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We study the semileptonic transitio®&.— 7., J/, D, D*, B, B*, B, BY in the framework of a
relativistic constituent quark model. We use experimental data on lepiépidecay, lattice and QCD sum
rule results on leptoni8, decay, and experimental data on radiatiyetransitions to adjust the quark model
parameters. We compute all form factors of the above semilep®nitansitions and give predictions for
various semileptoni®. decay modes including their modes when they are kinematically accessible. The
implications of heavy quark symmetry for the semileptonic decays are discussed and are shown to be manifest
in our explicit relativistic quark model calculation. A comparison of our results with the results of other
calculations is performed.
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I. INTRODUCTION both constituent quarkscannot include the heavy flavor
symmetry[3]. However, the residual heavy quark spin sym-

Recently, the observation of the bottom-chaBmmeson Metry can be used to reduce the number of independent
at the Fermilab Tevatron has been reported by the Collidepemileptonic form factors at least near the zero recoil point
Detector at FermilaCDF) Collaboration[1]. The B, me- ]
sons were found in the analysis of their semileptonic decays, !N the naive spectator model, one would expect that
B —J/yl*X. Values for the mass and the lifetime of tBg | (Bo)=1'(B)+1'(D) which gives 7(B;)~0.3 ps, i.e. 1.5
meson were given ab (B.)=6.40=0.39+0.13 GeV and times less .t.han the central CDF valge. The_ dominance of Fhe
T(BC):O.46fg&§stat)t 0.03(syst) ps, respectively. The c— s transition will have to be_lnvestlgated in fpture analy5|_s
branching fraction forB Iyl v relative to that forB when more dat_a become avz_;ulal_)Ie. Thus a rell_able evaluation
—.J/yK was found to bCe ¢ of the long distance contributions is very important for

studying the wealB. decay properties.

The theoretical status of thB, meson was reviewed in
7(Bo)XBr(Be—J/ylv) _ 132" 9% stap [5]. In this paper we focus on its exclusive leptonic and
o(B)XBr(B;—J/yK) 77008 semileptonic decays which are sensitive to the description of

+OO3](sysl)+°'°32 long distance effects and are fr_ee of furthe_r assumptions,
- —0.020° such as, for example, factorization of amplitudes in non-
_ ) leptonic processes. Our results on the semileptonic transition

The study of théB; meson is of great interest due to some form factors can of course be used for a calculation of the
of its outstanding features. It is th(_a lowest bourlld. state of tWChonIeptonic decays of thB. meson using the factorization
heavy quarkscharm and bottowith open(explicit) flavor approach.
that can be compared with the charmoniuoe pound state The exclusive semileptonic and nonleptor{@ssuming
and the bottomiumkb bound statewhich have hidderiim-  factorization decays of thd3, meson were calculated before
plicit) flavor. The states with hidden flavor decay stronglyin a potential model approadl6]. The binding energy and
and electromagnetically whereas tH& meson decays the wave function of th&. meson were computed by using
weakly since it is below th&D threshold. Naively it might 2 flavor-independent potential with the parameters fixed by
appear that the weak decays of thg meson are similar to thecc andbb spectra and decays. The same processes were
those of theB andD mesons. However, the situation is quite also studied in the framework of the Bethe-Salpeter equation
different. The new spin-flavor symmetry arises for the sys-in [7] and in the relativistic constituent quark model formu-
tems containing one heavy quark when the mass of the heavJgted on the light front iri8]. Three-point sum rules of QCD
quark goes to infinity2]. It gives some relations between the and nonrelativistic QCONRQCD) were analyzed i9,10]
form factors of the physical processes. The deviations fronto obtain the form factors of the semileptonic decayBpf
heavy quark symmetry are large for tBemeson and negli- —J/#( 7)1 " v andB, —Bg(B¥)I " v.
gibly small for theB meson. On the contrary, in the case of As shown by the authors ¢#], the form factors param-
the B, meson a consistent heavy quark effective the@oy  etrizing theB. semileptonic matrix elements can be related
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to a smaller set of form factors if the decoupling of the spinshown that the scaling relations resulting from the spin-
of the heavy quarks iB. and in the mesons produced in the flavor symmetries are reproduced by the model in the heavy
semileptonic decays is exploited. The reduced form factorsjuark limit.
can be evaluated as overlap integral of the meson wave func- Using this approach we have elaborated the so-called
tions obtained, for example, using a relativistic potentialrelativistic three-quark modelRTQM) to study the proper-
model. This was performed ifl1], where theB. semilep- ties of heavy baryons containing a single heavy quéark-
tonic form factors were computed and predictions for semitom or charm. For the heavy quarks we used propagators
leptonic and non-leptonic decay modes were given. appropriate for the heavy quark limit. Physical observables
In this paper we employ theelativistic constituent quark for the semileptonic and nonleptonic decays as well as for
model (RCQM) [12] for the description oB. semileptonic  the one-pion and one-photon transitions have been success-
meson decays. The RCQM is based on an effective Lagrandully described in this approacfi8]. Recently, the RTQM
ian describing the coupling of hadrohkto their constituent was extended to include the effects of finite quark masses
quarks, the coupling strength of which is determined by thg19]. We mention that the authors 0] have developed a
compositeness conditiofi, =0 [13] whereZ, is the wave relativistic quark model approach to the description of meson
function renormalization constant of the ha_(;h}eanereZH2 transitions which has similarities to our approach. They also
is the matrix element between a physical particle state andse an effective heavy meson Lagrangian to describe the
the corresponding bare state. The compositeness conditi®®uplings of mesons to quarks. They use, however, point-
Z,,=0 enables us to represent a bound state by introducing l&ke meson-quark interactions. Loop momenta are explicitly
quasiparticle interacting with its constituents so that thecut off at around 1 GeV in the approa¢R0]. In our ap-
renormalization factor is equal to zero. This does not meaffroach we use momentum dependent meson-quark interac-
that we can solve the QCD bound state equations but we af#ns, which provides for an effective cutoff of the loop in-
able to show that the conditiafi, =0 provides an effective tegration. We would also like to mention a recent
and self-consistent way to describe the coupling of the parinvestigation[21] where the same quark-meson Lagrangian
ticle to its constituents. One starts with an effective Lagrange€mployed in[12] was used. The authors g21] employed
ian written down in terms of quark and hadron variablesdipole vertex to describe various leptonic and semileptonic
Then, by using Feynman rules, tigmatrix elements de- decays of both the heavy-light mesons and Baemeson.
scribing hadronic interactions are given in terms of a set of In this paper we follow the strategy adopted in Refs.
quark diagrams. In particular, the compositeness conditioh16,17. The basic assumption on the choice of the vertex
enables one to avoid a double counting of hadronic degredgnction in the hadronic matrix elements is made after tran-
of freedom. This approach is self-consistent and all calculasition to momentum space. We employ the impulse approxi-
tions of physical observables are straightforward. There is anation in calculating these matrix elements which has been
small set of model parameters: the values of the constituentsed widely in phenomenological DSE studiese, e.g.,
quark masses and the scale parameters that define the sizeRwf. [16]). In the impulse approximation one assumes that
the distribution of the constituent quarks inside a given hadthe vertex functions depend only on the loop momentum
ron. This distribution can be related to the relevant Betheﬂowing through the vertex. We present a genera| method
Salpeter amplitudes. which greatly facilitates the numerical evaluations that occur
The shapes of the vertex functions and the quark propgn the Feynman-type calculations involving quark logpse
gators can in principle be found from an analysis of theaiso[12,17).
Bethe-Salpeter and Dyson-Schwinger equations, respec- The basic emphasis of this work is to study leptonic and
tively, as done e.g. iii15]. The Dyson-Schwinger equation semileptonic decays of thg, meson. We use Gaussian ver-
(DSE) has been employed to entail a unified and uniformlytex functions with size parameters for heavy-light mesons as
accurate description of light- and heavy-meson observable Ref.[17]. In this paper we limit our attention to the basic
[16]. In this paper we, however, choose a more phenomenasemileptonic decay modes of tBe meson. A new feature of
logical approach where the vertex function is modeled by &uyr calculation is that we also discuss semileptonic decays
Gaussian form, the size parameter of which is determined bjyolving the 7 lepton. We discuss in some detail how our
a fit to the leptonic and radiative decays of the lowest lyingguark loop calculations reproduce the heavy quark limit re-
charm and bottom mesons. For the quark propagators we Ug&ions between form factors at zero recoil. Explicit expres-

