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Abstract: Poly(ethyleneoxideterephthalate)/poly(butyleneterephthalate) (PEOT/PBT) segmented 

block copolymers are widely used for the manufacturing of 3D-printed bio-scaffolds, due to a 

combination of several properties, such as cell viability, bio-compatibility, and bio-degradability. 

Furthermore, they are characterized by a relatively low viscosity at high temperatures, which is 

desired during the injection stages of the printing process. At the same time, the microphase 

separated morphology generated by the demixing of hard and soft segments at intermediate 

temperatures allows for a quick transition from a liquid-like to a solid-like behavior, thus favoring 

the shaping and the dimensional stability of the scaffold. In this work, for the first time, the rheology 

of a commercial PEOT/PBT material is studied over a wide range of temperatures encompassing 

both the melt state and the phase transition regime. Non-isothermal viscoelastic measurements 

under oscillatory shear flow allow for a quantitative determination of the material processability in 

the melt state. Additionally, isothermal experiments below the order–disorder temperature are used 

to determine the temperature dependence of the phase transition kinetics. The importance of the 

rheological characterization when designing the 3D-printing scaffold process is also discussed. 

Keywords: poly(ethylene oxide terephthalate); poly(butyleneterephthalate); random block 

copolymers; microphase separation; rheology; viscoelasticity; 3D-printing; scaffolds 

 

1. Introduction 

Poly(Ethylene Oxide Terephthalate)/Poly(ButyleneTerephthalate) (PEOT/PBT) segmented block 

copolymers have been known for more than thirty years as bio-compatible materials [1]. Today, 

PEOT/PBT (or PEGT/PBT, from poly(ethylene glycol terephthalate), which is often used as a 

synonym name) is used in many bio-medical applications, such as drug release systems [2,3], dermal 

substitutes [4], bone fillers [5], nerve regeneration [6] and, most of all, scaffold manufacturing [7–16]. 

One popular technology for scaffold fabrication is the 3D-printing fused filament technology, 

where the scaffold is built by extruding a molten polymer thread on superimposed layers, according 

to a well-defined pattern [7,10,12,13]. The polymer is injected when in the liquid state, and then 
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solidifies after the filament has been deposited onto the growing layers, thus originating the three-

dimensional scaffold geometry. 

A polymer suitable for bio-scaffolds must possess some obvious requirements. It must be bio-

compatible and, when required, bio-degradable or bio-resorbable. Above all, it must be able to host 

a bio-instructive system, that is, the chemical and physical microenvironment required for cell 

viability, differentiation and growth [17]. 

Apart from the necessary bio-related properties, the polymer must exhibit a low melt viscosity, 

to allow for an easy injectability and filament production. Furthermore, the solidification kinetics 

must compromise between two simultaneous requirements: on the one hand, the necessity to quickly 

impart a sufficient consistency to allow for the scaffold to retain its shape and dimension. On the 

other hand, the somewhat opposite need to keep a liquid-like behavior for a sufficient time, in order 

to guarantee an optimal healing between two consecutive filament layers. The material rheological 

behavior in the melt state and during its phase transition stages, therefore, is crucial in determining 

the best manufacturing conditions. 

Segmented copolymers such as PEOT/PBT are constituted by two segments with very different 

characteristics: the hard segment (HS, in this case PBT) and the soft segment (SS, PEOT). At high 

temperatures, the segments are well mixed, as the disordering Brownian effects prevail over the 

intersegmental interactions. As the temperature is lowered, HS and SS recognize their molecular 

incompatibility, which results in the formation of microphase-separated domains of soft and hard 

segments. The typical morphology is made of amorphous or semi-crystalline HS domains dispersed 

into a SS matrix. The characteristics of the microphase-separated morphology, which are mainly 

controlled by the chemistry and the relative composition of the two segments, crucially affect the 

mechanical and rheological properties of segmented copolymers [18]. 

