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Abstract. We discuss a possible noncommutative generalization of the notion

of an equivariant vector bundle. Let A be a K-algebra, M a left A-module,

H a Hopf K-algebra, δ : A → H ⊗ A := H ⊗K A an algebra coaction, and let

(H ⊗A)δ denote H ⊗A with the right A-module structure induced by δ. The

usual definitions of equivariant vector bundle naturally lead, in the context of

K-algebras, to an (H ⊗A)-module homomorphism

Θ : H ⊗M → (H ⊗A)δ ⊗AM

that fulfills some appropriate conditions. On the other hand, sometimes an

(A,H)-Hopf module is considered instead, for the same purpose. When Θ is

invertible, as is always the case when H is commutative, the two descriptions

are equivalent. We point out that the two notions differ in general, by giving an

example of a noncommutative Hopf algebra H for which there exists such a Θ

that is not invertible and a left-right (A,H)-Hopf module whose corresponding

homomorphism M ⊗H → (A⊗H)δ ⊗AM is not an isomorphism.
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1. Discussion

Here we discuss how an equivariant action ought to be generalized when Lie

groups are replaced by Hopf algebras, actions on manifolds by coactions on algebras,

and vector bundles by modules. This question came to our attention while we

were reading [7], and after a not-so-quick look at the literature we found a specific

discussion only in [14, Sect. 4]. From both [7, Subs. 3.1] and [14, Subs. 4.4.1, 4.5.6],

the reader might be induced to believe that a natural (noncommutative) algebraic

generalization of an equivariant bundle should consist of a module coaction over an

algebra coaction of a Hopf algebra, that is, of a (relative) Hopf module (also called

a Doi-Hopf module).
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1.1. Relative Hopf modules. Let K be a field and H a K-bialgebra with comul-

tiplication ∆ : H → H⊗H (1) and counit ε : H → K. In this work we consider left

coactions and left modules (in [14, 4.4.1] right coactions are considered instead).

Thus, let A be a left H-comodule algebra, with coaction

δ : A→ H ⊗A ,

that is, δ is a coalgebra left coaction on the vector space A and also a K-algebra

homomorphism. We also fix a left A-module M . By saying that

δ : M → H ⊗M

is a module coaction over δ, we mean that δ(am) = δ(a)δ(m) for all a ∈ A,m ∈M ,

and that δ is a coaction of H on the vector space M . We can equivalently say that

M is a left-left relative (A,H)-Hopf module, following [14, 4.4.1].

Hopf modules in their simplest form, that is, A = H with δ being the comultipli-

cation, are treated in [15]. The generalization to the relative ones was introduced

and studied in a slightly less general setting (see [17]), under the hypothesis that A

is a coideal subalgebra, that is, A is a subalgebra of H such that ∆ can be restricted

to δ. The present notion was introduced by Y. Doi in [4] (but here we prefer to refer

to Doi’s (A,B)–Hopf modules as right-right relative (B,A)–Hopf modules). In [14,

4.4.1], as well as in other papers (see, e.g., [8, p. 111] or [13, Def. 2.1]), left-right

structures are considered.

Although Hopf modules are a natural notion for the description of noncommu-

tative equivariant bundles, elementary considerations indicate that this notion may

not work in some pathological cases, at the basic level of generality where groups

are replaced by Hopf algebras (cf. [14, 3.2]). Let us now explain to some extent

what these considerations are.

1.2. Bundle morphisms and module homomorphisms. Let f : E → E′ be

a morphism of the vector bundles π : E → X and π′ : E′ → X ′, over a base

morphism f : X → X ′ (that is, π′ ◦ f = f ◦ π and the induced maps on the

fibers are linear). Suppose that geometric structures on X and X ′ can be suitably

encoded by algebras A and A′. For instance, if X and X ′ are Cp-manifolds, then

A = Cp (X) and A′ = Cp (X ′); if X and X ′ are algebraic affine varieties, then

A = O(X) and A′ = O (X ′). In these examples, the bundle structures can be

encoded by the modules M = Γ (π) and M ′ = Γ (π′) of structure preserving (Cp

or regular algebraic) global sections; the algebraic counterpart of f is an algebra

homomorphism ϕ : A′ → A and (a structure preserving) f corresponds to an A-

module homomorphism

ψ : M → A⊗A′ M ′

1Tensor products of modules without indication of the base ring are understood over K; algebras

are assumed to be associative and unital, and modules over them are unital; coalgebras are assumed

to be coassociative and counital, and comodules over them are counital.
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(2).

Since A ⊗A′ M ′ is the module obtained by extension of scalars via ϕ, if ψ is

invertible, then the inverse homomorphism ψ
−1

: A ⊗A′ M ′ → M naturally cor-

responds to an A′-module homomorphism of M ′ to the A′-module obtained from

M by restriction of scalars via ϕ (3). We can equivalently say that it is a module

homomorphism

ϕ : M ′ →M

over ϕ : A′ → A (the base algebra homomorphism), by meaning with this that ϕ

is additive and

ϕ(am) = ϕ(a)ϕ(m) , ∀a ∈ A,m ∈M .

Note that this simpler algebraic counterpart of f can always be employed when

f is given by the action of a group element (and under the assumption that global

sections suffice for an equivalent algebraic description). Indeed, in naive terms, an

action of a group G on X consists of a family {αg}g∈G of transformations of X into

itself such that α1 = idX and αgg′ = αg ◦ αg′ ; an equivariant action on π consists

of a family {αg}g∈G of morphisms of π into itself such that αg is a morphism

over αg for each g, α1 = idE and αgg′ = αg ◦ αg′ . Then αg is a vector bundle

isomorphism (with αg−1 as its inverse morphism), and therefore the corresponding

homomorphism is an isomorphism.

1.3. Families of bundle morphisms. In the situation we have just described,

usually G comes endowed with a geometric structure of the same kind as that on

X, and the action is regular with respect to these structures and the vector bundle

structure (we also mention that results in Chapter 5 of the Grothendieck’s Tôhoku

paper encompass nonregular actions, too). The regularity hypothesis on the base

is easily encoded by requiring that the family {αg}g∈G comes from a morphism

α : G × X → X, simply by setting αg := α ◦ (g, idX) for all g. To encode the

equivariant action α on π, one has to consider a vector bundle morphism over α

2We explicitly mention that A ⊗A′ M ′ is the module of sections of the pull-back f∗π′ and

that taking global sections gives a covariant functor Γ. Even when sheaves are needed (e.g., for

quasi-projective algebraic varieties), morphisms of vector bundles with the same base manifold

give rise to morphisms of the corresponding sheaves of sections in a covariant way. For sheaves over

schemes, a contravariant correspondence (basically, dual to the former) may also be considered

(see [5, Chap. II, Exer. 5.7]), but we will not adopt that viewpoint. Note also that in [5, p.180,

Definition], the tangent sheaf is the sheaf of sections of the tangent bundle, so that they do not

correspond to each other via the contravariant correspondence V introduced in the mentioned

Exercise. It is worth remarking that the algebraic description of vector bundles by modules (or

more generally, by sheaves) is appropriate in the situations when the role of the total spaces can

be encapsulated in the properties of vector bundle morphisms. In applications for which some

analysis on the total spaces is needed, the algebraic counterpart of bundles may become more

complicated (cf. [3, 1.1.13]).
3It suffices to compose it with the natural homomorphism m′ 7→ 1 ⊗ m′, and it is just the

assertion that extension of scalars and restriction of scalars are adjoint functors.
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such that each g gives a morphism αg of π into itself over αg. To this end, the

domain of α must be p∗2π, with p2 : G×X → X being the projection map, so that

(g, idX) can naturally lift to a morphism of π into that domain, for all g. Hence

equivariant actions are given by vector bundle morphisms α of p∗2π into π over α.

The same motivation holds, more generally, for the definition of regular families of

vector bundle morphisms: they are given by vector bundle morphisms of p∗2π to π′

over a morphism T ×X → X ′, with T being a space of parameters.