the local representation. . ~ sions for the reduced set of form factors in this limit are
The leptonic and semileptonic decays of the lower-lyinggiyen.

pseudoscalar mesonsr( K, D, Dg, B, Bs) have been de-

scribed in Ref[17] in which a Gaussian form was used for

the vertex function and free propagators were adopted for the Il. MODEL

constituent quarks. The adjustable parameters, the widths of '

Bethe-Salpeter amplitudes in momentum space and the con- We employ an approadii.2] based on the effective inter-
stituent quark masses were determined from a least squarastion Lagrangian which describes the coupling between
fit to available experimental data and some lattice determihadrons and their constituent quarks. For example, the cou-
nations. We found that our results are in good agreemerling of the mesorH into its constituents); andqs, is given

with experimental data and other approaches. It was alsby the Lagrangian
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k+p
140-y)= [ ax, [ a0
D P
_____ . oo TTTo xfdyljdqu)H(y-YLyZ)
Xtr{S(y1—x)yS(x—y2) T} (2.4
k

Then we calculate the Fourier transform of the meson mass

FIG. 1. One-loop self-energy type diagram needed for the evalufunction (2.4):
ation of the compositeness condition.

ﬁH(P)zf e PII4(x)
£int(x)=gHH(X)J XmJ dx®(X,Xq,X2)

:f dq dk1J dk o
AT G(Xo). 2.1) em*) em*) 2wt "

X(=p.ky, —ka)Py(d, =Ky . Kp)
Here,\y andT'y are Gell-Mann and Dirac matrices, respec-
tively, which entail the flavor and spin quantum numbers of Xtr{S(k)) T S(k2)T 'y} (2.9
the mesorH. The functiond,, is related to the scalar part of The Fourier transform of the functioh (x x.) which
Bethe-Salpeter amplitude and characterizes the finite size ?J; invariant under the translation— x. + alcya'n' be nwritten as
the meson.dy is invariant under the translatio®(x e
+a,X;ta,X,+a)=®dy(X,X1,X,) Which is necessary for the _
Lorence invariance of the Lagrangiéh1). For instance, the @ (1, - .. ,Qn):J dxg- - J dx,
separable form

xexp(iz xiqi)(b(xl, e Xn)

28?22

(I)H(x,xl,xz)=5(x— N
><(27T)45(2 qi)n“f olxl-..fclxn
=1

has been used i1.2] for pions withf(x?) being a Gaussian.
The straightforward generalization of the vertex function
(2.2) to the case of an arbitrary pair of quarks with different
masses is given by

)

Zl xi)ex;{i_z,l xiqi)CIJ(xl, ceeXn)

E(zm“a‘( > qi) S(U1, - Gn-1)-

M1 X4+ MyXy ) i=1
D(X,X1,%) =6 X_W f((X1=%2)%). (2.9
(2.3)  Using this property one finds
. . ~ dk
The authors of21] used a dipole form for the Fourier trans- I (p):f d2 (K, p)tr{S(k+ )T S(K)T 1.
form of the functionf (x2). Here we follow the slightly dif- ; (2m4 " t WSUOTHY
ferent strategy as proposed in R€f$6,17]. The choice of (2.7)

the vertex function in the hadronic matrix elements is speci- .
fied after transition to momentum space. We employ the im!1€r€; We assume that the vertex functign depends only
pulse approximation in calculating the one-loop transition®" the 100p momenturk. Besides, we assume thel, is
amplitudes. In the impulse approximation one assumes th alytical function which decreases sufficiently fast in the
the vertex functions depend only on the loop momentu —uclidean momentum space to render all loop diagrams UV
flowing through the vertex. The impulse approximation has Mte:

been used widely in phenomenological DSE studisse, The COUP'".‘Q constantgy are determined by the so-
e.g., Ref[16]). The final results of calculating a quark loop c@ll€d compositeness conditiquroposed in13] and exten-

diagram depend on the choice of loop momentum flow. Insively used in14]. The compositeness condition means that

the heavy quark transitions discussed in this paper the Ioc;?’e renormalization constant of the meson field is equal to

momentum flow is, however, fixed if one wants to reproduc
the heavy quark symmetry results. 302
To demonstrate our assumption, we consider the meson 7 o =1— gHﬁ, (mz)zo 2.9
; ; ; P H 2 tHUTH , :
mass function defined by the diagram in Fig. 1. We have T
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whereTl}, is the derivative of the meson mass function de- N
fined by the diagram in Fig. 1: NN
y41 \\
2 d4k 2 2 5 5
p(p)= 5 dp(— KU y>S3(K) y>Si(k+p)],
44 2
I
(2.9 =
_|_
1 pp’| [ d*k =
2y — 2| qur_ 20 12
1_[V(p ) 3|:g pz f 4772| ¢V( k ) /
<t y*Sy(K)y"Sy(k+p)]. (2.10 Pr 7
For simplicity, we extract the factor 144 from the defini- .’ ;
tion of the meson mass operator. We use the local quark Li=3Ypj, lh=0.
propagators =1
FIG. 2. One-loop diagram with legs and arbitrary vertex func-
1 tions.
Sk =——, (2.11

m; — K

. ) ) the momentum tensor in the numerator arising from rthe
wherem,; is the constituent quark mass. As d!scusse[dil], fermion propagators is,,=n. We employ the impulse ap-
we assume thahy <mq, +my, in order to avoid the appear- ,.yimation dropping the dependence on the external mo-
ance of imaginary parts in the physical amplitudes. This is anenta inside the vertex functions and denote the product of
reliable approximation for the heavy pseudoscalar mesongy| vertex functions byF(—k?).
The above condition is not always met for heavy vector me-  Using thea parametrization of Feynman one finds
sons. As discussed in Sec. VI we shall therefore employ
equal masses for the heavy pseudoscalar and vector mesons
in our matrix element calculations but use physical masses
for the phase space.

n
11 Bs=T(n) | dhad| 1- 2, a
(n.s] =1
lIl. METHOD FOR THE EVALUATION OF ONE-LOOP

DIAGRAMS WITH ARBITRARY VERTEX J' d*k k2) k1. . kMs
X _.7:( - L]
FUNCTIONS 2 [Dn(a)—(k+P)2]n
For the present purposes one has to evaluate one-loop 3.2

integrals of two- and three-point functions involving tensor

integrands and product of vertex functions. In this section we

describe a general method to efficiently enact these calculgy e p=s1 . and D ()=,
tions for the general case afpoint one-loop functions. We —(1/2) [m-2‘|‘I?T':IL-2—I(I|,'_|')2] n b
note two simplifying features of our integration technique. Next ! ] h ' C] h int | tation for th
The arising tensor integrals are reduced to simple invaria ext we usze € auchy integral representation for the
integrations. The sequence of integrations is arranged Su?antmn F=K) leading to

that the product of vertex functions is kept to the very end

and allowing for a full flexibility in the choice of vertex

jaiajdij with di,j

functions. n
We consider a ranls tensor integral in the Minkowski |ﬁ11vs]---~#s=r(n)f dna5<1_2 ai)
space as it appears in a general one fermion-loop calculation ' i=1

of an n-point function(see the diagram in Fig.)20ne has

g

4 im?
. e dk ) kH1. . . kHs
I[n'S] = m]—'(—k) = 2 . (3] Kh1. . ki
mZ— (k+1;)? X :
L1 =i 1y7) [{— KB Dp(a) — (k+ P)Z]"
The outer momentg; (j=1,...n) are all taken to be in-
coming. The momenta of the inner lines are givenkiyl; The new denominator factor is then included again via Feyn-

with Ii=2'j:1pj such thatl ,=0. The maximum degree of man parametrization, giving
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[n's]""”S‘F(nﬂ)f dBB"" 1f d“a6(1 >, al)fd“kﬂgdgf

. kts

X .
[(1-B)¢—(k+BP)*+ BDp(a)— B(1-BPH "

One then factors out the (18) in the denominator and
shifts the integration variablk to k' =(k+ B8P)/{1— 8 to
obtain

n—-1
|f‘nl's""“s—r(n+1)J d,B(l B) Jd”a
d*k [ d¢F(—
o1 Ea.)f fﬁ {H( z)
X<Mk—ﬂp>ﬂl~-<ﬂk—ﬁpws

[é«_k2+z]n+1

Sincemp.=[N/2], EQ.(3.4) holds true for allh andm except
for the casen=2 andm=1. In this case we have

2
|[2,1]=2f dt J dzaé(l—z ai)f duF(u)
0 i=1 z

2 2
fdzaé(l—zl ai)zt’f(z),

(1+1)

(3.5

wherez{ =dz(t)/dt.
One has to remark that the integration over thparam-

The contour integral can be done again by Cauchy’s theoceters in Eq(3.4) can be done analytically up to a remaining

rem. On substitution op=t/(1+t) one then has

J d"a

1
ﬂ]:(n)(

| ’7T

n-1

©

t
[o
0

(1+1)2

J

whereF(™ denotes theth derivative of the functio® and
where

Ilu'l ----- Ms__
[n.s]

G

n
1) 1—2 ¢4
=1

. Kﬂs,

+Z)KM1. .

K= kie Pk z=tD Lop
T rt L+t 2=tDn(@) = 77

The momentum integration of the tensor integral can be trivi-

ally done by invariant integration. Finally we go to the Eu-
clidean space by rotating,—ik, which gives k2—>—k§
=u; then one encounters the scalar integrals

f d"«o

f duu™ tFMu+2z2). (3.3
0

n—1

o

I[n,m]:(_)nfo dtm

n
1) 1_2 '
=1

Theu integration can be performed by partial integration and

one finally obtains
tn—l

J d"a

'[n,m]=<—>“*mr<m+2>f:dt(l

+t)2+m

(3.9

—Zl ai)ﬂ“m”(z).

one-fold integral. However, the ease with which the numeri-
cal « integrations can be done does not warrant the effort of
further analytical integrations. Using the integration tech-
niques described in this section all necessary numerical inte-
grations encountered in this investigation can be performed
within minutes using a fast modern PC.

