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Abstract– This work if focused on (nondestructive) micromagnetic measurements for ferromagnetic materials 

in view of Material Characterization (MC). The interest in micromagnetic measurements arises from their 

correlation to mechanical properties. It is well known that the microstructure of a material affects both the 

mechanical and magnetic properties, therefore it is possible to infer the mechanical properties from 

micromagnetic measurements. This is very convenient because micromagnetic measurements can be carried 

out in a fast, cheap and nondestructive manner, if compared to mechanical measurements. To date, a lot of 

experimental work has been carried in the past years but there is still some lack of proper numerical models 

capable of modelling micromagnetic measurements, especially when considering 3D models. In this paper we 

present an experimental validation of an ad-hoc 3D numerical model capable of modelling the response in 

micromagnetic characterization of ferromagnetic materials. 

 

1. Introduction 

Micromagnetic measurements (MM) are playing an important role in Material Characterization thanks to 

their capability of predicting mechanical properties such as hardness, yield strength or residual stress in a fast, 

cheap and nondestructive manner [1]. This makes MM very attractive in areas such as steel industry or nuclear 

industry, where obtaining information about the mechanical properties of materials without using expensive 

(mechanical) destructive test is a major goal for safety, quality control, optimization of production settings, 

etc. So far, MM have been applied to characterize aging phenomena such as creep degradation, thermal aging, 

degradation from neutron irradiation, fatigue degradation, case hardening depth estimation, etc. 

MM have been extensively studied mainly from the experimental perspective, several devices and 

observable have been proposed [2, 3, 4, 5]. Common properties correlated to mechanical properties are 

measured from harmonic analysis, incremental permeability along the hysteresis loop, multi-frequency eddy 

current analysis and Barkhausen noise [1, 2, 6-11]. 
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Numerical models capable to catch the underlying mechanisms are still a subject of active research. They 

are attractive because allow to lay the foundation for a better understanding of the link between magnetic 

properties and measured quantities. In addition to be a tool for a reliable interpretation of the measurements, 

they represent a tool to analyze current devices or to optimize new probe and systems. 

Nowadays several 2D numerical models are available, although they are not capable of modeling the 

vectorial nature of the hysteresis ([12, 13]). Moreover, only few full 3D numerical models are available. This 

is because their development is a challenging problem for several reasons such as their high computational 

cost, the inherent complexity in modelling the constitutive magnetic relationship (nonlinear, hysteretic and 

vectorial), the presence of a strong skin-effect, etc. 

Among the latest developments in this field (3D numerical modelling for MC through MM), we mention 

[14], a 3D code where the authors approximated the ferromagnetic material by a scalar and non-hysteretic 

model, and [20, 21, 22]. These latter contributions, which are the base for the numerical model treated in this 

work, rely on an (nonlinear and hysteretic) integral formulation of the problem. Specifically, the unknowns of 

the formulation are the induced eddy current density and the magnetization. The hysteresis is modeled through 

the vector extension of the Jiles-Atherton model and the code is optimized for period regimes. 

We also mention [15] and [16] where the authors proposed a dynamic magnetic scalar hysteresis based on 

an extension of the Jiles-Atherton or Preisach models, respectively. Other recent developments about magnetic 

hysteresis models can be found in [17] and [18]. 

The contribution is organized as follows: in Section 2 the experimental setup is described with plenty of 

details together with a set of experimental results. In Section 3 the numerical model is briefly summarized and 

in Section 4 a comparison between numerical and experimental results is provided. The comparison proves the 

effectiveness of the numerical model thus, “promoting” it as computational tool for a better understanding of 

the physics of the (complex) probe-specimen interaction. 

 

2. The Experimental Setup 

The experimental test-bed has been built in the “Laboratory of Circuits” at the University of Naples Federico 

II. In the following we provide a detailed description of its main components and circuits, together with the 

characterization of the materials and probes involved. Finally, a set of experimental results is illustrated and 

commented. 

2.1. Main components and circuits 

A sketch of a typical probe used for testing ferromagnetic materials, together with the setup prepared in the 

laboratory, is shown in Fig. 1. It consists of a C-shaped ferromagnetic yoke placed above a conducting 

ferromagnetic specimen. An excitation (magnetization) coil is fed by a suitable Low Frequency (LF) time 

periodic voltage source which creates a strong magnetic field. It establishes a working point on the hysteresis 

cycle of the ferromagnetic specimen. A small pick-up and excitation coil is placed between the legs of the yoke 



 

and is fed by a High Frequency (HF) sinusoidal current. An estimation of the incremental permeability 𝜇Δ at 

each point of the main hysteresis loop can be obtained by measuring the impedance of the HF coil. . 