In the above situation, to exploit the regularity of the action, one has to work

with the map α rather than with the family {αg}g∈G. This is a basic level at

which the algebraic formulation we are discussing comes into play, and of course

that formulation becomes fundamental in the noncommutative context. In general,

even in the classic context of Cp-manifolds, formulations like these deserve some

attention (cf. [11] and [3]).

In the context of affine varieties (and affine group varieties) over K, the algebraic

counterpart of α is a K-algebra homomorphism

δ : A→ O(G×X) ∼= H ⊗A ,

with H := O(G) (4). The algebraic counterpart of α, at least as an instance of

the more general notion of a family of vector bundle morphisms, is given by an

(H ⊗A)-module homomorphism from

Γ (p∗2π) ∼= (H ⊗A)⊗AM ∼= H ⊗M

to

Γ (α∗π) ∼= (H ⊗A)δ ⊗AM ,

where (H ⊗ A)δ indicates that H ⊗ A is endowed with the A-module structure

induced via δ (whereas, in the description of Γ (p∗2π), H⊗A is understood with the

standard A-module structure induced by the second factor).

4Strictly speaking, the isomorphism O(G×X) ∼= H ⊗A holds when K is algebraically closed.

It also works with no trouble for every K, provided that varieties are considered as instances of

schemes over K.

For compact group actions on homogeneous spaces, there are canonical dense subalgebras O(X)

and O(G) of C(X) and C(G) such that the coaction C(X)→ C(G×X) restricted to O(X) maps

to the algebraic tensor product O(G) ⊗ O(X), i.e., becomes an algebraic coaction of the Hopf

algebra O(G) on O(X). This is true even for compact quantum groups. See [12] for details.

In the context of Cp-manifolds, we also have an algebra homomorphism Cp (X) → Cp (M ×X),

but for the description of Cp (M ×X), the ordinary tensor product does not work in general (see

[11, 10.3] and [3, 0.2.24]). A Cp-tensor product and a related algebraic operation on modules for

the description of pull-back bundles may easily be introduced (in other words, the whole situation

may be described in a simple way in the context of monoidal and fibered categories of an algebraic

kind).

For the sake of brevity, in the rest of the discussion we shall restrict ourselves to affine algebraic

varieties as a guiding example.
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1.4. The isomorphism hypothesis. No surprise that the reasonable basic de-

scription we have outlined above can soundly be linked to the literature. Indeed,

it is basically an instance in the affine (and ‘commutative’) case of the descrip-

tions that can be found, e.g., in [2, 0.2], [6, Def. 2.1], [14, 4.5.4], [10, Chap. 1,

Sec. 3, Def. 1.6] (5). To be precise, there is a small but important difference. In-

deed, the description that one gets in the affine (and commutative) case from the

cited references consists of a module isomorphism. Moreover, in our notation, that

isomorphism goes from Γ (α∗π) to Γ (p∗2π), whereas we introduced a module homo-

morphism from Γ (p∗2π) to Γ (α∗π). Of course, once one has recognized that the

homomorphism is indeed an isomorphism, no substantial difference is in view (6).

For affine varieties, to recognize that we are dealing in fact with an isomorphism

is quite easy, since α induces isomorphisms on the fibers (from that over (g, a) to

that over g · a = α(g, a), for each g, a). For schemes, one can not work ‘pointwise’:

usual techniques lead to consider the map

G×X diag× idX−→ G×G×X i×α−→ G×X

with diag and i being the diagonal and the inverse maps. Alternatively, one can

follow a category-theoretic approach: see [18, Prop. 3.49]. Note also that for affine

group schemes one has, in addition, that they must be reduced, at least when

K has characteristic zero (see [9, Lec. 25, Th. 1]), and the morphisms αg must be

isomorphisms even when X is nonreduced. Hence, even a pointwise approach might

suffice (7).

In any case, we also include in this paper the result that when H is commutative

we always have an isomorphism, as a consequence of (the algebraic counterparts

5In [10, Chap. 1, Sec. 3, Def. 1.6] one also finds another friendly justification for the description

we are dealing with, in the more general context of sheaves (though restricted to invertible sheaves,

which correspond to line bundles).
6Another technical difference that some reader might have noted is that in [10, Chap. 1, Sec. 3,

Def. 1.6] (and in [14, 4.5.4]) some natural isomorphisms are explicitly displayed in what is called

the cocycle condition, whereas they are understood in [6, Def. 2.1]. Under appropriate technical

conventions, some natural isomorphisms could be omitted at all: cf. [3, 0.1.1], at the beginning

of p. 2. In terms of fibered categories, these conventions could be described (with some cautions)

by saying that a cleavage is chosen in the course of the exposition, vaguely like Grothendieck

universes, or like ‘generic objects’ in classical Algebraic Geometry.
7It may seem a bit odd that the redundant isomorphism hypothesis has been required in the

definitions we mentioned. One reason might be that in the context of works such as [6] and [10],

results such as [9, Lec. 25, Th. 1] may have been considered as granted (note also that in [6] there

is a standing assumption that the ground field has characteristic zero). Hence the fact that the

homomorphism involved is in fact an isomorphism might have been considered quite intuitive, if

not obvious, and to put an explicit remark would have been distracting from the main focus. In

[2, 0.2] they deal with topological spaces and groups, so the assumption that the considered map

is an isomorphism is even more reasonable.
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of) the conditions that define an action: see Proposition 6 (8). We give a direct

algebraic proof, which may be useful for comparison with the noncommutative

situation. When A is commutative as well, Proposition 6 becomes an instance of

[18, Prop. 3.49]. We mention that in [18, Def. 3.46] one finds a very general notion

of an equivariant object, convincingly placed on the ground of fibered categories,

which is also recalled in [14, 4.1]. This notion can encompass also nonregular

actions, such as those considered in the Tôhoku paper, and for group schemes gives

the (regular) actions as defined in [10, Chap. 1, Sec. 3, Def. 1.6].

1.5. Conclusive statements. We have just outlined the following facts (some of

which we are going to prove in detail in the next section):

• In the ‘commutative situation’, an equivariant bundle corresponds to a

module homomorphism

Θ : Γ (p∗2π) ∼= H ⊗M −→ (H ⊗A)δ ⊗AM ∼= Γ (α∗π)

(or, more generaly, to an analogous sheaf homomorphism) that must fulfill

appropriate counterparts of the conditions that define an action.

• These conditions imply that Θ must be an isomorphism (even when A, but

not H, is not commutative).

• By adjointness of extension and restriction of scalars, Θ−1 corresponds to

a homomorphism δ : M → H ⊗M over δ.

• Again by the action conditions, δ defines a relative Hopf module.

What we argue in this paper is that for some noncommutative Hopf algebras,

contrary to the commutative case, the two (counterpart of) action conditions do

not imply that an homomorphism

Θ : H ⊗M → (H ⊗A)δ ⊗AM

must be an isomorphism. To this end, in Example 7 we shall use one of the simplest

among the Hopf algebras whose antipode was shown to be not bijective in [16], and

exhibit a map Θ that is not an isomorphism. In this case, the simplified description

given by a relative (A,H)–Hopf module does not apply. The example works in the

left-left case (that, is left modules and left coactions), and can be easily adapted to

the right-right case, but not to the left-right one. Moreover, in Example 9 we show

that in the left-right case there exists a relative (A,H)–Hopf module that comes

from no invertible map Θ as above.