While several studies deal with some relevant physical attributes of PEOT/PBT block 

copolymers, such as thermal, degradation, mechanical, and tribological properties [19–26], very little 

is known about their rheological behavior and its consequences on the 3D-printing process. In this 

paper, to our knowledge for the first time, the rheology of a PEOT/PBT polymeric material is 

experimentally studied in detail. Small amplitude oscillatory shear (SAOS) measurements are used 

to assess the temperature dependence of viscosity in the melt phase, and to investigate the subsequent 

cooling stages. In particular, the order–disorder transition (ODT) temperature, marking the onset of 

the microphase separation as well as the kinetics of the sol/gel process quantitatively determined. 

The experimental results are discussed also in terms of their consequences on the processing behavior 

during the 3D-printing stages for the manufacturing of bio-scaffolds. 

2. Materials and Methods 

PEOT/PBT was provided by PolyVation B.V. (Groningen, The Netherlands) and used as 

received. The material was labeled 300PEOT55PBT45, indicating a molar mass of the PEO segment 

of 300 Da and a 55/45 weight percent ratio between PEOT soft and PBT hard segments. 

Differential scanning calorimetry (DSC) measurements have been performed on a Q2000 DSC 

apparatus (TA Instruments Inc., Pittsburgh, PA, USA). Temperature scans were performed at the 

standard heating/cooling rate of 10 °C/min. The first heating scan, from ambient temperature to 

+200 °C, was used to erase any thermal memory. 

Rheological measurements have been conducted on an advanced rheometric extended system 

(ARES, Rheometrics Inc., Piscataway, NJ, USA) rheometer, equipped with a 0.2/2.0 Nm force 

rebalance transducer. SAOS measurements were performed using a parallel plate geometry with 

plates of 8 and 25 mm diameter. The amplitude was always chosen and, when necessary, changed in 

the course of the experiment in order to keep the material response within the linear viscoelastic limit. 

A 1 mm gap thickness was used and was kept constant in the non-isothermal tests by accounting for 

the tool thermal expansion. When necessary, the auto-tension feature was used to avoid loss of 

contact and minimize wall slip at the plate surface. The temperature control was guaranteed by a 

convection oven with an accuracy of ±1 °C. Fresh samples were used for each test. Control 
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measurements performed at the beginning and at the end of each run confirmed the absence of 

thermal degradation. 

All rheological measurements were performed on triplicate by using a fresh sample each time. 

No relevant variations, both qualitative and quantitative, were found between the different runs. 

3. Experimental Results and Discussion 

3.1. Calorimetry 

Figure 1 shows the cooling and second heating DSC traces of PEOT/PBT between the 

temperatures of +50 and +200 °C (the interval of interest in this work). The sample shows a well-

defined crystallization peak at 111 °C, probably corresponding to the crystallization of HS domains. 

Upon heating the endotherm signal is distributed over a much wider range of temperatures, although 

a clear melting peak is observed at 159 °C. The results of Figure 1 are compatible with those already 

available in the literature for similar PEOT/PBT samples [22,24]. 

 

Figure 1. The DSC thermogram of PEOT/PBT between +50 and +200 °C. The cooling/heating rate is 

10 °C/min. The cooling after the first heating and the second heating curves are shown. 

3.2. Non-Isothermal Rheology 

Rheological temperature ramps were performed under conditions similar to those used in 

calorimetric measurement. The sample is loaded at a temperature of 200 °C and, after thermal 

equilibration, is cooled at a fixed rate down to a temperature of 60 °C while measuring the linear 

viscoelastic moduli at the fixed frequency of 10 rad/s. Lower temperatures were out of range of the 

rheometer due to the increasing rigidity of the material. After an isothermal resting at 60 °C the 

temperature was increased again to the maximum value of 200 °C. 

Figure 2 shows the results of the non-isothermal ramp for a cooling/heating rate of 10 °C/min. 

