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New silibinin glyco-conjugates have been synthesized by efficient method and in short time. Exploiting
our solution phase strategy, several structurally diverse silibinin glyco-conjugates (gluco, manno, galacto,
and lacto-) were successfully realized in very good yields and in short time. In preliminary study to eval-
uate their antioxidant and neuroprotective activities new derivatives were subjected to DPPH free radical
scavenging assay and the Xanthine oxidase (XO) inhibition models assay. Irrespective of the sugar moiety
examined, new glyco-conjugates are more than 50 times water-soluble of silibinin. In the other hand they
exhibit a radical scavenging activities slightly higher than to silibinin and XO inhibition at least as
silibinin.

� 2014 Elsevier Ltd. All rights reserved.
Silibinin is the major biologically active component of an
extract from the seeds of the milk thistle (Silybum marianum)
known as silymarin.1 Structurally natural silibinin is a diastereo-
isomeric mixture of two flavonolignans, namely silybin A and sily-
bin B in a ratio of approximately 1:1.2 Silibinin is a metabolite with
multiple biological activities operating at various cell levels, most
of them related to its radical scavenging activity and it is already
used successfully in therapy of liver damage of various aetiology
and as a liver-protecting drug.3–7 Its therapeutic efficiency is rather
limited by its low bioavailability and thus limited affectivity. Silib-
inin is typically administered orally, which limits the efficacy of the
natural product because of its poor absorption and short half-life in
the body.8

In order to reach their target tissues, cells, and organelles for
their desired therapeutic effects a number of physical and chemical
approaches by which to accomplish these difficult challenges have
been proposed.9 Only a few modifications have been introduced
and most simply alter the chemical and physicochemical proper-
ties of the natural metabolite and enhance the biological efficacy
of the derivatives by increasing their in vivo stability, binding affin-
ity, and overall uptake. Generally tissue- and cell-specific drug
targeting can only be achieved by employing carrier-drug com-
plexes or conjugates that contain a ligand recognized by a receptor
on the target cell. Carbohydrate-based conjugates allow targeting
of a certain class of cell membrane receptors that are referred to
as lectins which recognize a specific carbohydrate motif and inter-
nalize their ligands by endocytosis. The presence of hydroxyl
groups brings the possibility of prodrug approach making possible
the improvement of the its pharmaceutical, pharmacokinetic and/
or pharmacodynamic properties.10

In this frame it has been reported that the absorption of querce-
tin glycoside is more efficient than that of quercetin aglycon, indi-
cating that the hydrophilic character of saccharide moieties
increased the water solubility of the aglycon, and enhanced its bio-
availability.11–14

We present here the preliminary results of a efficient synthetic
procedure to obtain new 900–phosphodiester silibinin conjugates
with different mono- and di-saccharide labels through the anomer-
ic hydroxyl group (Fig. 1). The introduction of the phosphate group
is generally used to bring great pharmaceutical and pharmacoki-
netic benefits.

In our approach 900-phosphoramidite 115 (Scheme 1) have been
used as silibinin substrate and 1-OH full protected mono- and di-
saccharide derivatives (2–5, Scheme 1) chosen as sugar starting
materials. We initially converted full acetylated mono and
di-saccharides into 1-OH derivatives by a reaction with benzyl-
amine in THF at room temperature.16,17 Thus compounds 2–5
(Scheme 1) were coupled with derivative 1 using 0.45 M tetrazole
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Figure 1. General structures of new silibinin glyco-conjugates.
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in ACN/DCM (1:1, v:v). The treatment with 5.5 M tert-butyl hydro-
peroxide solution in decane and the subsequent treatment with
conc. aq. ammonia and MeOH (1:1, v:v) at room temperature,
allowing full deprotection from acetyl and cyanoethyl groups and
leading to the desired phosphodiester derivatives 6–9 in good
yields.18 All compounds were then converted into the correspond-
ing sodium salts by cation exchange on a DOWEX (Na+ form) resin
to have crystalline samples. The crude materials were then sub-
jected to reverse phase analysis (RP-18 HPLC), with various col-
umns and elution conditions, but the conditions for a separation
of different diastereoisomers were not found. In the end new silib-
inin analogues (6–9) were eluted onto Sep-Pak C18 cartridge and
were obtained as a mixture of diastereoisomers, as observed 31P
NMR analysis.18 The NMR analysis has proved very complex, in fact
1H and 31P NMR spectra of all compound showed dramatic line
broadening, already at 5.0 mg/mL (ca. 7.0 mM), diagnostic of a
slow equilibrium on the NMR time scale, which could suggest a
strong propensity toward aggregation in H2O. This drawback has
not allowed a complete and detailed NMR characterization of the
new derivatives. In this preliminary study we show the values of
the 31P NMR and ESI-MS mass spectra signals.19