IV. HADRONIC MATRIX ELEMENTS
A. Quark-meson coupling constants

As already discussed in Sec. Il, the quark-meson coupling
constants are determined by the compositeness condition,
Eqg. (2.8). The derivatives of the meson-mass functions can
be written as

4

k
i Pa(—k?)

dH(Z)—l
S 1p(P 2p

dp dp“
Xt y°S3(K) ¥°Sy(k+p)]
1 ko,
= —k?
2p?) an?i Pp(~)

4.0

1

(P%)= 3 —pi—
Iy(p 32p2P

dp®

p“p”
p2

Xt y°S3(K) y°S1(k+p) p Sy(k+p)],
4

|:gl“’_
d*k
XJ4 2

- p2(—k?)
el
Xt Y4 Sy(K) 7S, (K+ P) ]
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k+p
p“p”| 1 [ d
= 3|9~ f - b~ k)
p? |2p*) 4n?i
p
XUy S(K) y"Sy(k+p)p Sy(k+p)].  ----- -
(4.2
The evaluation of the integrals is done by using the k
method outlined in Sec. Ill. The compositeness condition FIG. 3. Quark model diagram for leptonic meson decays.
reads
3gy [ d*k

30, d i M{(p)=—Cy- J 2 du(—K?)

4—NH 1, where NH=FHH(p ) 4.3 4m?) Ax?i

T p _

p?=mp Xt £ Sy(K) y#Sq(K+ p)]
1 (= t |22
== S =—myCyfye*#, (4.5
Ny 2]0 dt 1+t) J'Odaa{ T vivTy
4
1 t iMp.,.(01,02)=C 39 OII(<¢>(k2)
R - A a_ = | Pyy q1.02)= P'yy_zJ' 2. PP -
{+Ye=Fe(D) 57| 4~ 37|~ 7@ 47?) 4l

at ><tr[y5S k— qz)é* k)é*S(kJrql]
[mi—2mymg+ p?]

X{2mims+ ——
1+t =i puvaf *M *V 4.6
) Opyye Pelte; "aras, (4.6
2 a_t) oot
Pl 1 1+t) )’ squg [ ik
. "N VYP 2
iMyp,(p,p )_CVPyFJ mfpv(_k )
Fu(2) —Fy(2)
v AME g 27 g P Xt y5Sq(K-+ ) £* Sq(K) €4 Sq(k+ )]

at
o 2 2
X{2myms+ 1+t[m1 2m;ms+ p“] =igvpys”mﬁe’;“e* rpagh. 4.7)
at at . .
— p2 — - For ease of presentation, the expression forMthePy de-
1+t 1+t cay is given for neutral-flavored mesons. Using the integra-

tion techniques described in Sec. Ill one then arrives at the
Here,m; stands for the heavy quark (or c) andm; for the  following analytical representation of the various one-loop
light quarks (1, d, s) in the case of heavy-light systems, and matrix elements:
for c in the case of double-heavy systems. The function
Fu(z) is the product of two vertex functionsFy(z)

_ ; 3g

= $2(2) with fo= 2 [ “at—— [ "dagelz
P= an2)o C (1412 adp(zp)

2
_ 2 _ 2_ _ 27_
z=t[ami+(l—a)m;— a(l— a)p”] 1+tp x| Mg (My = Mg)——
1+t
B. Leptonic and radiative decays k+p
The matrix elements of the leptonic and radiative decays

are defined by the diagrams in Figs. 3—6 and given by

p
3gp [ d% ., T T
IME(P)=_— f 5 be(—K?)
At
Xt y°S3(k)O#S, (k+ )] k
=fpp*, (4.9 FIG. 4. Quark model diagram for vector meson radiative decays.
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k+q

NANNAN (2
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FIG. 5. Quark model diagram for the decays of a neutral meson.

zp=t[ami+(1—a)m5— a(1l—a)p?]

——p? (4.8

o0 t 1
f :——J dt Jd z
Vomy ar2lo T (1+0)2)o adv(zy)

) 1 ot 1 at )
XMat o T TP
ta?
zV=t[m§—a(1—a>p21—mp2,

2
F(Voete )= AT C oo o _dvm g Y
( —e e ) 3 mV V™~V \Y eq( ¢l l/ll )1

4.9
2

0

=C 3gPdet -
9pyy™ Pwmq4_ﬂ_2 1+t

[_ ¢IC-’(ZO)]1

3
Xf d3a5( 1-, a;
=1

t
Zo:t(mg_ aja,p?)— malazpz,

2€?

Cc

(P =T 2mia? C =
(P—yy) 4amPgPy'y1 1YY

(4.10

—_ - p/

k+p

----- - k+q

AN G

FIG. 7. Quark model diagram for the semileptofig decays
involving b—c,u transitions. The lower leg in the loop is tle
quark.

3gv9PJ'°°

t 2
gvp«y—Cvp«qu—dm2 _1+t>

0

3

XJ d3a5( 1_21 ai)[_f\,/P(ZVP)]r
vazt(mé—alagm\z/—alazmlzg)

2 2
- m[al(a1+ a)my— aja,mp],
3
2., C =2
gVPy Iy €.

(4.11

IT(V—Py)=—md 1 —
V724 T 2
\

The electric quark chargess, are given in units oe.