8In the popular Wikipedia website one also finds a webpage on equivariant sheaves (at the

time of writing it is https://en.wikipedia.org/w/index.php?title=Equivariant_sheaf&oldid=

835164209). Even there, the isomorphism hypothesis is assumed in the definition (together with

the cocycle condition). It is also noted that the action condition about the identity is a con-

sequence, but the remark that the isomorphism condition is a consequence of the two action

conditions is missing.

https://en.wikipedia.org/w/index.php?title=Equivariant_sheaf&oldid=835164209
https://en.wikipedia.org/w/index.php?title=Equivariant_sheaf&oldid=835164209
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Let us mention that a different simplified description can still be considered,

again because of adjointness of extension and restriction of scalars. Namely, to

assign Θ is the same as to assign the left A-module homomorphism

θ : M → (H ⊗A)δ ⊗AM , m 7→ Θ(1⊗m)

where the A-module structure on the target is induced by the second factor in

H ⊗ A (a similar option for coherent sheaves, in the situation of [10, Chap. 1,

Sec. 3, Def. 1.6], is to consider a morphism L→ p2∗α
∗L, with p2 and α as before).

Finally, we remark that the module considered in Example 7 is free (of rank two)

and the base algebra is noncommutative. Hence, to view that example as an exotic

kind of noncommutative equivariant vector bundle (trivial, of rank two) may be

reasonable. More generally, at least at the algebraic level, it is not unreasonable to

view projective (maybe also finitely generated) modules over noncommutative rings

as noncommutative vector bundles, because of the Swan’s theorem: [7, Subs. 3.1]

seems to adopt this viewpoint. In this frame, we would have that the ‘right defini-

tion’ of noncommutative equivariant vector bundle is given by the homomorphism

Θ (or θ), provided that M is (at least) a projective module.

Although the basic algebraic level may be not sufficient to set up a ‘noncom-

mutative definition’, to see how things work in this context often provides some

insight. A category-theoretic framework would be more appropriate, but for the

notion under consideration things become considerably more difficult. We shall just

point out the (not difficult) fact that the homomorphism θ makes M a comodule

over a comonad.

2. An exotic noncommutative equivariant bundle

2.1. Basic results and conventions. For the reader convenience, we explicitly

recall some elementary results and stipulate some conventions about tensor prod-

ucts and extension of scalars. To this end, let us consider a field K, a K-algebra A,

a left A-module M and a right A-module M ′ (as anticipated, they are all assumed

to be unital).

The tensor product M ′ ⊗AM is a K-vector space together with an A-balanced

map β : M ′ ×M →M ′ ⊗AM , β (m′,m) =: m′ ⊗m (9) that satisfies the following

universal property: for every K-vector space V and every A-balanced map b :

M ′ ×M → V there exists a unique homomorphism b : M ′ ⊗AM → V of K-vector

spaces such that b = b ◦ β. Tensor products of modules without indication of

the base ring will be understood as tensor products of K-vector spaces (sometimes

equipped with module structures inherited from some additional module structures

on the factors). From the universal property readily follows that for every given

9By saying that β is A-balanced we mean that it is K-bilinear and m′a⊗m = m′⊗ am, for all

m ∈M , m′ ∈M ′, a ∈ A.
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left A-module homomorphism f : M0 → M1 and right A-module homomorphism

f ′ : M ′0 →M ′1, there exists exactly one K-vector space homomorphism

f ′ ⊗A f : M ′0 ⊗AM0 →M ′1 ⊗AM1

such that (f ′ ⊗A f) (m⊗m′) = f(m)⊗ f ′ (m′) for all m ∈M0, m′ ∈M ′0. We also

recall that when M and M ′ are K-algebras, M ′⊗M is also a K-algebra with the mul-

tiplication being the only one such that (m′0 ⊗m0) (m′1 ⊗m1) = (m′0m
′
1 ⊗m0m1)

(this holds, more generally, for M ′⊗RM when R is a commutative ring and M,M ′

are R-algebras).

We shall use the notation ϕ∗ for extension of scalars of left modules via a K-

algebra homomorphism ϕ : A→ B:

ϕ∗M := B ⊗AM ,

with B considered as a right A-module via ϕ (ba := bϕ(a)), and with the naturally

induced left B-module structure

bx := (µb ⊗A idM ) (x) , ∀b ∈ B, x ∈ ϕ∗M ,

where µb : B → B is the multiplication by b on the left (in other words, the

structure is the unique one such that b (b′ ⊗m) = bb′ ⊗ m for all b, b′ ∈ B and

m ∈M).

Let us recall the universal property of extension of scalars. There exists a natural

map ν : M → ϕ∗M , ν(m) := 1 ⊗ m for all m ∈ M , which is a left module

homomorphism over ϕ (that is, ν(am) = ϕ(a)ν(m)) and is universal in the following

sense: for every given left B-module N and left module homomorphism ϕ : M → N

over ϕ, there exists exactly one left B-module homomorphism f : ϕ∗M → N such

that f ◦ ν = ϕ. We say that f and ϕ correspond to each other via ϕ.

From the universal property easily follows that, given a left A-module homor-

phism g : M0 →M1, there is exactly one left B-module homomorphism

ϕ∗g : ϕ∗M0 → ϕ∗M1

such that ϕ∗g◦ν0 = ν1 ◦g, with ν0, ν1 being the natural maps. The homomorphism

ϕ∗g is said to be obtained from g by extension of scalars via ϕ (we also have

ϕ∗g = idB ⊗Ag : B ⊗AM0 → B ⊗AM1).

Tensor products, and henceforth extensions of scalars, can be formally defined

in different ways but any two constructions of M ′ ⊗A M differ for a canonical

isomorphism. What really matters is the universal property (see [1, p. 25, Rem. iii]).

The same is true for multiple tensor products over K.

Because of the natural isomorphism A⊗AM ∼= M , a⊗m↔ am, one can always

assume a formal definition such that actually A⊗AM = M and ν = ϕ⊗A idM for

every M . Although it is customary to accept the identification A⊗AM = M only

as a mild abuse of language, we prefer to force this equality by definition. Simi-

larly, we assume M ′ ⊗A A = M ′ for every M ′. Next, let us consider the canonical
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isomorphisms ι : ψ∗ (ϕ∗M)
∼→ (ψ ◦ ϕ)

∗
M , with ϕ as before and ψ : B → C being

another algebra homomorphism. For a fixed choice of M , ϕ, ψ one can still assume

ψ∗ (ϕ∗M) = (ψ ◦ ϕ)
∗
M , but it is not possible to coherently make this assumption a

priori for every M . Like in the previous case, it is customary to assume the identifi-

cation ψ∗ (ϕ∗M) = (ψ ◦ ϕ)
∗
M by abuse of language. However, occasionally things

becomes more complicated than usual, and an indiscriminate use of such identifi-

cations risks to lead to erroneous interpretations. We believe that here things are

sufficiently complicated to discourage such customary simplifications. Hence canon-

ical isomorphisms will explicitly enter in the formulas in which they are involved

(e.g., in the situation mentioned in Note 6 we would have followed the usage of [10,

Chap. 1, Sec. 3, Def. 1.6] and [14, 4.5.4], and not that of [6, Def. 2.1]). A similar

somewhat painful discipline is followed also elsewhere (see, e.g., [18, beginning of

p. 4]).

2.2. Standing assumptions. Let us introduce some notations that will be con-

sidered as fixed in the rest of the paper. Let K be a field and H a K-bialgebra,

with comultiplication ∆ : H → H ⊗ H, counit ε : H → K, unit η : K → H and

multiplication µ : H ⊗H → H. Let A be a K-algebra, M a left A-module and

δ : A→ H ⊗A

an algebra left coaction of H on A, i.e., δ is a K-algebra homomorphism and

(1) ι ◦ (∆⊗ idA) ◦ δ = ι′ ◦ (idH ⊗δ) ◦ δ , (ε⊗ idA) ◦ δ = idA ,

where

ι : (H ⊗H)⊗A ∼→ H ⊗H ⊗A , ι′ : H ⊗ (H ⊗A)
∼→ H ⊗H ⊗A

are the canonical isomorphisms (meanwhile K ⊗ A = A by assumption). We shall

also explicitly consider the canonical isomorphisms

ι : (H ⊗H)⊗M ∼−→ H ⊗H ⊗M , ι′ : H ⊗ (H ⊗M)
∼−→ H ⊗H ⊗M .