All silibinin derivatives were subjected to 2,2-diphenyl-1-pic-
rylhydrazyl (DPPH)20 free radical scavenging assay (Table 1) and
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Scheme 1. Synthesis of new 900-phosphodies

Table 1
Free radical scavenging capacity (DPPH) and Xanthine oxidase inhibition (X–XO)

Samples IC50 (lM)a

DPPH scavenging

Silibinin-900-phosphoryl-D-glucopyranoside (6) 301.7 ± 15.1
Silibinin-900-phosphoryl-D-mannopyranoside (7) 108.0 ± 3.2
Silibinin-900-phosphoryl-D-galactopyranoside (8) 233.0 ± 14.0
Silibinin-900-phosphoryl-D-Lactopyranoside (9) 154.7 ± 6.2
Silibinin 392.2 ± 7.8
2,3-Dehydrosilybin 27.0 ± 0.8
Quercetin 0.31 ± 0.01

a IC50 values were calculated using data obtained from at least three independent exp
b (Mean ± SD from three separate experiments run in duplicate, at 10, 25, 50, 100, an
the Xanthine oxidase (XO)21,22 inhibition models assay were uti-
lized to evaluate their antioxidative properties (Table 1). The DPPH
test is a non-enzymatic method currently used to provide basic
information on the scavenging potential of stable free radicals
in vitro. On the other hand XO is considered to be the important
biological source of free radicals. Many references reveal cerebral
microvascular injury resulting from XO production of superoxide
free radicals.23 XO inhibition is thereby implicated as useful
approach in treating cerebrovascular pathological changes or cen-
tral nervous system (CNS) diseases.24,25 From the DPPH assay
shown in Table 1, we observed that introducing an sugar moieties
in 900 position did not led to a general reduction of quenching prop-
erties. For comparison purposes, the antioxidant activities of
2,3-dihydrosilybin and quercetin were evaluated as controls. In
particular the new silibinin derivatives (6–9) showed DPPH radical
scavenging activities that were similar to that of the silibinin 1,
which confirmed that the introduction in 900 of the sugar moiety
had little effect on radical scavenging activity.26,27 In basal condi-
tions, the pre-incubation of MKN28 cells with 6–9 and silibinin
lead to two different results (Table 1). In fact, 6–9 analogues do
not affect cell viability, while silibinin induced a cell death of about
50%, also at the lower dose used. The evaluation of cell viability in
MKN28 cultured cells after incubation with 6–9 and silibinin, and
subsequently the induction of oxidative stress shows that these
molecules protect, from cell death after induction of oxidative
stress, at least as silibinin.

In conclusion, new silibinin glyco-conjugates were synthesized
and their antioxidant properties were evaluated. Exploiting our
solution phase strategy, a variety of structurally diverse silibinin
glyco-conjugates were successfully realized in a short time and in
very good yields. New derivatives were subjected to DPPH free
radical scavenging assay and the Xanthine oxidase (XO) inhibition
models assay in preliminary study to evaluate their antioxi-
dant activities. Irrespective of the sugar moiety examined, all
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ter glyco-conjugated silibinin analogues.

Cell viabilityb (%)

After induction of oxidative stress

89.2 ± 3.1 42.7 ± 3.2
89.5 ± 2.3 42.3 ± 4.2
84.1 ± 2.4 42.8 ± 3.6
91.8 ± 2.1 48.4 ± 3.8
45.3 ± 2.5 42.4 ± 2.9
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— —

eriments.
d 200 lM).
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compounds exhibited a radical scavenging activities slightly higher
than to silibinin and Xanthine oxidase (XO) inhibition at least as sil-
ibinin. In the other hand the new derivatives showed a water solu-
bility well above that of silibinin, in fact it was possible to prepare
solutions of about 70 mg/mL of analogues in water. These two data
encourage our future studies that are aimed to improvement this
synthetic strategy to realize libraries of optically pure glyco-conju-
gated silibinin and 2,3-dehydrosylibin derivatives.
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