         
Fig.1. Left: sketch of a typical probe. Right: the experimental test bed. 

 

The main components of the setup are represented in the block diagram of Fig. 2. The LF circuits feeds the 

excitation winding set on the C-shaped ferromagnetic yoke; the HF circuit excites a coil placed between the legs 

of the yoke; the probe stands on the Device Under Test (DUT). The test object, as will be clear in the following, 

can be either a ferromagnetic plate or a strip. Moreover, additional detection windings can be placed on the 

probe. All data are acquired by a DAQ module. 

 
Fig. 2. Block diagram of the experimental setup. 

 

In the following a detailed description of each part of the setup is given. 

 

2.1.1. Low Frequency circuit 

The LF circuit feeds the primary excitation coil placed on the ferromagnetic yoke with the LF voltage 𝑣𝑙𝑓(𝑡). 

The low frequency excitation must be sufficient to reach saturation (𝐵~1.6 𝑇) in the test sample. The schematic 

of the circuit is represented in Fig. 3. The voltage generation stadium consists of a waveform generator 

(Tektronix AFG3022), which provides a sinusoidal voltage 𝐸𝑙𝑓(𝑡) with tunable amplitude and tunable 

frequency, and an electronic high-power amplifier (Kepco BOP 100-4M, 400 W), which increases the electric 

power related to the voltage source. 

A band-pass filter is cascaded between the amplifier and the LF excitation winding (pictured as the inductor 

L in Fig. 3). The C1 capacitor cuts the DC component of the source voltage, coming from any electronic 
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disturbance inside the waveform generator and the electronic amplifier as well. The C2 capacitor aims to create 

a recirculation for the HF current component coming from the magnetic coupling acting inside the probe. 

A resistor R is connected in series with the LF excitation winding; it is used as a shunt to measure the LF 

excitation current. Its value must be a trade-off between the resolution of the data acquisition board and the need 

to reduce the harmonic content in the LF excitation voltage. 

 

2.1.2. High Frequency circuit 

The HF circuit feeds, with a HF voltage 𝑣ℎ𝑓(𝑡), the HF pick-up excitation/detection coil placed between the 

legs of the ferromagnetic yoke. The generation stadium consists of a voltage driven current source, built by 

means of an operational amplifier TL082, since in this case a low power output is required (Fig. 3). The voltage 

𝐸ℎ𝑓(𝑡) is the output of a waveform generator (Tektronix AFG3022). The resistor R3 is used as a shunt resistor 

to measure the HF excitation current. Also, the circuit can also be used as LF current generator. In such a case 

the input from the waveform generator must be a LF voltage, while the output current is used as input to the 

high power amplifier (Kepco BOP 100-4M). 

        

Fig. 3. Left: Schematic of the LF circuit (C1=10mF, C1=10mF, R=75 mΩ; Ri=2200 Ω; Ra=2200 Ω). Right: Schematic of the HF 

circuit (R1=200 Ω, R2=1500 Ω, R3=470 Ω). 

 

2.1.3. Magnetic Probe 

The yoke is made out of a soft magnetic material (NiZn) of cross section 𝑆 = 28𝑚𝑚 × 20𝑚𝑚. The 

dimensions of the yoke are summarized in Fig. 4. The probe can be placed either on a ferromagnetic strip or on 

a ferromagnetic plate (Fig. 4). It is energized at Low Frequency with a coil of 𝑁1 turns. In order to detect the 

magnetic flux across the yoke, a pick-up coil 𝑁2 is wounded across one leg. The HF excitation/detection coil is 

realized with 𝑁3 turns and is placed between the legs of the yoke. If possible, different detection and/or 

excitation coils (𝑁4) can be used for a better understanding of the physical system under test. 

 

2.1.4. Data Acquisition Board 

The data acquisition board allows the recording of the time evolution of each variable of interest (supply 

voltages, induced voltages, excitation currents). A modular National Instruments USB system (NI 

CompactDAQ with 2 NI9222 input modules, 500 kHz, 16 bits) has been used: each input channel has its own 

Analog to Digital converter enabling the simultaneous recording of the following 8 variables: 𝐸𝑙𝑓(𝑡) (LF supply 



 

voltage), 𝑖𝑙𝑓(𝑡) (LF excitation current), 𝑣𝑙𝑓(𝑡) (LF voltage at excitation winding N1), 𝑣2(𝑡) (induced voltage 

on pick-up winding N2), 𝐸ℎ𝑓(𝑡) (HF supply voltage), 𝑖ℎ𝑓(𝑡) (HF excitation current), 𝑣ℎ𝑓(𝑡) (HF voltage at 

excitation coil N3), 𝑣4(𝑡) (induced voltage on pick-up winding N4). A specific software developed within the 

MATLAB® environment manages the experiment control and the data acquisition. 