During cooling, three distinct regions of behavior can be clearly observed. At high temperatures, 

between about 200 and 140 °C, both moduli slowly increase upon decreasing temperature. On further 

cooling, a sharp increase of the moduli is observed over a very narrow temperature range. G′ grows 

faster than G′′ in this region, and a cross-over between the moduli is observed at a temperature of 

about 128 °C. Starting from about 115 °C the moduli still increase upon cooling but to a much lesser 

extent than in the previous region, eventually tending to a flat plateau as the temperature approaches 

the final value of 60 °C. The material response is qualitatively symmetrical in the heating part of the 

experiment: the moduli first slowly decrease upon increasing temperature, then abruptly drop at 

intermediate temperatures, and eventually keep decreasing at a lower rate upon further increasing 

the temperature. The similarity is only qualitative, however, as the characteristic temperatures during 

heating are higher than those of the cooling phase. In any case, at high temperatures the rheological 

response becomes also quantitatively identical to that observed in the initial cooling stages, indicating 

that no thermal degradation has taken place and that the polymer has identically returned to its initial 

molten state. 
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Figure 2. The elastic and loss moduli as a function of time during a cooling/heating ramp at 10 °C/min. 

The temperature history is reported on the right y-axis. The oscillation frequency is 10 rad/s. The strain 

is adjusted to guarantee the linear viscoelastic response at all times. 

The three-region viscoelastic behavior observed during the cooling and heating ramps can be 

directly related to the morphological evolution of the polymer microstructure. Considering the 

cooling section, the response in the high temperature region is typical of a homogeneous polymer 

melt. Here, as expected, the viscoelastic properties smoothly change with temperature. It can be 

noticed that the loss modulus is about one order of magnitude larger than the elastic modulus, thus 

indicating an almost purely viscous behavior of the material. The lack of a significant elastic 

component is also confirmed by the large scattering of the G′ data, as they fall around (or even below) 

the lower limit of the instrument sensitivity. 

In the intermediate temperature range the dramatic change of the moduli is directly connected 

to the microphase separation between soft and hard segments. As the temperature decreases, the 

negative interactions between soft segments and hard ones prevail over the disordering effect of 

thermal motion. SS and HS domains become larger and possibly more ordered, thus determining the 

transition from a liquid-like to a solid-like rheological behavior, generally termed as the sol/gel 

transition. The point where the transition takes place is the so-called critical gel point [27], where the 

mobility of the polymer chains is essentially frozen by the growing microdomains. Although a 

rigorous definition of the critical gel point would require an analysis of the frequency response of the 

material [27], it is a generally well-accepted empirical rule to locate the critical gel point at the cross-

over between the viscoelastic moduli [28]. In the case of Figure 2, therefore, the sol/gel transition is 

estimated to take place at a temperature of about 128 °C. This is a relevant processing information, in 

particular when the PEOT/PBT block copolymer is used for the manufacture of 3D-printed scaffolds. 

The sol/gel transition corresponds to the point where the material has solidified, and no further 

change in shape is possible. 

In the final part of the cooling ramp the microdomains are now well-formed and the material 

has reached an essentially stable microstructure, as confirmed by the much lower increase of the 

moduli as compared to the sol/gel transition region. A closer inspection of the experimental data, 

however, indicates that kinetics effects are still present, and some additional time is required to reach 

equilibrium conditions. While the loss modulus remains constant at the final constant temperature 

of 60 °C, the elastic modulus still increases with time. The total change of about 20% reflects an 

increase of rigidity of the material. This “aging” phenomenon can be probably related to a continuous 

refinement and ordering of the hard segment microphase, as it has been already observed for other 

segmented block copolymers [29]. 

The same considerations made above for the cooling part of the experiment can be repeated for 

the heating section. At low temperatures, heating triggers the melting of the microdomains. Then, a 

progressive erosion of the hard phase domains takes place without substantial loss of connectivity, 

as already observed in the case of Thermoplastic Polyurethanes (TPU) [29,30]. Eventually, total 

melting occurs and the homogeneous liquid state is regained at higher temperatures. 
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The cooling part of the viscoelastic response provides another technologically relevant piece of 

information. Figure 3 shows the temperature dependence of the complex viscosity of PEOT/PBT in 

the high temperature region. 

