] 0.11

Given that the application employs four series-connected supports, the results of the whole system
are listed in Table 14:

Table 14. Summary of the results concerning the entire application.

Precession Force Amplitude [N] 110

Rotor speed [rpm] 3000
Rectified voltage output [V] 594

Electric power produced [W] 0.44

6. Conclusions

In this paper, an energy-harvesting system based on the piezoelectric effect has been proposed.
The discussed system, based on properly arranged 90◦-shifted supports built upon a PZT layer and a
steel one, is able to extract the vibration energy that is associated with the revolution of a statically
unbalanced rotor.

The harvesting device has been schematized by a mono-dimensional isotropic analytical model,
which has been validated in the Ansys® Mechanical APDL environment and double-checked with
Matlab®. Furthermore, the time behavior of the main electric quantities has been studied by using the
Simulink® Matlab® tool.

In particular, the proposed system is able to produce electric power of around 0.44 W with
3% efficiency. Similar applications, which employ the piezoelectric effect to produce mechanical
power, are generally characterized by better conversion ratios. Indeed, the proposed implementation
only accounts for coupling between the axial stress and thickness polarization, consequently
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underestimating the harvestable power. Moreover, by assuming a linear system model for the sake of
simplicity, second-order effects in both the mechanical and the electric behaviors have been neglected.
The efficiency of the proposed harvesting device could hence be improved by exploiting a refined
model through the design of more complex support devices.

It should be noted that the considered harvesting system could be adapted to most vibrating
systems, such as vehicle supports. It is possible, therefore, to extract, over a wide range of applications,
some of the residual energy in a very sustainable way.
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