C. Semileptonic form factors

The semileptonic decays of tligz, meson can be induced
by either a beauty quark or a charm quark transition. In the
relativistic quark model, the hadronic matrix element corre-
sponding tob decay is defined by the diagram in Fig. 7 and
is given by

ME(P(p)—H(p"))
_3ngHf d*k

——JPH
472 473

(=K

Xt y°Sy(K)T i Sy(k+ ') OLS, (K+p)],
(4.12
where Fop= ¢p- ¢y, I'p=7v°, andl'y=—i#* with €*-p’

=0. For theb-decay case one has the Cabibbo-Kobayaski-
Maskawa-(CKM)-enhanced decays
b—c:

B(J:r_>(7761‘]/lr/,)l+vv ml:mb1 m2:m3:mC1

and the CKM-suppressed decays
b—u:

BS —(D°%D*%I*y, my=m,,

FIG. 6. Quark model diagram for the radiative decay of a vector

meson into a pseudoscalar one.

m2:mu, m3: mc.
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k+p It is convenient to present the results of the matrix element
evaluations in terms of invariant form factors. A standard
decomposition of the transition matrix elements into invari-
D 7 ant form factors is given by

M#“(P(p)—P'(p')=f, (%) (p+p")*

’ o +f_(?) (p-p')*  (4.14
and
FIG. 8. Quark model diagram for the semileptofig decays . ,
involving c—s,d transitions. The upper leg in the loop is the IM#(P(p)—V(p")
quark. =—gr’e*"(mp+my)A(g®) +(p+p’)Hp- €*
The c-decay option of thé&, meson is represented by the Ay(g?) N %
Feynman diagram in Fig. 8 which gives - +(p—p)ip-e€
ME(P(p)—H(p")) As(g? . 2V(g?
c(P(p (p y 3(0°%) _jghraBrvpan’s (q)_
Mp+ My Mp+ My
:3ngHf dk}_ (—K2)
an? ) a3 PH (4.19

s tr] /5 " + +o)1. The various invariant form factors can be extracted from
Uy*SkO"Stk+ TS (K 15)](4.13) the one-loop expressiori4.12) and(4.13 by using the tech-
niques described in Sec. lll. One finds that the form factor
Again one has the CKM-enhanced decays integrands factorize into a common piece times a piece spe-
cific to the different form factors. One can thus write

ZJ d3a5(1—§31 ai)

X{- I (4.1

c—s: B/ —(BY,BX)I*y, m=m,,

my=n n F( 2)_ —f dt
2 ’ 3= Mg,

S ¢ q nggHZ 0
and the CKM-suppressed decays

1+t

c—d: B —(B%B*%)I vy, m=my,
whereF=f_. ,A;,V. For the 0 -0~ b—c,u form factors

m,=my, Mz=m;. f, one has

(my+my)mg

t

1
{0 =Fer(z) |43t ao)

1+t[ (a1+ az)(MyMg+mymz—mymy) + a;p?+ ayp'?]

t 2

|15 [(a1+ay)(a1p?+ayp'?) —agay0?] |,

2— (a1+a2)1+t

1+th, Pb:a1p+a2p’.

3
Zb:t( 21 M — ayagp®— apasp’?— ayaq? | —
For the corresponding—s,d form factor one has

t
1+3a11—th +]—",’3P(zc)[ m,ms

1
1 } ]:PP(Zc)l_H

14_,[[6¥1(m1m2+ m;mz— m2m3)+a2q2]+(1+t [a5p?—a50?)]

t 3

1t al[al(al+a2)p2_a1a2p,2+a’2(a1+a2)q2]J1
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z.=t 21 aim’ — ajazp”— ara3q — ajap’

PHYSICAL REVIEW D 63 074010

t
__p(Z:,

1T+t P.=ap+asq.

Expressions for the remaining -0~ and 0 —1~ form

Finally, the total partial rates including lepton mass ef-

factorsf_, A, andV are given in the Appendix. The masses fects can be written g22]

m; (i=1,2,3) appearing in the form factor expressions are

constituent quark masses with a labeling according to Egs. drPP m? dl“g'j m? dl“f’Fy
(4.12) and(4.13. The values of the constituent quark masses dop =1+ 2_qz de? Z_qz a (4.23
as well as the vertex functions entering the form factor ex-
pressions will be specified in Sec. VI. 2 PV PV PV
For the calculation of physical quantities it is more con- dFPV: ( 1+ ﬂ) dr + dr- +d1“0
venient to use helicity amplitudes. They are linearly related do? 29/ dg> dg® d¢?
to the invariant form factor$22]. For the 0 —0~ transi-
tions one has m; dr'fY
— (4.29
L 2mpP 29" dg
Ho(a%) = \/? f(a), (4.17 In the following we shall present numerical results of the

1
Ht<q2>=ﬁ«mé—m§,>f+<q2>+q2f_(q2>}-

total decay widths, polarization ratio and forward-backward
asymmetry. The relevant expressions are given by

. (m,;,—mH)2 2dF _ FO _
(4.18 F—fmlz dq i a=2p— 1L
For the 0 — 1~ transitions one has
Ay T (4.25
mpP FBT2 T '
2y _ 2y — 2
H..(g%) (mp+my)A4(q )+(mp+mV)V(q )
(4.19 V. HEAVY QUARK SPIN SYMMETRY

! [—(m.%—mé—q2>(mp+mv>
2my\g?

Ho(g?) =

2p2

. AmpP
X A1(q%) + ot my

Az(qz)] ) (4.20

Our model allows us to evaluate form factors directly
from Eg. (4.16 without any approximation. However, it
would be interesting to explore whether the heavy quark spin
symmetry relations derived in Rg#] can be reproduced in
our approach. As was showsee, for instance,17]) our
model exhibits all consequences of the spin-flavor symmetry
for the heavy-light systems in the heavy quark limit. For

mpP - i i -
o Mp B 2 B example, the quark-meson coupling and leptonic decay con
H(g%) = - \/—2{ (mp+my)A;(g9) +(mp—my) stants behave as
vvd
X ALG+ A (qz)] (420 a2t
2 3 ' ' OH— NeMy—F—,
mp+my /_SNH
where G
~ (™ 2 mz+ U
o N(mp,mia?) _[(a? - a)(a? ~ a7 NH—fO dughu-26N0) o e 60
2mp 2mp
with g2 =(mp=my)2. fHﬁiw /L,,fmdu[\/a—E]qﬁH(u—ZE\/a)
Then the partial helicity rates are defined as Jm; V272N, Jo
dr; G? 2—m?)%p m3+ \u/2
_|: F |fo/|2(q 2|) |Hi(q2)|2! i=i,0,t, 2 \/_’ (52)
dg®> (2m)3 12m3qg? m5+u—2E+\u
(4.22

in the heavy quark limit:p?=mZ=(m;+E)? when m,

whereV;; is the relevant element of the CKM matrix, and — . Equations(5.1) and (5.2) make the heavy quark mass

m, is the mass of charged lepton.