Let (H ⊗ A)δ denote the K-algebra H ⊗ A considered as a right A-module by

means of δ. We consider a map

θ : M → (H ⊗A)δ ⊗AM ,

we assume that the codomain is equipped with the left H ⊗ A–module structure

determined by the condition

(h⊗ a) ((h′ ⊗ a′)⊗m) = (hh′ ⊗ aa′)⊗m , ∀h, h′ ∈ H, a, a′ ∈ A, m ∈M ,

and that θ is a module homomorphism over the natural algebra homomorphism

ν : A → H ⊗ A, ν(a) := 1 ⊗ a (that is, θ(am) = ν(a)θ(m)). We also consider the

corresponding left H ⊗A–module homomorphism

Θ : H ⊗M → (H ⊗A)δ ⊗AM
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determined by the condition

Θ(1⊗m) = θ(m) , ∀m ∈M

(we shall soon describe Θ in terms of extension of scalars).

We shall sometimes use the sumless Sweedler notation δ(a) =: a(−1) ⊗ a(0) and

∆(h) =: h(1)⊗h(2). We shall also make use of more elaborated Sweedler-like sumless

notations, like

θ(m) =: m(−1) ⊗m(0) ⊗m(1) ,

which is to be understood, as usual, as an abbreviation for

∑
i

∑
j

m−1,i,j ⊗m0,i,j

⊗m1,i , m−1,i,j ∈ H, m0,i,j ∈ A, m1,i ∈M .

The combined use of these notations requires some caution, especially in the case

when M = A, because of potential ambiguities. We shall make use of it only in a

few situations, where it will be convenient and sufficiently safe.

2.3. A noncommutative generalization of equivariant vector bundles. As

we explained in Section 1, at least when H is a Hopf algebra and M is projective and

finitely generated, θ (or, equivalently, Θ) can be considered as a noncommutative

equivariant bundle, provided that some algebraic conditions, encoding the geomet-

ric action conditions, are satisfied. These conditions can be efficiently written by

means of Sweedler-like notations:

(2) m(1)(−1) ⊗m(−1)m(1)(0)(−1) ⊗m(0)m(1)(0)(0) ⊗m(1)(1)

= m(−1)(1) ⊗m(−1)(2) ⊗m(0) ⊗m(1)

in (H ⊗H ⊗A)γ ⊗AM , with γ := ι ◦ (∆⊗ idA) ◦ δ = ι′ ◦ (idH ⊗δ) ◦ δ, and

(3) ε
(
m(−1)

)
m(0)m(1) = m .

We discard the condition on the bialgebra H of being Hopf and the conditions

on M of being projective and finitely generated. The Hopf condition will be put

only in the results where it plays a role.

2.4. The conditions for noncommutative equivariant bundles as homo-

morphism identities. Let us recall once more that we are assuming the tensor

product choice K⊗ A = A, K⊗M = M . Hence η ⊗ idA : A → H ⊗ A is the map

a 7→ 1⊗ a and θ (see subsection 2.2) is a left A-module homomorphism

M → δ∗M

over η⊗ idA. Using the notation ϕ∗ for restriction of scalars through an algebra ho-

momorphism ϕ : A→ B, we can also consider θ as a left A-module homomorphism

M → (η ⊗ idA)∗ δ
∗M .
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Assuming on H⊗M the canonical left H⊗A–module structure, the homorphism

corresponding to η ⊗ idM : M → H ⊗M via η ⊗ idA is the isomorphism

ι1 : (η ⊗ idA)
∗
M = (H ⊗A)⊗AM

∼−→ H ⊗M ,

(h⊗ a)⊗m 7→ h⊗ am .

Hence Θ1 := Θ ◦ ι1 is a left H ⊗A–module homomorphism

(η ⊗ idA)
∗
M → δ∗M ,

and corresponds to θ via η ⊗ idA.

Taking into account the first identity in (1), one gets a canonical isomorphism

ι2 : ι∗ (∆⊗ idA)
∗
δ∗M

∼−→ ι′
∗

(idH ⊗δ)∗ δ∗M

(which is characterized by the following property: the two compositions of natural

maps,

M → δ∗M → (∆⊗ idA)
∗
δ∗M → ι∗ (∆⊗ idA)

∗
δ∗M

and

M → δ∗M → (idH ⊗δ)∗ δ∗M → ι′
∗

(idH ⊗δ)∗ δ∗M ,

can be obtained from one another by composition with ι2 and its inverse; in other

words, the isomorphism arises from the universal property of extension of scalars).

Since

(η ⊗ idH⊗A) ◦ δ = η ⊗ δ = (idH ⊗δ) ◦ (η ⊗ idA) ,

we also have a canonical isomorphism

ι3 : (η ⊗ idH⊗A)
∗
δ∗M

∼−→ (idH ⊗δ)∗ (η ⊗ idA)
∗
M .

A further canonical isomorphism is

ι4 : ι′
∗

(η ⊗ idH⊗A)
∗

(η ⊗ idA)
∗
M

∼−→ ι∗ (∆⊗ idA)
∗

(η ⊗ idA)
∗
M .

In this notation, we can write the condition (2) as

(4) ι2 ◦ ι∗ (∆⊗ idA)
∗

Θ1 ◦ ι4 = ι′
∗ (

(idH ⊗δ)∗Θ1 ◦ ι3 ◦ (η ⊗ idH⊗A)
∗

Θ1

)
(here we omit the verification; in view of this, maybe it is more convenient to

rewrite (4) as an equality between homomorphisms with target γ∗M , with γ := ι ◦
(∆⊗ idA)◦δ = ι′◦(idH ⊗δ)◦δ, by splitting ι2 as a composition of two isomorphisms

involving that module).

Similarly, one gets canonical isomorphisms

ι5 : (ε⊗ idA)
∗
δ∗M

∼−→ ((ε⊗ idA) ◦ δ)∗M = M

(taking into account the second identity in (1)) and

ι6 : M = ((ε⊗ idA) ◦ (η ⊗ idA))
∗
M

∼−→ (ε⊗ idA)
∗

(η ⊗ idA)
∗
M .

Then (3) is equivalent to

(5) ι5 ◦ (ε⊗ idA)
∗

Θ1 ◦ ι6 = idM .
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To summarize, homomorphisms Θ for which θ satisfies (2) and (3) (the main

subject of the present work), are the Θs for which Θ ◦ ι1 satisfies (4) and (5).

2.5. Relationship with Hopf modules. When Θ is an isomorphism, Θ−1 :

δ∗M → H ⊗M corresponds via δ to a module homomorphism over δ:

δ : M → H ⊗M .

Below we show that (4) and (5) correspond to the coaction condition on δ, that is

ι ◦ (∆⊗ idM ) ◦ δ = ι′ ◦
(
idH ⊗δ

)
◦ δ , (ε⊗ idM ) ◦ δ = idM .

For the reader convenience we preliminarily state (without proof) an elementary

result.

Proposition 1. Let ϕ : A → B, ψ : B → C be K-algebra homomorphisms,

ϕ : M → N a left module homomorphism over ϕ, ψ : N → P a left module homo-

morphism over ψ, f : ϕ∗M → N the left B-module homomorphism corresponding

to ϕ via ϕ, g : ψ∗N → P the left C-module homomorphism corresponding to ψ via

ψ and

i : (ψ ◦ ϕ)
∗
M

∼−→ ψ∗ϕ∗M

the canonical isomorphism.

Then g ◦ ψ∗f ◦ i and ψ ◦ ϕ correspond to each other via ψ ◦ ϕ.

Lemma 2. Let

ρ1 : δ∗M → (η ⊗ idA)
∗
M

be a left H ⊗A–module homomorphism and

δ1 : M → (η ⊗ idA)
∗
M

the module homomorphism over δ corresponding to ρ1 via δ. If ι1, . . . , ι4 are as in

subsection 2.4 and δ := ι1 ◦ δ1 then

(6) ι−1
4 ◦ ι∗ (∆⊗ idA)

∗
ρ1 ◦ ι−1

2 = ι′
∗ (

(η ⊗ idH⊗A)
∗
ρ1 ◦ ι−1

3 ◦ (idH ⊗δ)∗ ρ1

)
⇐⇒ ι ◦ (∆⊗ idM ) ◦ δ = ι′ ◦

(
idH ⊗δ

)
◦ δ .