 

Fig. 4. Geometry of ferromagnetic yoke and test samples. Left: strip. Right: plate. The number of windings is: N1=189, N2=38, 

N3=750 and N4=30. 

2.2. Preliminary characterization 

A detailed and accurate characterization of each component and each material involved in the setup has been 

carried out before any measurement. It is a mandatory task to correctly develop the numerical model. 

 

2.2.1. Ferromagnetic sample 

An Epstein frame has been used for the magnetic characterization of the material under test: 4 strips 

(250𝑚𝑚 × 20𝑚𝑚 × 1.1𝑚𝑚) have been cut from the sample and overlapped in a BROCKHAUS Epstein 

frame. The hysteresis cycles, describing minor and major loops, obtained at 10 Hz for different values of the 

applied magnetic field, are presented in Fig. 5. In particular, all measurements have been performed by providing 

a sinusoidal voltage at the output of a Tektronix AFG3022, with rms value ranging between 100 mV and 2100 

mV in steps of 200 mV. From the outer cycle we find that the mean saturation field is about 𝐵𝑆 = 1.6 𝑇 while 

the coercive field is 𝐻𝐶 = 300 𝐴/𝑚. As shown in the following section, such data have been used to derive the 

parameters of the Jiles-Atherton model adopted in the numerical model. 

The electrical resistivity of the sample has been measured with a voltmeter-ammeter method by adopting a 

4-probe system. Different measurements have been carried out at room temperature and at various values of the 

supply current. The resulting electrical resistivity is 𝜂𝐹𝑒 = 12.4 ⋅ 10−8 Ω𝑚. 

 

2.2.2. Ferromagnetic yoke 

The magnetic characterization of the C-shaped yoke has been performed by closing the magnetic circuit with 

the addition of an I-shaped bar having the same cross section and made out of the same ferromagnetic material. 

The time evolution of the LF magnetic field 𝐻(𝑡) has been obtained by applying the Ampère law along the 

average magnetic path of length 𝐿𝑎 = 374 𝑚𝑚 and by measuring the excitation current 𝑖𝑙𝑓(𝑡). Conversely, the 
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time evolution of the magnetic flux density field 𝐵(𝑡) has been obtained by applying the Faraday-Neumann-

Lenz to the induced voltage 𝑣2(𝑡) across the terminals of the pick-up winding N2. 

The resulting hysteresis loop plotted in Fig. 5 clearly shows that losses in the yoke can be neglected if 

compared to losses in the test samples and that the yoke can be approximated by a piece-wise linear 

characteristic. The mean saturation field is about 𝐵𝑆 = 0.45 𝑇, while the coercive field is 𝐻𝐶 = 15 𝐴/𝑚. 

    

Fig. 5. Left: Hysteresis cycle at 10 Hz of the ferromagnetic samples for different values of the applied voltage (from 100mV up to 

2100mV). Right: Hysteresis cycle at 10 Hz of the ferromagnetic yoke. 

 

2.2.3. Excitation/detection coil 

The HF excitation/detection probe 𝑁3 is a bobbin coil of height 16.7mm, internal radius 1.8mm, external radius 

9.4mm. It is formed by 750 copper turns with diameter 𝑑𝑐 = 0.3 𝑚𝑚  . The resistivity of copper has been 

measured at room temperature with the 4-probe method and is equal to 𝜂𝐶𝑢 =    1.7 ∙ 10−8  Ω ⋅ 𝑚. 

The coil has been fully characterized at different frequencies and different applied currents, both having the 

same order of magnitude of those applied during the experiments described in Section 4. This is mandatory in 

view of the comparison with the results from the numerical model. The characterization has been performed by 

means of a HP4192A Impedance Analyzer giving an equivalent resistance at 5 kHz of 𝑅0 = 7.1 Ω and an 

inductance of 𝐿0 = 2.8 𝑚𝐻. A similar characterization has also been carried out for coil 𝑁4 that has also been 

used as excitation/detection coil. 

 

2.3. Experimental results 

The electromagnetic probe has been tested by adopting two different specimens cut from the same ferromagnetic 

sample and placed between the legs of the yoke (see Fig. 4): 

a) a strip of dimensions (250𝑚𝑚 × 20𝑚𝑚 × 1.1𝑚𝑚); 

b) a plate of dimensions (400𝑚𝑚 × 400𝑚𝑚 × 1.1𝑚𝑚). 