 

Figure 3. The logarithm of the complex viscosity as a function of the inverse absolute temperature in 

the early stages of the cooling ramp. The frequency is 10 rad/s. The straight line is the linear regression 

of the data before the jump due to the onset of the sol/gel transition (see Equation (1)). The linear 

temperature scale (in °C units) is reported on the top x-axis to facilitate the reading. 

When the log of viscosity is plotted as a function of the inverse absolute temperature, a linear 

behavior is observed down to about 140 °C, where the viscosity sharply increases due to the 

beginning of the sol/gel transition. At high temperatures, therefore, the rheological behavior is that 

of a purely viscous fluid whose viscosity follows a typical pseudo-Arrhenius dependence upon 

temperature. Separate experiments at a number of selected temperatures above the transition (not 

reported here for brevity) also show that the viscosity is not dependent upon frequency. It can be 

concluded that in the melt state the PEOT/PBT sample investigated in this work shows a purely 

viscous, Newtonian response whose temperature dependence, as obtained from a linear regression 

of the data of Figure 3, can be expressed in the following form: 

   
1980

31.52 10 10  TT  (1) 

where T is the absolute temperature (K) and the viscosity is in SI Units (kg·m−1·s−1). Equation (1) 

quantitatively determines the viscous behavior of the melt. It is particularly useful, therefore, to 

optimize the processing parameters of the extrusion 3D-printer section.  

In all processes involving a thermally induced phase change, the transitional phenomena 

depend on the temperature rate of change, as both thermodynamic and kinetic effects are present. 

Figure 4 shows the cooling/heating cycle (the holding phase data at 60 °C have been omitted to 

improve the clarity) at different rates, from 20 to 1 °C/min. The complex modulus, G* (Figure 4a), shows 

all the features already discussed above. At the highest rate of change (20 °C/min), the onset of phase 

transition upon cooling takes place to the lowest temperature. As the rate decreases, the transition 

takes place at increasingly higher temperatures, indicating that the phase transition kinetics upon 

cooling are becoming significantly less relevant compared to thermodynamic effects [31]. On the 

contrary, the dependence of the melting behavior upon the heating rate is not relevant, as the curves 

essentially superimpose and no clear trend is observed. It is also apparent that, at any cooling/heating 

rate, the sol-to-gel transition realized upon cooling the melt is much “sharper” than the 

corresponding melting process, in agreement with the calorimetric data shown in Figure 1. It can be 

deduced that the formation of the microdomains is a more difficult process than their symmetrical 

melting, thus giving more strength to the hypothesis that melting is determined by a progressive 

erosion of the hard phase domains, with a gradual loss of connectivity [30]. 
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(a) (b) 

Figure 4. The viscoelastic response during the cooling/heating cycle at different temperature rates of 

change. (a) complex modulus; (b) loss factor. 

A more quantitative estimate of the transition temperatures during both cooling and heating can 

be done with the help of Figure 4b, which shows the loss factor, that is, the ratio between the loss and 

elastic components of the viscoelastic modulus. The scattering of the data at high temperatures, 

which is due to the elastic component below or at the boundary of the measurable instrument 

sensitivity (see above, Figure 1), does not significantly affect the following analysis. According to the 

empirical definition of the critical gel point given above, a “rheological” phase transition temperature 

can be located where the two moduli become equal, i.e., when tanδ = 1. The crystallization and 

melting temperatures as derived from the above criterion are reported in Table 1 for the five 

cooling/heating rates used. It is confirmed that the two temperatures get closer as the rate decreases 

and that melting is less sensitive than crystallization to the thermal rate of change. It is also interesting 

to compare the rheological results of Table 1 with those obtained by DSC as reported in Figure 1. At 

the same rate of 10 °C/min, the melting rheological temperature is slightly higher than the peak DSC 

value. Conversely, upon cooling, the sol/gel transition temperature is significantly higher than the 

peak DSC one. This result is not surprising at all, since the two measurements have completely 