Proof. Let

g : (∆⊗ idA)
∗

(H ⊗M)→ (H ⊗H)⊗M
be the (H ⊗H)⊗A–module homomorphism corresponding to ∆⊗ idM via ∆⊗ idA

and i the canonical isomorphism

((∆⊗ idA) ◦ δ)∗M ∼−→ (∆⊗ idA)
∗
δ∗M .

By Proposition 1, the (H ⊗ H) ⊗ A–module homomorphism corresponding to

(∆⊗ idM ) ◦ δ via (∆⊗ idA) ◦ δ is

g ◦ (∆⊗ idA)
∗
ρ ◦ i ,

where ρ = ι1 ◦ ρ1 is the H ⊗A–module homomorphism corresponding to δ via δ.
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Again by Proposition 1, the H ⊗H ⊗ A–module homomorphism corresponding

to ι ◦ (∆⊗ idM ) ◦ δ via ι ◦ (∆⊗ idA) ◦ δ is

t ◦ ι∗
(
g ◦ (∆⊗ idA)

∗
ρ ◦ i

)
◦ i′ ,

with

t : ι∗ ((H ⊗H)⊗M)
∼−→ H ⊗H ⊗M

being the homomorphism corresponding to ι and i′ the canonical isomorphism

defined in the obvious manner.

To work in a similar way on the right-hand side of the coaction condition, let

g′ : (idH ⊗δ)∗ (H ⊗M)→ H ⊗ (H ⊗M)

be the H ⊗ (H ⊗ A)–module homomorphism corresponding to idH ⊗δ via idH ⊗δ
and

g′′ : (η ⊗ idH⊗A)
∗

(H ⊗M)→ H ⊗ (H ⊗M)

the H⊗(H⊗A)–module homomorphism corresponding to η⊗idH⊗M via η⊗idH⊗A.

By Proposition 1, the H ⊗ (H ⊗ A)–module homomorphism corresponding to(
idH ⊗δ

)
◦ (η ⊗ idM ) = η⊗ δ via (idH ⊗δ) ◦ (η ⊗ idA) = η⊗ δ is g′ ◦ (idH ⊗δ)∗ ι1 ◦ j

(with the obvious meaning of j).

Exploiting again Proposition 1 for the composition (η ⊗ idH⊗M )◦δ (which equals

η ⊗ δ as before) we have

g′ ◦ (idH ⊗δ)∗ ι1 ◦ j = g′′ ◦ (η ⊗ idH⊗A)
∗
ρ ◦ j′

(with the obvious meaning of j′).

Since j ◦ j′−1
= ι3, we deduce that

(7) g′ = g′′ ◦ (η ⊗ idH⊗A)
∗
ρ ◦ ι−1

3 ◦ (idH ⊗δ)∗ ι−1
1 .

Then the H ⊗ (H ⊗ A)–module homomorphism corresponding to
(
idH ⊗δ

)
◦ δ via

(idH ⊗δ) ◦ δ, which by Proposition 1 equals g′ ◦ (idH ⊗δ)∗ ρ ◦ j′′ (with the obvious

meaning of j′′), can be written as

g′′ ◦ (η ⊗ idH⊗A)
∗
ρ ◦ ι−1

3 ◦ (idH ⊗δ)∗ ρ1 ◦ j′′ .

Then the H ⊗H ⊗A–module homomorphism corresponding to ι′ ◦
(
idH ⊗δ

)
◦ δ is

t
′ ◦ ι′∗

(
g′′ ◦ (η ⊗ idH⊗A)

∗
ρ ◦ ι−1

3 ◦ (idH ⊗δ)∗ ρ1 ◦ j′′
)
◦ j′′′

(with the obvious meaning of t
′

and j′′′).

By the above said, the equality ι◦ (∆⊗ idM ) ◦ δ = ι′ ◦
(
idH ⊗δ

)
◦ δ is equivalent

to

t ◦ ι∗
(
g ◦ (∆⊗ idA)

∗
ρ ◦ i

)
◦ i′

= t
′ ◦ ι′∗

(
g′′ ◦ (η ⊗ idH⊗A)

∗
ρ ◦ ι−1

3 ◦ (idH ⊗δ)∗ ρ1 ◦ j′′
)
◦ j′′′ ,
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and to check that the latter is equivalent to (6) will suffice. To this end, we rewrite

it as

ι′
∗ (

(η ⊗ idH⊗A)
∗
ι−1
1 ◦ g′′−1

)
◦ t′
−1

◦ t ◦ ι∗
(
g ◦ (∆⊗ idA)

∗
ρ ◦ i

)
◦ i′

◦ j′′′−1 ◦ ι′∗j′′−1
= ι′

∗ (
(η ⊗ idH⊗A)

∗
ρ1 ◦ ι−1

3 ◦ (idH ⊗δ)∗ ρ1

)

and show that

(8) ι′
∗ (

(η ⊗ idH⊗A)
∗
ι−1
1 ◦ g′′−1

)
◦ t′
−1
◦ t ◦ ι∗

(
g ◦ (∆⊗ idA)

∗
ι1
)

= ι−1
4

and

(9) ι∗i ◦ i′ ◦ j′′′−1 ◦ ι′∗j′′−1
= ι−1

2 .

Equation 9 is easy because j′′′
−1 ◦ ι′∗j′′−1

is the canonical isomorphism

ι′
∗

(idH ⊗δ)∗ δ∗M
∼−→ (ι′ ◦ (idH ⊗δ) ◦ δ)

∗
M

and ι∗i ◦ i′ the canonical isomorphism

(ι ◦ (∆⊗ idA) ◦ δ)∗M ∼→ ι∗ (∆⊗ idA)
∗
δ∗M .

To check (8), let us first notice that from the definitions of ι1, g and t follows

that the composition

M → (η ⊗ idA)∗M → (∆⊗ idA)∗(η ⊗ idA)∗M

→ ι∗ (∆⊗ idA)
∗

(η ⊗ idA)∗M
ι∗(∆⊗idA)∗ι1−→ ι∗ (∆⊗ idA)

∗
(H ⊗M)

ι∗g−→ ι∗ ((H ⊗H)⊗M)
t−→ H ⊗H ⊗M
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equals ι ◦ (∆⊗ idM ) ◦ (η ⊗ idM ) (10). Hence the composition

(ι ◦ (∆⊗ idA) ◦ (η ⊗ idA))
∗
M
∼→ ι∗ (∆⊗ idA)

∗
(η ⊗ idA)∗M

t◦ι∗(g◦(∆⊗idA)∗ι1)−→ H ⊗H ⊗M

is the homomorphism corresponding to ι◦ (∆⊗ idM )◦ (η⊗ idM ). One can similarly

check that

(ι′ ◦ (η ⊗ idH⊗A) ◦ (η ⊗ idA))
∗
M
∼→ ι′

∗
(η ⊗ idH⊗A)

∗
(η ⊗ idA)∗M

t
′◦ι′∗(g′′◦(η⊗idH⊗A)∗ι1)

−→ H ⊗H ⊗M

is the homomorphism corresponding to ι′◦(η ⊗ idH⊗M )◦(η⊗ idM ) (which coincides

with ι ◦ (∆⊗ idM ) ◦ (η ⊗ idM )). This gives (8) and concludes the proof. �

Proposition 3. If Θ is an isomorphism then

(4) ⇐⇒ ι ◦ (∆⊗ idM ) ◦ δ = ι′ ◦
(
idH ⊗δ

)
◦ δ ,

with δ being the module homomorphism over δ corresponding to Θ−1.