dependence of the coupling factarg and fy explicit since

074010-9
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we have factorized the coupling factor contributions into a

. .. 2mp'2mH 1 © dtt ©
heavy mass dependent piece and a remaining heavy mass Mb= ————— — f daFpy(ze)
independent piece. Moreover, Ed@5.1) and (5.2) showg, Np-Ny mzJo (1+1)2Jo
andf,, scale agni? andm; *2, respectively.
As is well known (see Ref[4]), heavy flavor symmetry X{--Yews
cannot be used for hadrons containing two heavy quarks. But
one can still derive relations near zero recoil b i at—AE 1
y using heavy [ Ypp=—| my+ iy
quark spin symmetry. PP 20 1+t 1+t
First, we consider the semileptonic decayB,
—B¢(B%e" v andB,—B* (B*%)e" v which correspond ta i{- - Ypy=—igr" Pe* prf
decay into lights andd quarks, respectively. Since the en-
: . 1 at—AE
ergy released in such decays is much less than the mass of Xt | Myt ———— | e*#
the b quark, the four-velocity of theB. meson is almost 1+t 1+t
unaffected. Then the initial and final meson momenta can be 1
written as Tk,
171" r. (5.6)
P=mgv, Pp'=mgu+r, Here, z.=[at(1+1)](a+2AE)+t(m3—2aE;)—[t/(1

+1)]AE?. Itis readily seen that the amplitudesmflecay in
wherer is a small residual momentufw -r=—r?/(2mg)].  the heavy quark limit are expressed through two independent
The heavy quark spin symmetry can be realized in the folfunctions
lowing way. We split theB-meson masses into the sum of

b-quark mass and binding energy: {- - }1=| my+
b= my

at—AE
1+t

1
ey

mg =mp=m;+E;, mg=my=m;+E _
S BT To complete the description of the heavy quark limit in

the c-decay modes, we give the expressions for the form
Then we go to the heavy quark mass lim=m;—> in  factors in this limit. One has

which theb-quark propagator acquires the form

2mp2me dtt
0

1 1+4 F(Qfa) — f"’ aFpeu(z){- - }¢
VN 1+1)32
—p-K _ —2(kutEy" 53 (1+1) .

The decoupling of thec-quark spin allows us to reliably where F=f. ,A;,V. The form factor specific pieces are
neglect thek integration becausk is small compare to the given by
heavyc-quark mass. One has

1 Lo 11
1 1 {-h. = 2m,ms M+ 1) {"'}f,—Em,
3 3 [ 1 1 ( at—AE)
DRI A = — h— 2 s ,
As a consequence, the hadronic matrix element describing b Mt My Mg 1+t
the weakc-quark decay simplifies: me+my 1 1
toda=t b= mymg 1+t
2mp-2my 1 ¢ d%k )
Mg = \/# HJ' z-fPH(_k) mp+my 1 3 my t
Np-Ny M3/ 47 {- o= - +4| ——1]|—|.
3 2 mimg| 1+t ms 1+t

tr[O“(m2+ K+d)T(1+9)y°] o
(5.5 Superficially it appears that the form factdrs andA; are

[ 2kv —2E1][m2 (k+ q)z] suppressed by a factor ofrii{. However, they must be kept

in the full amplitude to obtain the correct result in £§.6);

where q=p—p’'=(mp—my)v—r=(E;—E,)v—r=AEv for instance, one has

—r andm, stands for the light quark masmg=mg or my). ¢ bt ,

One has to emphasize that all above approximations are valid +(pFpHE+T_(p=p")

only close to the zero-recoil poimﬁaszEz. Recalling the =(2myf, +AEf_ )o#+(f.—f_)r~

transversality of the final vector meson fighd - €* =mgv

+r-€* =0 and applying the integrations as described in Sec. A similar analysis applies to théo—u decays B,

I, one finds —(D%D*%e" . Again the heavy quark symmetry analysis

074010-10



SEMILEPTONIC DECAYS OF THEB. MESON PHYSICAL REVIEW D 63 074010

is only reliable close to zero recoil where thequark from
theb—u decay has small momentum. One has

mH—at
1+t

|{ . '}p\/: _is'uvaﬁe* Vval’ﬁ( m2+

2mp'2mH 1 d4k _ Mk
M{ = — ,fPH(_kZ) 1+t° er

VRp-Ry, Ms) 47
tr v T y(my+ k+p’)O*(1+4)]
X 1
[—2kv—2E;][m5— (k+p")?]

Here, z,=[ at?/(1+1)] (a+2my)+t (m3—2aE,)—[t/(1
(5.8 +t)]m?. Again, the amplitudes for thé—u decays are
expressed through two independent functions. The expres-
sions for the form factors in the heavy quark limit close to
zero recoil read

where g=p—p'=(m;+E;—my)v—r. The light quark
massm, in Eq. (5.8 is theu-quark mass. One finds

2me2my 1 (= dtt (e ) V2mp2my (= dtt [
Mp= " — f daFon(zo){- - }om Flma) =~ 2= Jo (Tagyzlo STen e
VNN, M3Jo 2Jo NpNgy
NpNy Ma’0 (1+1) 5.10
(5.9
with whereF=f_ ,A;,V and where
_ +mH—at by 1 “ _ B 1 1

{-}pp=| My 1+t v 1+tl’ , {...}f+__{...}f__z_ms_l+t1

TABLE |. Leptonic decay constanty, (MeV) used in the least-squares fit.