different meanings. Tm and Tc derived from calorimetry merely correspond to the peak in the heat 

flow curves and, as such, to the maximum phase transition rate. Conversely, their rheological 

counterparts give a mechanical information, namely, the transition from a liquid-like to a solid-like 

behavior. The physical consequence is that the critical gel state, where the liquid response gives room 

to the solid behavior, is reached after the most part of the microstructure has been already formed. It 

must be noticed that this not always true. While the same behavior has been already observed for 

other segmented block copolymers like TPU [29,30], a critical gel state reached during the early phase 

transition stages is often observed in semi-crystalline polymers [32], indicating that the nature of the 

microstructure (microdomains in the first case, crystallites embedded in the amorphous matrix in the 

second one) strongly affects the mechanical quality of the transitioning material. 

Table 1. The rheological crystallization and melting temperature (for the definition see the text) at 

different cooling/heating rates. 

Cooling/Heating Rate (°C/min) Tc,rheol (°C) Tm,rheol (°C) 

20 121 166 

10 128 163 

5 132 164 

2.5 138 165 

1 142 167 
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3.3. Isothermal Rheology 

The non-isothermal rheological measurements indicate that the process of microphase 

separation upon cooling of PEOT/PBT begins at relatively high temperatures (at least 155 °C, see for 

example Figure 4a for the cooling rate of 1 °C/min) and proceeds even at much lower temperatures, 

thus spanning a wide thermal range. This suggests that, in order to better explore the role of 

temperature on the sol/gel (or disorder-to-order) transition process, isothermal experiments can be 

particularly useful. 

The results of a typical isothermal test are reported in Figure 5. Here, after sample loading at 

200 °C, the temperature is rapidly dropped to the test temperature (in this case 160 °C) by a cooling 

ramp at 20 °C/min. When the target temperature is reached, the temporal evolution of the viscoelastic 

moduli at a fixed frequency is monitored. Notice that the G′ data have been smoothed, due to the 

high temperature data scattering (see above), simply to allow for a better reading of the results. 

 

Figure 5. The elastic and loss modulus as a function of time in an isothermal experiment at 160 °C. 

The temperature history is also reported on the right y-axis. G′ data have been smoothed for better 

clarity. 

In the first part of the experiment the rapid cooling only determines a slight increase of the 

viscoelastic moduli, typical of a polymer melt. The melt state is maintained also when the target 

temperature is reached. Only after an extra time at the constant temperature has elapsed (in this case, 

of the order of a few thousand seconds) the moduli start to increase relevantly, indicating the onset 

of the microphase separation. As in the non-isothermal case, the cross-over between the viscoelastic 

moduli indicates the critical gel point and the transition from liquid-like to solid-like behavior. At 

longer times, the moduli versus time curves are seen to bend towards a horizontal plateau, which is 

not reached in this particular case due to the extremely long experimental times. 

The results of Figure 5 clearly indicate the importance of the kinetics and of their temperature 

dependence on the microphase separation. Inspection of Figure 4, for example, indicates that even at 

the lowest cooling rate (1 °C/min) the polymer is still in its melt state down to a temperature of about 

160 °C. Two important consequences derive: first, even at a temperature as high as 160 °C the system 

presents a disorder-to-order transition; second, at these high temperatures the phase transition 

kinetics are relatively slow, as confirmed by the long “induction time”, that is, the time required to 

see an appreciable increase of the viscoelastic moduli. 

As in all temperature-driven phase transition phenomena, including crystallization and phase 

separation, the kinetics are expected to become faster as the temperature is decreased. This is 

confirmed in Figure 6, where the isothermal evolution of the complex modulus is plotted as a function 

of time at different annealing temperatures. The experimental protocol is the same as that of Figure 6. In 

this case, however, the complex modulus is plotted as a function of the reduced time, t − t0, where t0 

is the time when the target temperature is first reached. 
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Figure 6. The complex modulus as a function of the reduced time t − t0 (where t0 is the time when the 

target temperature is first reached) during isothermal experiments at different annealing 

temperatures.  