Proof. Let ι1 be as in subsection 2.4 and Θ1 := Θ◦ ι1. The module homomorphism

over δ corresponding to ρ1 := Θ−1
1 is δ1 := ι−1

1 ◦ δ. Then (6) is clearly equivalent

to (4) and the result immediately follows from Lemma 2. �

Lemma 4. Let

ρ1 : δ∗M → (η ⊗ idA)
∗
M

10In more detail, one should use the following facts.

• By definition of ι∗ (∆⊗ idA)∗ ι1, the composition

(η ⊗ idA)∗M → (∆⊗ idA)∗(η ⊗ idA)∗M

→ ι∗ (∆⊗ idA)∗ (η ⊗ idA)∗M
ι∗(∆⊗idA)∗ι1−→ ι∗ (∆⊗ idA)∗ (H ⊗M)

equals the composition

(η ⊗ idA)∗M
ι1−→ H ⊗M → (∆⊗ idA)∗ (H ⊗M)→ ι∗ (∆⊗ idA)∗ (H ⊗M) .

• By definition of ι1, the composition M → (η ⊗ idA)∗M
ι1→ H ⊗M gives η ⊗ idM .

• By definition of ι∗g, the composition

(∆⊗ idA)∗ (H ⊗M)→ ι∗ (∆⊗ idA)∗ (H ⊗M)
ι∗g−→ ι∗ ((H ⊗H)⊗M)

equals

(∆⊗ idA)∗ (H ⊗M)
g→ (H ⊗H)⊗M → ι∗ ((H ⊗H)⊗M) .

• By definition of g, the composition H ⊗M → (∆⊗ idA)∗ (H ⊗M)
g→ (H ⊗ H) ⊗M

gives ∆⊗ idM .

• By definition of t, the composition (H ⊗H) ⊗M → ι∗ ((H ⊗H)⊗M)
t→ H ⊗H ⊗M

gives ι.
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be a left H ⊗A–module homomorphism and

δ1 : M → (η ⊗ idA)
∗
M

the module homomorphism over δ corresponding to ρ1 via δ. If ι1, ι5, ι6 are as in

subsection 2.4 and δ := ι1 ◦ δ1, then

ι−1
6 ◦ (ε⊗ idA)

∗
ρ1 ◦ ι−1

5 = (ε⊗ idM ) ◦ δ .

Proof. Let

g : (ε⊗ idA)
∗

(H ⊗M)→M

be the homomorphism corresponding to ε ⊗ idM via ε ⊗ idA, and note that the

(η ⊗ idA)
∗
A–module homomorphism corresponding to δ is ρ := ι1 ◦ ρ1.

By Proposition 1, the homomorphism over (ε⊗ idA) ◦ δ = idA corresponding to

(ε⊗ idM ) ◦ δ is g ◦ (ε⊗ idA)
∗
ρ ◦ ι−1

5 . But obviously every homomorphism over idA

corresponds to itself, hence

(10) g ◦ (ε⊗ idA)
∗
ρ ◦ ι−1

5 = (ε⊗ idM ) ◦ δ .

Again by Proposition 1, the homomorphism that corresponds to (ε⊗ idM ) ◦
(η ⊗ idM ) = idM via (ε⊗ idA) ◦ (η ⊗ idA) = idA is g ◦ (ε⊗ idA)

∗
ι1 ◦ ι6. As before,

we deduce

g ◦ (ε⊗ idA)
∗
ι1 ◦ ι6 = idM .

Therefore g = ι−1
6 ◦ (ε⊗ idA)

∗
ι−1
1 , and substituting into (10) we get

ι−1
6 ◦ (ε⊗ idA)

∗
ρ1 ◦ ι−1

5 = (ε⊗ idM ) ◦ δ

as required. �

Proposition 5. If Θ is an isomorphism then

(5) ⇐⇒ (ε⊗ idM ) ◦ δ = idM ,

with δ being the module homomorphism over δ corresponding to Θ−1.

Proof. Let ι1 be as in subsection 2.4 and Θ1 := Θ◦ ι1. The module homomorphism

over δ corresponding to ρ1 := Θ−1
1 is δ1 := ι−1

1 ◦ δ, and the statement immediately

follows from the previous lemma. �

According to Propositions 3 and 5, if Θ is invertible and Θ ◦ ι1 satisfies (4) and

(5), then the homomorphism δ corresponding to Θ−1 via δ is a coaction (over δ).

Thus we have a left-left relative (A,H)–Hopf module (according to the definition

in [14, 4.4.1]). Conversely, given a left-left relative (A,H)–Hopf module, that is, a

coaction δ : M → H⊗M over δ, if the corresponding H⊗A–module homomorphism

ρ : δ∗M → H ⊗M

is an isomorphism, then according to Propositions 3 and 5, we get an isomorphism

Θ := ρ−1 for which Θ1 := Θ ◦ ι1 satisfies (4) and (5).
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In conclusion, the description of noncommutative equivariant bundles by means

of (projective and finitely generated) relative Hopf modules agrees with the descrip-

tion given by a θ that satisfies (2) and (3), when the corresponding Θ (for which

Θ ◦ ι1 satisfies (4) and (5)) is an isomorphism.

2.6. The case of commutative Hopf algebras. In this subsection we prove that

for commutative Hopf algebras H (but still for arbitrary algebras A), a homomor-

phism Θ for which Θ1 = Θ ◦ ι1 satisfies (4) and (5), is always an isomorphism.

We need commutativity of H to get that the antipode and the multiplication µ are

algebra homomorphisms.

Proposition 6. If H is a commutative Hopf algebra, then every Θ for which Θ1

(defined as in subsection 2.4) satisfies (4) and (5) is an isomorphism.

Proof. Let S be the antipode of the Hopf algebra H and set

τ := (µ⊗ idA) ◦ ι−1 ◦ ι′ ◦ (S ⊗ idH⊗A) ◦ ι′−1
: H ⊗H ⊗A→ H ⊗A ,

which is an algebra homomorphism because H is commutative.

In the calculations we shall need that

(11) (S ⊗ idH⊗A)◦ι′−1◦ι = ι′
−1◦(S ⊗ idH ⊗ idA)◦ι = ι′

−1◦ι◦((S ⊗ idH)⊗ idA) .

For a given Θ for which Θ1 satisfies (4) and (5), let us extend scalars on both

sides of (4) via τ (and assume the contextual notation ι1, . . . , ι6). To work out the

left-hand side

τ∗ι2 ◦ τ∗ι∗ (∆⊗ idA)
∗

Θ1 ◦ τ∗ι4 ,

note that since

τ ◦ ι ◦ (∆⊗ idA)
(11)
= (µ⊗ idA) ◦ ((S ⊗ idH)⊗ idA) ◦ (∆⊗ idA)

= (µ ◦ (S ⊗ idH) ◦∆)⊗ idA = (η ◦ ε)⊗ idA = (η ⊗ idA) ◦ (ε⊗ idA) ,

one gets canonical isomomorphisms

ι7 : τ∗ι∗ (∆⊗ idA)
∗

(η ⊗ idA)
∗
M

∼−→ (η ⊗ idA)
∗

(ε⊗ idA)
∗

(η ⊗ idA)
∗
M

and

ι8 : (η ⊗ idA)
∗

(ε⊗ idA) δ∗M
∼−→ τ∗ι∗ (∆⊗ idA)

∗
δ∗M .

This allows us to write

τ∗ι2 ◦ τ∗ι∗ (∆⊗ idA)
∗

Θ1 ◦ τ∗ι4 = τ∗ι2 ◦ ι8 ◦ (η ⊗ idA)
∗

(ε⊗ idA)
∗

Θ1 ◦ ι7 ◦ τ∗ι4
(5)
= τ∗ι2 ◦ ι8 ◦ (η ⊗ idA)

∗
ι−1
5 ◦ (η ⊗ idA)

∗
ι−1
6 ◦ ι7 ◦ τ∗ι4 .