Meson This model Other Ref.
ot 131 130.20.1£0.36 Expt.[35]
K* 160 159.8-1.4=0.44 Expt.[35]
DY 191 191733 Lattice[23,24
192+ 117351 Lattice [25]
194718+ 10 Lattice [26]
DS 206 206'35 Lattice[23,24
210+ 9731 Lattice [25]
213" 1+11 Lattice [26]
B* 172 172720 Lattice [23,24]
157+1173% % Lattice [25]
164"11+8 Lattice [26]
BS 196 171+107 3477 Lattice [25]
185" 3+9 Lattice [26]
B, 479 Logarithmic potentidl27]
500 Buchmiler-Tye potential[27]
512 Power-law potentidR7]
687 Cornell potential27]
480 Potential modd6]
432 QCD-inspired QM 28]
400+ 20 QCD spectral SR29]
300 QCD SR[30]
360+ 60 QCD SR[31]
300+ 65 QCD SR[32]
385+ 25 QCD SR[33]
42013 Lattice NRQCD[34]
B. 360 360 Our average of QCD SR
Iy 404 405+ 17 Expt.[35]
Y 711 71037 Expt.[35]
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M. A. IVANOV, J. G. KORNER, AND P. SANTORELLI

0'3’...|...|...|...|
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FIG. 11. g? dependence of thB,— B, form factors. Note that
we plot the negative of thé, (q%) form factor.

mp+my 1 1
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sum (f, +f_) to obtain the above amplitudes.
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FIG. 10. g2 dependence of thB,— J/ form factors. Note that

we plot the negative of thAs(q?) form factor.
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TABLE Il. Predictions for the form factors a?=0 and g?
= g2, for B.— P decays.

PHYSICAL REVIEW D 63 074010

TABLE IV. Predictions for the form factors ay?=q?,, for
B.—V decays.

P £.(0) f (A f-(0) f- (A v Aldna)  Aotnw)  As(lna)  V(Gfa)
Ne 0.76 1.07 —0.38 —0.55 NI 0.86 0.97 —-171 1.45
D 0.69 2.20 —0.64 —2.14 D* 0.85 1.76 —3.69 3.26
B —0.58 —0.96 2.14 2.98 B* —0.42 0.49 18.0 5.32
By —-0.61 —0.92 1.83 2.35 B —0.49 0.21 15.9 4.91
The hadronic matrix elements of tHe—c decaysB;
PO . m;+m m;—m
— (e, y)e’ v simplify significantly in the heavy quark = 173 {- ) =— 1 23
limit. In this case bottb andc propagators may be replaced TAmymg - 4m;mg
by their heavy quark limit forms in Eq5.3) with the same
velocity v. Again, the results will be valid only near zero 1
recoil. One has {- s = —,
1 mp+my mg
. V2mp2my 1 d*k @
MCC: —— fPH( ) mp+mv
,/NPNH m3 47T| {}AZZ_{}Agz{}V:—Z
4mym
1M3

tr v’ T y(1+8)0*(1+4)]
[—2kv — 2E,][ — 2kv — 2E,]

(5.1))

wherep=(m;+E;)v, p’=(mz+E,)v+r. One finds

duJ da
cc ~ J
1/ NpN 2my

X Fpp(u—2\u(aEq+(1— a)E) K- - - ton.

(5.12
(- dpp=+20", i{Ypy=—2€*H.

The form factors are written down

F(qe) 2mp2mH q
)=~ | du da
VNpNy

X For(u—2\Ju(@E1+(1— a)Ep){- - - }¢
(5.13

whereF=f_. ,A;,V. We have

TABLE IlI. Predictions for the form factors ag?>=0 for B,
—V decays.

Thus, our quark loop calculations reproduce the heavy quark
limit relations between form factors obtained #] near zero
recoil. Moreover, we give explicit expressions for the re-
duced set of form factors in this limit.

VI. RESULTS AND DISCUSSION

Before presenting our numerical results we need to
specify our values for the constituent quark masses and
shapes of the vertex functions. As concerns the vertex func-
tions, we found a good description of various physical quan-
tities [17] adopting a Gaussian form for them. Here we apply
the same procedure usinty, (k%) =exp{—k/AZ} in the Eu-
clidean region. The magnitude of, characterizes the size
of the vertex function and is an adjustable parameter in our
model. We reiterate that all the analytical results presented in
Sec. V are valid for any choice of form facter,(k?). For
example, we have reproduced the resultg2df] where di-
pole form factor was adopted by using our general formula.

In [17] we have studied various decay modes of theK,

D, Dy, B and B¢ mesons. The\ parameters and the con-
stituent quark masses were determined by a least-squares fit

TABLE V. Comparison of the form factors at the zero recoil
point g?=q2 ., calculated in the heavy quark limit with exact re-
sults.

v A.(0) A2(0) As(0) Vv(0)

Iy 0.68 0.66 -1.13 0.96
D* 0.56 0.64 -117 0.98
B* -0.27 0.60 10.8 3.27
B} -0.33 0.40 10.4 3.25

S

H f, f A A AV
e, I 1.07 —055 0.86 097 —1.71 1.45
7e,Jly (HQL) 070 —0.35 037 069 —0.69 0.69
D, D* 220 -214 085 176 —3.69 3.26
D,D* (HQL) 059 -059 0.8 150 —1.50 1.50
B, B* -0.96 298 —042 049 180 5.32
B, B* (HQL) —047 167 —0.25 1.91 2147 191
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TABLE VI. The numerical values onfnfzit (GeV?) and § in the form factor parametrization, E¢5.3).

f, f_ A, A, As Y
Be— 7,3/ ¢ ma, (6.377 (6.22¢ (8.20Y (5.917 (5.67y (5.65)
5 0.087 0.060 1.40 0.052  —0.004 0.0013
B.—Bs,B! m2, (1.737 (2.217 (1.86Y (3.44Y (1.73y7 (1.76Y
5 —-0.09 0.07 0.13 —-107 —0.09 —0.052

to experimental data and lattice determinations. The obtained Basically we use either the available experimental
values for the charm and bottom quafkse Eq(6.1)] allow  values or the values of lattice simulations for the
us to consider the low-lying charmoniury{ andJ/«) and  leptonic decay constants to adjust the size parametgrs
bottonium (Y) states, and also the newly observed  The value offg is unknown and theoretical predictions for
meson: it lie within the 300-600 MeV range. We choose the
value of ch=360 MeV, being the average QCD sum
rule predictions, for fittingAg . The obtained values of