The message of Figure 6 is very clear: the kinetics of the phase transition process become faster 

as the temperature decreases, thus determining an earlier increase in the complex modulus evolution. 

Furthermore, although the long-time tail at the higher temperatures cannot be always captured due 

to the phase transition kinetics being too slow with respect to the experimentally affordable time 

window, the system seems to tend to an equilibrium value of the modulus. It is important to 

underline that, above the temperature of 168 °C (the highest temperature reported in Figure 6) no 

hint of phase transition is detected, at least for experimental times as long as about 105 s. 

From the analysis of Figures 5 and 6 it can be concluded that, for a given temperature, the system 

evolves from a melt, homogenous state, to an equilibrium, microphase-separated morphology, as the 

soft and hard domains progressively form, grow, and stabilize with time, passing through the sol/gel 

transition. The kinetics of this process can be quantified by determining, at each temperature, the 

critical gelation reduced time, (t − t0)cg, that is the time corresponding to the cross-over of the 

viscoelastic moduli (see above). The values of the reduced critical gelation time at the different 

annealing temperatures, are reported in Table 2. The same table reports also the reduced induction 

time, i.e., the characteristic time necessary to appreciate a change in the viscoelastic properties after 

the beginning of the transition process. Among the various definitions of the induction time found 

in the literature [33,34] we decide to calculate it as the time necessary for the complex modulus to 

double its value with respect to the initial one [35]. Notice that the induction time cannot be measured 

at the lowest temperature (130 °C) because, as it is apparent from Figure 6, the microphase separation 

process has already started when the annealing temperature has been just reached. Conversely, at 

the highest temperature (168 °C) the critical gelation time cannot be appreciated as it goes well 

beyond the affordable experimental time window. 

Table 2. The critical gelation and the induction reduced times at different annealing temperatures. 

Annealing Temperature (°C) (t − t0)cg (s) (t − t0)ind (s) 

130 25 – 

140 288 68 

150 2840 325 

155 3980 1050 

158 8990 3090 

160 13,800 3900 

163 22,100 7850 
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165 43,100 13,800 

168 >60,000 42,500 

It is obvious that the progressive slowing down of the phase transition kinetics as the 

temperature increases cannot be extended to any arbitrary temperature. As already mentioned in the 

Introduction, there is a limiting temperature above which the repulsive interactions between hard 

segments and soft segments, which are responsible for the phase separation, are not strong enough 

to overcome the randomizing action of thermal motion. Such a randomizing action determines the 

formation of a single-phase homogeneous melt [36]. The order–disorder transition (ODT) 

temperature is also an important technological parameter. It is the temperature above which the 

material will never be able to solidify, no matter how much time is allowed the system to undergo 

the phase transition. 

A rheological estimate of the ODT temperature can be done by using the experimental results of 

the isothermal measurements. Along the same lines describing the kinetics of the polymer 

crystallization kinetics [37], we can assume that the characteristic time for the phase transition follows 

a law of the type: 

 ODT

exp
 

  
  

B
t A

T T T
 (2) 

where t can be either the critical gel or the induction time, A is a numerical pre-factor, B is a pseudo-

activation energy, TODT is the order-to-disorder temperature and T is the test temperature. The non-

linear regression of Equation (2) to the data of Table 2 is reported in Figure 7, where the reduced 

characteristic times are both plotted as a function of the absolute temperature. The sets of parameters 

obtained from the regression procedure are listed in Table 3. 

 

Figure 7. The reduced critical gel and induction times as a function of the absolute temperature. The 

solid lines are the non-linear regression fits of Equation (2). 

Table 3. The fitting parameters of Equation (2) for the reduced critical gelation and induction times. 