Thus on the left-hand side one gets the canonical isomorphism

(12) τ∗ι′
∗

(η ⊗ idH⊗A)
∗

(η ⊗ idA)
∗
M

∼−→ τ∗ι′
∗

(idH ⊗δ)∗ δ∗M

(and τ ◦ ι′ ◦ (η ⊗ idH⊗A) ◦ (η ⊗ idA) = τ ◦ ι′ ◦ (idH ⊗δ) ◦ δ).
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On the right-hand side one gets

τ∗ι′
∗ (

(idH ⊗δ)∗Θ1 ◦ ι3 ◦ (η ⊗ idH⊗A)
∗

Θ1

)
.

Setting σ := τ ◦ ι′ ◦ (idH ⊗δ) one gets

τ∗ι′
∗

(idH ⊗δ)∗Θ1 = ι9 ◦ σ∗Θ1 ◦ ι10

for some obviously defined canonical isomorphisms ι9, ι10. Taking into account that

µ ◦ (S ⊗ idH) ◦ (η ⊗ idH) = idH , one gets

τ ◦ ι′ ◦ (η ⊗ idH⊗A) = (µ⊗ idA) ◦ ι−1 ◦ ι′ ◦ (S ⊗ idH⊗A) ◦ (η ⊗ idH⊗A)

(11)
= (µ⊗ idA) ◦ ((S ⊗ idH)⊗ idA) ◦ ι−1 ◦ ι′ ◦ (η ⊗ idH⊗A)

= (µ⊗ idA) ◦ ((S ⊗ idH)⊗ idA) ◦ ((η ⊗ idH)⊗ idA) = idH ⊗ idA = idH⊗A

(ι−1 ◦ ι′ ◦ (η ⊗ idH⊗A) = (η ⊗ idH)⊗ idA because the natural ‘associativity isomor-

phism’ H ⊗ A = K ⊗ (H ⊗A)
∼−→ (K⊗H) ⊗ A = H ⊗ A is actually the identity

map of H ⊗A). Hence

τ∗ι′
∗

(η ⊗ idH⊗A)
∗

Θ1 = ι11 ◦Θ1 ◦ ι12

for some obviously defined canonical isomorphisms ι11, ι12.

Thus on the right-hand side one gets

(13) ι9 ◦ σ∗Θ1 ◦ ι10 ◦ τ∗ι′
∗
ι3 ◦ ι11 ◦Θ1 ◦ ι12

By equating the two sides (12) and (13), we can easily deduce that σ∗Θ1 has a

right inverse of the form α ◦Θ1 ◦ β for some suitable isomorphisms α, β.

Extending scalars via σ on both sides of the identity σ∗Θ1 ◦ α ◦Θ1 ◦ β = id, we

easily deduce that σ∗Θ1 has also a left inverse (namely, σ∗β ◦ σ∗σ∗Θ1 ◦ σ∗α).

Therefore σ∗Θ1 has both a right and a left inverse, that is, it is an isomorphism.

Then its right inverse α◦Θ1 ◦β is an isomorphism too. Since α, β are isomorphisms

and Θ1 = Θ ◦ ι1, we conclude that Θ is an isomorphism. �

With a similar technique it can be shown that for a commutative Hopf algebra

H, a left-left relative (A,H)–Hopf module over δ always corresponds (via δ) to an

isomorphism. Taking into account the outcome of the preceding subsection this

amounts to say that for commutative Hopf algebras, to give a θ that satisfies (2)

and (3) is the same as to give a left-left relative (A,H)–Hopf module over δ.

2.7. Exotic examples. The following example shows that a Θ for which Θ ◦ ι1
satisfies (4) and (5) may be not invertible when H is not commutative.

Example 7. Let C2×2 be the 2 × 2 matrix algebra over the complex numbers,

and let us fix H as the free Hopf algebra generated by the dual coalgebra
(
C2×2

)∗
.

The definition is given in [16, Def. 2] (cf. also [16, Th. 11]); but also note that H

can be concisely characterized (up to isomorphisms) as being universal among Hopf

algebras with a coalgebra morphism of
(
C2×2

)∗
into them (cf. [16, Lemma 1]). As
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usual, let S denote the antipode. Notice also that H is generated as a C-algebra by

all elements Sn
(
aij
)
, with n running on nonnegative integers, i, j running in {0, 1},

and where aij are the (images in H of the) matrix coefficients (in
(
C2×2

)∗
).

Now, let A := H, δ := ∆, M := A⊕A = H ⊕H and

θ : M → δ∗M = (H ⊗H)∆ ⊗H M

be the left module homomorphism over the natural map H 7→ H ⊗H, h 7→ 1⊗ h,

defined by

θ
(
k0, k1

)
:=
(
a0

0 ⊗ k0 + a0
1 ⊗ k1

)
⊗ (1, 0) +

(
a1

0 ⊗ k0 + a1
1 ⊗ k1

)
⊗ (0, 1) .

It is not difficult (though perhaps a bit cumbersome) to check the conditions (2),

(3). Moreover, let

Θ : H ⊗M → (H ⊗H)∆ ⊗H M

be the (left) H ⊗H–module homomorphism determined by the condition θ(m) =

Θ(1⊗m).

According to [16, Prop. 4 and Rem. 13], there exists a nonzero algebra R and a

C-algebra homomorphism w : H → R, such that w
(
a0

0

)
w
(
a0

1

)
w
(
a1

0

)
w
(
a1

1

)
 =

 1 y

z yz


for some appropriate y, z ∈ R. Let

ΘR : (w ⊗ ε)∗ (H ⊗M)→ (w ⊗ ε)∗ ((H ⊗H)∆ ⊗H M)

be obtained from Θ by extension of scalars via w ⊗ ε : H ⊗H → R.

Since (w⊗ ε)∗(H ⊗H) = R and M = H ⊕H, one gets a canonical isomorphism

α : (w ⊗ ε)∗ (H ⊗M) = R⊗H⊗H (H ⊗M)
∼−→ R⊕R ,

r ⊗
(
h⊗

(
k0, k1

))
7→
(
ε
(
k0
)
rw(h), ε

(
k1
)
rw(h)

)
(we prefer to write ε

(
k0
)
, ε
(
k1
)

on the left because they are scalar).

Moreover, (H ⊗H)∆ ⊗H H = H ⊗ H (as for any right H-module), where(
h0 ⊗ h1

)
⊗ h =

(
h0 ⊗ h1

)
∆(h). Taking again into account that M = H ⊕ H,

one gets a canonical isomorphism

β : (w ⊗ ε)∗ ((H ⊗H)∆ ⊗H M) = R⊗H⊗H ((H ⊗H)∆ ⊗H M)
∼−→ R⊕R ,

which can be described (using sumless Sweedler notation ∆(h) =: h(1) ⊗ h(2)) by

writing

r ⊗
((
h0 ⊗ h1

)
⊗
(
k0, k1

))
7→
(
ε
(
h1k0

(2)

)
rw
(
h0k0

(1)

)
, ε
(
h1k1

(2)

)
rw
(
h0k1

(1)

))
.

Hence ΘR := β ◦ΘR ◦α−1 is a homomorphism R⊕R→ R⊕R, which can explicitly

be described as follows. First note that for every
(
x0, x1

)
∈ R⊕R,

α
(
x0 ⊗ (1⊗ (1, 0)) + x1 ⊗ (1⊗ (0, 1))

)
=
(
x0, x1

)
.
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Then

ΘR

(
x0, x1

)
= β

(
ΘR

(
x0 ⊗ (1⊗ (1, 0)) + x1 ⊗ (1⊗ (0, 1))

) )
= β

(
x0 ⊗Θ (1⊗ (1, 0))

)
+ x1 ⊗Θ (1⊗ (0, 1)) = β

(
x0 ⊗ θ(1, 0) + x1 ⊗ θ(0, 1)

)
= β

(
x0 ⊗

((
a0

0 ⊗ 1
)
⊗ (1, 0) +

(
a1

0 ⊗ 1
)
⊗ (0, 1)

)
+x1 ⊗

((
a0

1 ⊗ 1
)
⊗ (1, 0) +

(
a1

1 ⊗ 1
)
⊗ (0, 1)

) )
= β

(
x0 ⊗

((
a0

0 ⊗ 1
)
⊗ (1, 0)

))
+ β

(
x0 ⊗

((
a1

0 ⊗ 1
)
⊗ (0, 1)

))
+ β

(
x1 ⊗

((
a0

1 ⊗ 1
)
⊗ (1, 0)

))
+ β

(
x1 ⊗

((
a1

1 ⊗ 1
)
⊗ (0, 1)

))
=
(
ε(1)x0w

(
a0

0

)
, ε(0)x0w(0)

)
+
(
ε(0)x0w(0), ε(1)x0w

(
a1

0

))
+
(
ε(1)x1w

(
a0

1

)
, ε(0)x1w(0)

)
+
(
ε(0)x1w(0), ε(1)x1w

(
a1

1

)
)
)

=
(
x0 + x1y, x0z + x1yz

)
.