In case a) winding 𝑁4 across the strip has been used as both LF (10 Hz) excitation and HF (5 kHz) detection 

coil, by feeding it with two voltage driven current sources, similar to that depicted in Fig. 4. 

In case b) the LF excitation has been applied to winding 𝑁1 via a voltage source (as illustrated in Fig. 4), while 

coil 𝑁3 has been used as HF excitation and pick-up coil.  



 

The choice is justified by the extremely different field configurations that are likely to appear in the two test 

samples and that are deemed to be extremely significant for a complete experimental and numerical 

characterization of the system. In fact, in case a) the LF magnetic field is mainly directed along the straight line 

connecting the two legs whereas in case b) the LF magnetic field distribution is essentially two-dimensional. 

In both cases, the LF excitation has a frequency 𝑓𝑙 = 10 𝐻𝑧, which ensures a skin depth 𝛿𝑠~1.3 𝑚𝑚. Moreover, 

it has variable amplitudes in order to establish different working cycles (minor and major, saturated and not 

saturated loops) in the samples. The HF excitation is a sinusoidal current of amplitude ranging between 3 and 8 

mA and frequency 𝑓ℎ = 5 𝑘𝐻𝑧. Preliminarily tests have been performed by turning on only the LF excitation 

and, only after its effects have been fully clarified, also the HF excitations has been superimposed. 

In the following sections, the main results of the experimental tests are illustrated and commented. 

 

2.3.1. The strip 

When performing experiments on the strip, winding 𝑁4 (with 30 turns), has been wounded across the strip, and 

has been used both as LF excitation and HF excitation/pick-up coil (Fig. 4). It allows to gain further information 

by measuring the induced voltage and deriving the time evolution 𝜙𝐵(𝑡) of the magnetic flux in the test sample. 

Fig. 6 shows a typical waveform for the LF excitation current 𝑖𝑙𝑓(𝑡), the input voltage across winding 𝑁3 and 

the induced voltages across windings 𝑁1 and 𝑁2. Fig. 7 shows the magnetic flux 𝜙𝐵(𝑡) established both in the 

yoke and in the ferromagnetic strip. The corresponding hysteresis cycles are plotted too. Results are for an 

applied sinusoidal LF current 𝑖𝑙𝑓(𝑡) of 1.6 𝐴 rms. The applied voltage, as expected, is distorted and the 3rd 

harmonic content, calculated with a Fast Fourier Transform (FFT) algorithm, is about 11% of the fundamental 

frequency. 

 

Fig. 6. Left: time evolution of the input current I3. Right: time evolution of the input LF voltage (red) and induced voltages  𝐸1(𝑡) 

across winding 𝑁1 (green) and  𝐸3(𝑡) across winding 𝑁2 (blue), due to time varying fluxes 



 

 

Fig. 7. Left: time evolution of the magnetic flux linked with winding 𝑁3 (red) and  induced fluxes linked with winding 𝑁1 (green) and 

winding 𝑁2 (blue). Right: corresponding hysteresis cycles 

 

In order to detect the variation of the incremental permeability 𝜇Δ of the sample under test (i.e. the strip), the 

coil 𝑁4 has been used also as HF excitation/detection coil: it is used to superimpose an incremental field 

produced by the HF sinusoidal current flowing in the coils. The excitation frequency is 𝑓ℎ = 5 𝑘𝐻𝑧, 500 times 

higher than the low frequency current driving the hysteresis of the test sample, in order to guarantee at each 

period a fixed working point on the cycle. The amplitude of the applied current is 9 mA, in order to obtain a 

magnetic field small enough as to induce reversible magnetization in the sample. 

The incremental permeability is not directly measured but, rather, the impedance 𝑍 of winding 𝑁4 is measured, 

strictly related to 𝜇Δ. The role of the HF superimposed field is visible in the time evolution of the induced 

voltage across the pick-up winding 𝑁2 (Fig. 8). 

The obtained profile curve of the magnitude |𝑍| is shown in Fig. 9. As expected, the curves are almost 

symmetrical with respect to the y-axis: the maximum values of the equivalent impedance magnitude are 

obtained at points (1) and (4) of the working cycle, in which the hysteresis curve has its maximum local 

steepness. Minimum values (at points 3 and 6) are obtained in correspondance of the maximum value of the 

excitation ampere-turns. 