Characteristic Time A (s) B·10−4 (K2) TODT (K) 

(t − t0)cg 41.1 6.35 459 

(t − t0)ind 5.50 7.94 461 
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The agreement between experimental data and model prediction is very good, especially in the 

high temperature region, that is, much above the glass transition temperature of the amorphous 

phase, where the crystallization kinetics model expressed by equation is expected to hold. In 

particular, Table 3 shows that the TODT parameter obtained by the two different sets of data is 

practically the same. This fact, along with the similar values found for the pseudo-activation energy 

B, confirms that the temperature dependence of the two characteristic times is the same, as they are 

two faces of the same physical process. Moreover, the consistency between critical gel time and 

induction time correlations allows for a robust determination of the ODT temperature, which can be 

situated around 187 °C. This means that, above such a temperature, the system is expected to live in 

a fully homogeneous, not phase-separated melt state. 

4. Concluding Remarks 

In this work the phase transition behavior of a PEOT/PBT segmented copolymer has been deeply 

investigated by rheological techniques. It has been shown that rheology can accurately describe the 

kinetics and the thermodynamics of the microphase separation induced by temperature changes. At 

the same time, since rheology probes the mechanical response both in the liquid and in the 

intermediate, soft-matter state, the quantitative information collected from the measurements 

constitutes a very useful tool for the design and the implementation of the manufacturing process, in 

this case the 3D-printing bio-scaffold fabrication. In fact, at least from the processing point of view, 

the polymer must possess well defined rheological properties. On the one hand, the injection section 

of the 3D-printer calls for a low viscosity in the melt state. This quality is necessary to determine low 

injection pressures, which is important to minimize the stress applied to the cell population, but also 

to reduce the mechanical requirements of the system [38]. On the other hand, in the filament 

deposition phase of the process, the transition from liquid-like to solid-like behavior is crucial, as the 

adhesion between layers is favored by a relatively slow kinetics of the phase transition, whereas the 

structural consistency and the dimensional stability require a sufficiently fast kinetics. As a 

consequence, the rheology of the phase sol/gel transition, and its dependence upon the thermal 

history, plays a crucial role. Based on the above considerations, the following main conclusions can 

be drawn: 

 non-isothermal experiments in the melt state allowed to determine the viscosity of PEOT/PBT 

in the liquid state and its quantitative dependence upon temperature. The material exhibited 

sufficiently low viscosities, ranging between about 30 and 100 Pa s in the temperature range 200–

140 °C, with a relatively modest temperature dependence; 

 Non-isothermal experiments at lower temperatures indicate that the sol/gel transition upon 

cooling is strongly affected by the thermal history, while the same does not hold in the 

symmetrical melting stages. Comparing rheological and calorimetric data also indicates that the 

transition from a liquid-like to a solid-like material takes place when the most part of the 

microphase separation has been completed, suggesting that the actual solidification is due to a 

rearrangement of the microstructure, rather than the mere phase transition. From the processing 

viewpoint, the results from the non-isothermal rheometry are extremely useful. The significant 

shift of the solidification to lower temperatures as the cooling rate increases provides relevant 

information to design both the characteristic time and the geometrical patterns of the filament 

deposition and cooling stages of the process. A too-high cooling rate would move the 

solidification to shorter times, but at the same time it would hinder a proper adhesion between 

two filaments deposited on successive layers. A too-low cooling rate would be detrimental to 

the dimensional stability of the scaffolds; 

 the isothermal rheology during phase transition, which allowed also the determination of a 

thermodynamic ODT temperature, suggests a different way to manage the above compromise 

between solid-like (bio-scaffold consistency) and liquid-like (inter-filament adhesion) behavior. 

Running the filament deposition stages at a suitable, higher than ambient, constant temperature, 

would allow to easily find the above compromise. Indeed, as indicated by Figure 6, Table 3 and 

Equation (2), a proper choice of the isothermal phase transition temperature determines a 
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specific characteristic time for the phase transition. This, in turn, becomes a processing 

parameter, to be compared with the characteristic time of filament deposition in order to get the 

best 3D-printing conditions. 

In summary, it is confirmed that rheology plays an important role as a two-face experimental 

tool, able to help in determining the polymer microstructure during phase transition, and providing 

crucial information on the processing aspects of the manufacturing stages. 
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