In particular, ΘR(−y, 1) = (0, 0). Since (−y, 1) 6= (0, 0) because R is a nonzero

algebra, ΘR is not an isomorphism. Since α, β are isomorphisms, neither ΘR is

an isomorphism. Since the extension of scalars on an isomorphism always gives an

isomorphism, we conclude that Θ can not be an isomorphism.

Remark 8. The homomorphism in Example 7 is somewhat induced by the usual left

action of C2×2 on C2. If one considers the right action that comes from multiplying

row vectors by a matrix and modifies θ accordingly, the homomorphism ΘR becomes

an isomorphism. But in this case, by considering right modules instead, one gets

(x0, x1) 7→ (x0 + zx1, yx0 + yzx1) ,

which has (−z, 1) in its kernel. This way one can get an example that works in the

right-right case (which is considered in [4]).

Unfortunately, we do not see how the technique of Example 7 could be adapted

to the left-right case, which is considered in [14], [8], [13].

In the next example, the same trick of Example 7 gives a left-right relative

(H,H)–Hopf module such that the corresponding H ⊗H–module homomorphism

(H ⊗H)∆ ⊗H M → H ⊗M is not an isomorphism.

Example 9. In notation of Example 7, let us consider the homomorphism

δ : M →M ⊗H

over δ = ∆ defined by

δ
(
k0, k1

)
:=
(
k0

(0), 0
)
⊗ k0

(1)a
0
0 +

(
k1

(0), 0
)
⊗ k1

(1)a
0
1

+
(

0, k0
(0)

)
⊗ k0

(1)a
1
0 +

(
0, k1

(0)

)
⊗ k1

(1)a
1
1
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(under sumless Sweedler notation δ(h) =: h(0) ⊗ h(1)). A routine verification con-

firms that δ is a right coaction, and hence defines a left-right relative (H,H)–Hopf

module, provided that δ = ∆ is considered as a right coaction.

If

ρ : (H ⊗H)∆ ⊗H M →M ⊗H

is the H⊗H–module homomorphism corresponding to δ via δ, ρR is obtained from

it by extension of scalars via ε⊗ w, and

α′ : (ε⊗ w)∗ (M ⊗H) = R⊗H⊗H (M ⊗H)
∼−→ R⊕R

is defined like α, that is,

r ⊗
((
k0, k1

)
⊗ h
)
7→
(
ε
(
k0
)
rw(h), ε

(
k1
)
rw(h)

)
,

it turns out that α′ ◦ρR ◦β−1 = ΘR, and hence it is not an isomorphism. Therefore

ρ is not an isomorphism.

2.8. Noncommutative equivariant bundles and monads. Let AM be the

category of left A-modules. In [14, 4.4] it is pointed out that if we give M ⊗ H
the left A-module structure induced by an algebra (right) action, we obtain an

endofunctor of AM, which is a comonad in a natural way. One can similarly

obtain a comonad G : AM → AM, with G(M) := H ⊗M considered as a left

A-module via the left coaction δ; moreover, like in [14, 4.4.2] one can recognize

that left-left relative (A,H)–Hopf modules are comodules over G. To this end, let

us mention that by a (left) comodule over a comonad T : C → C may be meant a

functor F : C′ → C, together with a natural transformation F → TF that satisfies

two natural compatibility conditions with the structure of T . However, a more

restricted meaning is often in use: by a comodule over T (also called a coalgebra

over T ) is simply meant an object F of C, together with a morphism f : F → TF

such that εTF ◦f = idF and δTF ◦f = Tf ◦f , with εT and δT being the structural

natural transformations of the comonad T . One can regard the latter notion as

a particular case of the former, simply by replacing F with the functor of the

(terminal) category with one morphism ι, into the category C, that sends ι into

idF . It is not difficult to check that with the restricted notion, the G-comodules

are precisely the left-left relative (A,H)–Hopf modules.

Our purpose in this concluding subsection is to make a similar construction

for our homomorphisms θ that satisfy (2) and (3). To this end, we consider the

endofunctor H of AM that associates with each leftA-moduleM the codomain δ∗M

of (all) homomorphisms θ : M → δ∗M , considered as an A-module by restriction of

scalars via ν := η ⊗ idA : A → H ⊗ A (the action on homomorphisms is obviously

f 7→ δ∗f). Concisely: H = ν∗δ
∗.

Let ν(H ⊗A) denote H ⊗A equipped with the left A-module structure induced

by ν and (H ⊗ A)ϕ be H ⊗ A with the right A-module structure induced by a
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K-algebra homomorphism ϕ : A → H ⊗ A. For every right A-module N , one gets

a canonical vector space isomorphism

N ⊗A ν(H ⊗A)
∼−→ H ⊗N ,

n⊗ (h⊗ a) 7→ h⊗ na .

In particular, one gets a canonical vector space isomorphism

ι13 : (H ⊗A)ϕ ⊗A ν(H ⊗A)
∼−→ H ⊗ (H ⊗A)

which, using a sumless Sweedler notation for ϕ, can be described by

(h⊗ a)⊗ (h′ ⊗ a′) 7→ h′ ⊗
(
ha′(−1) ⊗ aa

′
(0)

)
.

Let ν(H ⊗ A)ϕ be the A-bimodule with the left structure induced by ν and the

right structure induced by ϕ. Then one gets an A-bimodule

ν(H ⊗A)ϕ ⊗A ν(H ⊗A)ϕ

which induces through ι′ ◦ ι13 an A–bimodule structure on H ⊗H ⊗A such that

al (h⊗ h′ ⊗ a) ar = har(−1) ⊗ h′ar(0)(−1) ⊗ alaar(0)(0) ;

and let us denote by ν(H ⊗H ⊗A)ϕ the resulting bimodule.

One can straightforwardly check that ι◦(∆⊗ idA) : ν(H⊗A)ϕ → ν(H⊗H⊗A)ϕ

is a left module homomorphism, and that it is a right module homomorphism if

and only if ι′ ◦ (idH ⊗ϕ)◦ϕ = ι◦ (∆⊗ idA)◦ϕ. Note also that since H is the tensor

product by ν(H⊗A)δ on the left, for every (left) A-module M one gets a canonical

isomorphism

ι14 : H(H(M)) = ν(H ⊗A)δ ⊗ (ν(H ⊗A)δ ⊗AM)

∼−→ (ν(H ⊗A)δ ⊗ν (H ⊗A)δ)⊗AM .

In conclusion, when ϕ is the coaction δ one gets that

ι−1
14 ◦

((
ι−1
13 ◦ ι′

−1 ◦ ι ◦ (∆⊗ idA)
)
⊗ idM

)
gives a natural transformation H→ HH. Moreover, (ε⊗ idA)⊗ idM gives a natural

transformation of H into the identity functor. Taking into account the coalgebra

properties of ∆ and ε, one gets that in this way H becomes a comonad.

To show that θ makes M an H-comodule (in the restricted sense) if and only if

satisfies (2) and (3), it suffices another straightforward check.
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