 

Fig. 8. Time evolution of the induced voltage 𝐸2(𝑡) across the pick-up winding 𝑁2 

 



 

 

Fig. 9. Right: modulus of the impedance of the HF pick-up coil as a function of the LF excitation current; Left: hysteresis cycle in the 

strip 

 
2.3.2. The plate 

A second type of experiment (figs. 10, 11 and 12) has been performed by replacing the ferromagnetic strip with 

a plate (400𝑚𝑚 × 400𝑚𝑚 × 1.1𝑚𝑚) made out of the same material and cut from the same initial slab. 

In this case, measurements have been carried by applying a LF voltage with rms value 𝐸1 = 400 𝑚𝑉. 

Unfortunately, due to the absence of the pick-up winding 𝑁4, it is not possible to gain direct information on the 

magnetic flux across the plate and, consequently, on the test sample LF cycles. 

    

Fig. 10. Time evolution of the LF excitation voltage E1 and current I1(t) for 𝐸1 = 400 𝑚𝑉 

    

Fig. 11. Left. Time evolution of the LF voltage induced in the C leg, on the pick-up winding N2. Right: Flux per turn linked with the 

pick-up winding N2 vs the Ampere-turns of the excitation winding for 𝐸1 = 400 𝑚𝑉 
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Fig. 12. Modulus of the impedance variation of the HF pick-up coil as a function of the LF Excitation current, for 𝐸1 = 400 𝑚𝑉 

 

3. Numerical analysis 

3.1. Numerical formulation 

Here we briefly recall the mathematical model and the related numerical formulation. Further details can be 

found in [20, 21, 22]. The field problem is described by the following coupled volume integral equations in 

terms of the field sources, the induced current density vector J and the magnetization vector M: 

    ( , ) ( , )

0 0

( , ) | | ( , ) ( , ) ,  and 

t t

J t M t S Ct dt t t dt V t + + = − −    r rJ r A J A M A r r r   (1) 

    ( , ) ( , )( , ) ( , ) | | , and S M t J t Mt t V t = + +    r rM r B r B M B J rG     (2) 

In Eqs. (1) and (2), AS and BS are the vector potential and the magnetic flux density due to the sources external 

to the computational domain, AM and BM are the vector potential and the magnetic flux density due to the 

magnetization whereas AJ and BJ are the vector potential and the magnetic flux density due to the eddy 

currents. The discretization of (1) and (2) is obtained with the Galerkin’s method. In the conducting domain, 

we represent J as the linear combination of the basis functions j j= J T  with edge element shape functions 

for Tj, while the magnetization is expanded on piecewise constant functions ( )jP r  in the magnetic domain 

[20, 21, 22]. By choosing the Jk’s in (2) and the Pk’s in (3) as the weighting functions, respectively, we obtain 

the following nonlinear set of equations in the time domain: 

 ( ) ( ) ( ) ( ) ( )S

d d d
RI t L I t Q M t U t F t

dt dt dt
+ = − − −      (3) 

 ( ) ( ) ( ) ( )
T

SM t G B t EM t Q I t = + +
 

     (4) 

In Eqs (3) and (4), I(t) and M(t) are the column vectors made of the coefficients Ij(t) and Mj(t) used in the 

expansion of the unknowns J and M in terms of basis functions. The column vector  is made of the voltage 



 

values j on each electrode facet Sj. The relevant matrices/vectors are defined as follows: 
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The solution of this time-periodic non-linear set of equations with hysteretic media is obtained by applying  a 

fixed-point algorithm in the frequency domain [22, 23]. It can be shown that the resulting iterative procedure 

is convergent if the magnetic constitutive equation verifies Lipschitz condition and is uniformly monotonic 

[22, 24, 25]. The advantage, in terms of CPU time guaranteed by this rigorous approach in the frequency 

domain is enormous, when comparing the number of solutions required in the time domain for reaching steady-

state conditions (of the order of the number of time steps) and the number of solutions required in the frequency 

domain that is of the order of the number of harmonics. 

From the numerical point of view, the difficulty of analyzing this case lies in the need to model the 

response of a complex system produced by two driving currents having frequencies of different orders of 

magnitude. However, since the field B  produced by the high-frequency current is much smaller than the 

reference field 0B  at low frequency, the computation can be split in two decoupled problems by performing 

appropriate linearization [20, 21]. This results in: i) a nonlinear (fully hysteretic) magnetic field problem where 

the driving force is the low-frequency current, which gives the working point 0 0( , )M B  at each point r  in the 

medium; ii) a linear problem for the small change ( , ) H B  where the inhomogeneous constitutive relation is 

given by ( )0 0
rev

( ) ( ), ( ) ( ) = B r M r B r H r . As a consequence, in the step ii), Eqs. (3) and (4) can be 

rewritten in the frequency domain as: 

 ( ) HFR j L I j Q M j U  +  = −  −      (5) 

 0
rev

T

HFM B E M Q I    = +  + 
 

     (6) 

 

3.1.1. Vector hysteresis model  

The nonlinear constitutive relation  =M BG  is here given by the isotropic vector generalization of the classical 

Jiles-Atherton model [26], applied in the analysis of NDE configurations [19, 20, 21, 22]. 

The input-output relationship between the magnetic induction B  and the magnetization M  of the inverse 

vector Jiles-Atherton hysteresis model is described by the following differential relationships [27], [28], [29]: 
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are the differential susceptivity matrices associated with small magnetization changes dM  produced by small 

magnetic induction changes dB  at the point 0 0( , )M B , 
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I  is the identity matrix, M , , , ,S k c a , are the parameters of the classical (scalar) Jiles-Atherton model and 

( )an eM H  is the vector generalization of the anhysteretic magnetization curve. 

By using Eqs. (9) and (10), it is possible to compute the differential permeability tensor in any point of the 

material as follows (the dependence on 0 0( , )M B  is understood): 

 
1

0
irr irr

(I - ) −
=  ,           if χ 0d ef  H      (13) 

 
1

0
rev rev

(I - ) −
=  ,         if 0χ d ef

 H .     (14) 

Typically, the 33 matrix expressed by Eq. (13) is fully populated whereas the reversible permeability matrix 

(14) is diagonal but not isotropic. 

The latter equation plays an essential role for the simulation of the incremental permeability measurement 

technique. 

 

3.1.2. Incremental permeability 

In order to use the vector JA hysteresis model for the analysis of differential permeabilities in complex finite-

element studies, some considerations on how the model fulfills general vector hysteresis properties are needed.  



 

In fact, first of all one would expect that an isotropic and initially demagnetized material, subject to a magnetic 

induction field B with sinusoidal amplitude and directed along a given orientation b, should produce in steady-

state conditions a periodic magnetic field H aligned with the same direction. Moreover, the components of B 

and H projected along the direction b, when represented on a Cartesian diagram, should give rise, in principle, 

to the same hysteresis loop regardless of the particular choice of b. This property is often referred to as 

reduction of vector hysteresis to scalar hysteresis [30]. 

An additional qualitative feature concerning differential permeabilities is also expected as a consequence of 

the isotropy of the material. In fact, as outlined above, let us assume to be in steady-state conditions describing 

a hysteresis loop along the chosen direction b and stopping at a given field amplitude B0. Then, let us consider 

the differential permeabilities along generic directions ⊥b  lying in the plane perpendicular to b. Again, one 

would expect that such permeabilities do not depend on the particular choices of both b and ⊥b . This property 

is connected to the correlation of mutually orthogonal components of input and output fields in vector 

hysteresis [30]. 

These considerations appear quite natural and reasonable based on the hypothesis of isotropic material, but 

become considerably challenging when vector hysteresis models are introduced. For instance, it is worth 

mentioning that vector hysteresis models based on the superposition of angularly-distributed classical scalar 

Preisach models require to fulfill nontrivial mathematical constraints (integral equations) in order to comply 

with the property of reduction to scalar hysteresis [30]. Thus, in order to circumvent such complex 

mathematical and computational issues, special classes of hysteresis models naturally fulfilling the latter 

property and additional qualitative features of vector hysteresis have been introduced (for instance see refs. 

[31], [32], [33] and references therein). 

The vector JA model is computationally efficient due to its local memory property, but, in spite of its 

simplicity, it exhibits limitations when the reproduction of vector hysteresis features is concerned. In order to 

make quantitative estimate of these limitations, we have performed two simple tests of the vector JA model 

(the parameters are M𝑠 = 1.54 × 106A/𝑚, a = 445, k = 2 0, α = 0.00077, c = 0.02) for the calculation of 

differential permeabilities, as outlined above by changing the orientations 𝐛 and 𝐛⊥. Each test consists of 3 

stages: 1) apply sinusoidal magnetic induction (amplitude 1 T) along a given direction 𝐛 and describe 3 full 

scalar hysteresis loops until a final value B0; 2) apply a sinusoidal magnetic induction with small amplitude 1 

mT along a direction transverse to 𝐛, namely 𝐛⊥ = 𝐚 × 𝐛;  3) evaluate differential permeability along the 

direction 𝐛⊥. We will refer to tests T1 and T2 where choices of 𝐛 and 𝐛⊥ are reported in fig. 13. 



 

        

Fig. 13. Sketch of directions 𝐛, 𝐛⊥ used in tests T1 (left-two) and T2 (right-two) to compare differential permeabilities. 

The calculation is repeated twice for each test by selecting B0 close to saturation (T1.1, T2.1) and 

corresponding to coercive field (T1.2, T2.2), respectively. The results of the computations are reported in Table 

I. 

Table I: Results of differential permeabilities computation with the vector JA model 

 T1.1 T1.2 T2.1 T2.2 

𝐛 (1,0,0) (1,0,0) (√2/2,√2/2,0) (√2/2,√2/2,0) 
𝐛⊥ (0,1,0) 

(0,0,-1) 

(0,1,0) 

(0,0,-1) 
(−√2/2,√2/2,  0) 

(0,  0,−1) 
(−√2/2,√2/2,  0) 

(0,  0,−1) 
B0 1T 0T 1T 0T 

H0 559.07 A/m -270.91 A/m 557.57 A/m -270.79 A/m 

μ⊥ 2.2581e-005 

2.2581e-005 

3.005e-005 

3.005e-005 

1.7853e-005 

2.2592e-005 

2.9443e-005 

3.0051e-005 

 

From the analysis of the results, some conclusions can be drawn. First, we observe that the values of field H0 

agree between T1 and T2 with a small relative error below 1%. Thus, the reduction to scalar hysteresis is fairly 

well reproduced by the vector JA model. Then, as far as the invariance of the differential permeabilities is 

concerned, we notice that agreement is very good between T1 and T2 when the scalar hysteresis occurs along 

a coordinate axis (relative error much below 10−3). Conversely, the maximum stressful condition for the model 

is realized when the scalar hysteresis occurs along an orientation tilted 45° off the x-axis, which yield a relative 

error up to 20% in the computed permeabilities with field close to saturation (T2.1). Further tests (not reported) 

performed with a and b tilted 45° off in the yz and xy plane, respectively, exhibit the same results as T2.1 and 

T2.2 (largest error with field at saturation). 

 

3.2. Numerical analysis of the strip 

The geometry of the ferromagnetic joke is illustrated in Fig. 4. The finite element discretization 

(a×b×=233mm×22.4mm×1.1mm, 7124 elements, Nj=30 electrical unknowns, NM =15072 magnetic unknowns 

for each Fourier harmonic, Nf=11 Fourier harmonics leading to NDOF=(Nj+ NM)×Nf =169092 complex 

unknowns for the LF excitation) is shown in Fig. 14. The parameters of the Jiles-Atherton model are 0.23c =

, 750a = , 1600k = , 
6

M 1.3 10 A/ ms =  , 31.8 10 −=  . In Fig. 15, the low frequency current and voltage 
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measured at the input of the winding N3 are compared with the experiment. Notice that the voltage is assumed 

in input and decomposed in a number of harmonics (11 in this specific case), while the current represent the 

numerically computed solution. In Fig. 16, the measurements reproducing a cycle of hysteresis in the 

ferromagnetic yoke is shown and compared with the same data numerically computed. They are measured and 

computed by using the coil N2. 

To compute the response of the system to the HF excitation, we impose the reversible permeability tensor 

(14) in each point of the ferromagnetic plate, for a set of 50 working points along the hysteresis curve. 

 

Fig. 14. The finite element mesh used for the LF computation. On the right, a zoom of the winding N3 

 

    
Fig. 15. Time evolution of the input voltage V3  (left, red), and of the input current (right): Simulation vs experimental data  

    

Fig. 16. Left: time evolution of the induced voltage E2 on the C-leg Right: flux linked with the pick-up winding  𝑁2 as a function of the 

LF input Ampere-turns 

 

 



 

  

Fig. 17. The finite element mesh used for the HF computation, with and without the ferromagnetic yoke. 

For each working point 0 0( ( ), ( ))M r B r , the linear magneto-quasistatic system given by (5) and (6) is solved. In 

this case, the discretization of the strip is different (see Figure 17) because it should take into account the 

constraint imposed by the skin effect related to the HF excitation (a×b×=233mm×20mm×1.1mm, 17984 

elements, Nj=12957 electrical unknowns, NM=32352 magnetic unknowns). In order to estimate the effect of 

the yoke on the computation, we carried out the analysis with and without the magnetic core. 

The differential permeability at each working point of the magnetic curve is shown in Fig. 18. The HF 

impedance variation, computed with and without the ferromagnetic core and compared with the measurements 

is shown in Fig. 19. Because the HF windings is the same as the low frequency winding, it can be seen that the 

presence of the magnetic core gives a significant, contribution in this case. Moreover the agreement on the 

imaginary part of the impedance variation is fairly good, while a large discrepancy is present between the 

numerical value of its real part and the experiment. 

 

Fig. 18. The differential permeability at each working point of the magnetic curve, as a function of time. 
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Fig. 19. Time evolution of the HF impedence of the pickup coil wounded around the strip (left top: real part, right top: imaginary part; 

bottom: modulus). The measurements are compared with the computed results with and without the ferromagnetic yoke 

 

 

Fig. 20. The finite element mesh used for the LF and HF computation. 

 

3.3. Numerical analysis of the plate 
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As in the previous case, we performed the analysis in two steps. First, we compute the working points according 

to the Low Frequency excitation. In this step, the plate is characterized only by its magnetic properties and 

therefore the eddy currents are neglected. The mesh (a×b×=400mm×200mm×1.1mm, 13549 elements, Nj=190 

electrical unknowns in the winding, NM =18717 magnetic unknowns for each Fourier harmonic, Nf=11 Fourier 

harmonics leading to NDOF=(Nj+ NM)×Nf =207977 complex unknowns for the LF excitation) is shown in Fig. 

20. The input voltage is imposed and the input current is computed and compared with the measurements in 

Fig. 21, while in Fig. 22 the voltage induced in the winding N2 is shown and again compared with the 

experiment. In Fig. 23, the anisotropic differential permeability computed by using the vector Jiles Atherton 

model presented in the previous section is shown, as computed in a specific element between the legs of the 

ferromagnetic core. 

These values of the magnetic permeability are then imposed in the plate that is discretized in finer way, since 

now the eddy currents play a dominant role. The dimensions of the plate have been reduced with respect to the 

LF case (a×b×=140mm×140mm×1.1mm), but its discretization, shown in Fig. 20, is finer (19460 elements, 

15876 without the yoke, Nj=29233 electrical unknowns, NM =58380 magnetic unknowns, 47628 without the 

yoke. In this limit, we have to solve a linear problem in the frequency domain for each magnetic working point. 

The results for the impedance variation are shown in Fig. 24. In this figure, it can be seen that the results 

obtained by imposing the isotropic permeability diff xx = , where the x-axis is in the dominant direction of 

the LF magnetic field, are much better than those obtained by using the anisotropic diagonal tensor 

[ , , ]xx yy zzdiag    . A possible explanation has been outlined in the previous section. Finally, we remark that 

in this case the presence of the yoke does not affect the results. 

 

 

Fig. 21. Time evolution of the input voltage V1  (left, red), and of the input current (right): Simulation vs experimental data. 

 



 

    

Fig. 22. Left: time evolution of the induced voltage E2 on the C-leg. Right: flux linked with the pick-up winding  𝑁2 as a function of the 

LF input Ampere-turns. 

 

 
Fig. 23. The anisotropic differential permeability at each working point of the magnetic curve, as a function of time. 

 

   

 

Fig. 24. Time evolution of the HF impedance of the pickup coil (left top: real part, right top: imaginary part; bottom: modulus). The 

measurements are compared with the computed results without the ferromagnetic yoke. 

 



 

4. Conclusions 

In this work we presented an extensive and detailed experimental campaign to validate a full 3D numerical 

model, specifically developed for Micromagnetic Measurements of ferromagnetic materials. Micromagnetic 

Measurements play an important role in Material Characterization of ferromagnetic materials thanks to their 

correlation to mechanical properties. This gives to Micromagnetic Measurements a key role in steel industry. 

The numerical model  described in this work is capable to treat ferromagnetic materials with magnetic 

hysteresis. The model is capable of treating a complex phenomenon such as the vector hysteresis. Moreover, 

the numerical model is capable to account for the electrical conductivity of the material. This makes the 

problem even more complex because of the presence of the skin-effect. The numerical model has been 

specifically developed and optimized for arbitrary periodic regimes. 

The experimental validation has been carried out with reference to two important types of analysis on 

ferromagnetic materials. The first one is the harmonic analysis, where a “low” frequency (10Hz) strong field 

is applied to the ferromagnetic material. This strong field brings the ferromagnetic to saturation. The second 

analysis is related to the incremental permeability, where one measures the impedance of a “high” (5kHz) 

frequency coil at different points of the hysteresis loop. This is achieved by measuring the impedance of this 

pick-up coil (at 5kHz) when driving the system along a hysteresis loop with the “strong” low frequency (10Hz) 

field. Due to the vectorial nature of the hysteresis, the differential permeability is better described by a tensor. 

The numerical model contributes in disclosing the connection between the actual permeability and the 

measured quantity (the impedance of the coil). 
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