Ay are listed in Eq.(6.2 as well as the values dfy in
(6.1
Table I:

my Mg me my
0.2350.3331.675.06°

Ay Ag Ap Ao Ay, Ag As, As, Ay
1.161.821.871.952.12 2.162.27 2.43 4.425

(6.2

The values ofA are such thatAmi<Amj if my<m. Br(7.— yy)=0.03%0.012 %,
This corresponds to the ordering law for sizes of bound
heavy-light states. expt=(0.031+0.012 %,

The situation with the determination m,?c is quite un-
usual. Naively one expects that, should be the same as Br(J/y— ncy)=0.901.00 %,  expt=(1.3-0.4) %,
Ay - However, in this case the value of thg— yy decay
width comes out to be 2.5 less than the experimental aver-

age. The experimental average can be reached only for fhe values in parentheses correspond to the case of equal
relatively large value of\, =4.51 GeV. Note that the val- sjzes for the charmonium states.

ues of the other observabled/ (y— .y andB.— 7.l v de- We concentrate our study on the semileptonic decays of
cay rateg are not so sensitive to the choicezbtk: the B, meson. To extend the number of modes, we consider

Br(B.— 7.l v)=0.991.02 %.

TABLE VII. Branching ratios BR(%) for the semileptonic deca$—HI* v, calculated with the CDF
central valuer(B.)=0.46 ps[1].

H This model [9,10] (7] (6] [11] (8] [21]
Y 0.98 0.8-0.1 0.78 1.0 0.18.5 0.6 0.52
NeT V 0.27

Jyev 2.30 2.1 0.4 211 2.4 1.8.3 1.2 1.47
Ty 0.59

D% v 0.018 0.003 0.006 0.0003002

D% v 0.0094

D*% v 0.034 0.013 0.019 0.008.03

D*%ryp 0.019

B% v 0.15 0.08 0.16 0.06.07)

B*%e v 0.16 0.25 0.23 0.19.22

B% v 2.00 4.0 1.0 1.86 0(8.9 1.0 0.94
B*%e v 2.6 5.0 3.52 3.07 2(2.5 1.44
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TABLE VIIl. The polarization ratioe and forward-backward  (my,- mg.) = (M +mZ,—9%)/(2 M- Moy,  they  would

asymmetryAgg . fall with » as one is familiar with heavy quark effective
theory.

H @ Ars It is interesting that the obtained values of?, for
I 1.15 _021 the CKM-enhanced transitiongsee Table VI are very
D*O0 0.10 —0.46 close to the values of the appropriate lower-lyingq()
B*0 0.94 0.35 vector mesons rigx~mg =6.4 GeV for b—c, mpx

Cc S
BO 1.09 0.29 =2.11 GeV forc—s.). The parameteb characterizes the

admixture of ag* term in the denominator. Its magnitude is
relatively small for all form factors of the CKM-enhanced

also the decays into the vector mes@ts, B* andB* . We transitions excep#\; for the B.— J/ transition andA, for

) S " * . . -
will use the masses and sizes of their pseudoscalar partnefs—Bs Which have a rather flat behavior. This means that
for the numerical evaluation of the form factors to avoid theth0se form factors can be reliably approximated by a vector

appearance of imaginary parts in the amplitudes. Such aflominance form. However, one cannot gpproximate the fqrm
assumption is justified by the small differences of theirfactors for the CKM-suppressed transitions by a pole-like

physical masses. function only.

In Figs. 9—12 we show the calculateff dependence We use the calculated form factors in EG.29 to
in the full physical regions of the semileptonic form evaluate the branching ratios for various semileptdBijc

factors of the CKM-enhanced transitionB,— 7., B, deca@y modes including their modes when they are

_.Jl andB,—B,, B.—B* . The values of form factors kinematically accessible. We report the calculated values
Cc S C S * . . . .

at maximum and zero recoil are listed in Tables II-IV. of a wide range of branching ratios n Table VII. T_he

The comparison of the exact values of form factors a esults of other approaches are also given for comparison.

zero recoil and those obtained in the heavy quark limit h% Valu?[f] of brlan;:hlng_ I’attrI]OS f_Oflth? tCKM-en?an(zjed
is given in Table V. Our results indicate that the correctiong/'09€S WIth -an €lectron in the final state are of -order

—_20, I 1
to the heavy quark limit at the zero recoil poigt=gq?,, 1-2%. The values of branching ratios of the
. - CKM-suppressed modes are considerably less. The
can be as large as a factor 2brc transitions and a factor

of almost 5 inb-u and c-d transitions. This is not so modes with a7 lepton in the final state are suppressed

surprising considering the semileptonic decays of the due to the reduced phase space in these modes. To

- . cf‘omplete our predictions for the physical observables
meson where similar corrections can amount to a factor o L o .
two [16] we give in Table VIII the values of the polarization ratio

The form factors can bapproximatecby the form and forward-backward asymmetry for the prominent
decay modes.

ACKNOWLEDGMENTS

f(0) We would like to thank F. Buccella for many interesting
— 02/ m2 — S(2/ 2 )2 6.3 giscussions. M.A.L. gratefully acknowledges the hospitality
1—qg“/mg— &(q/mg,) ; : o
of the Theory Groups at Mainz and Naples Universities
where this work was completed. His visit at Mainz
with the dimensionless values &{0) given in Tables Il University was supported by the DF@®Germany and
and lll. Note that the form factorf,(q?) for the B, the Heisenberg-Landau fund. J.G.K. acknowledges
— 7, transition rises withg? as is appropriate in the partial support by the BMBRGermany under contract
time-like region. When plotted againsto=p-p'/ 06MZ865.

f(g%)=

APPENDIX

In this appendix we list the remaining form factor expressions appearing in the curly bracketg4nlBgwhich have not
been listed in the main text.

b decay:

t

1+t[(al_ a)(mMyms+ mymz—m;m,)

3(a;—ay)

1
{"'}?7:_~7:PP(Zb)_ +~7:|,3P(Zb)[(ml_m2)m3+

1+t 1+t

3

1+t

+ayp?—ayp 2] (a;—ay)[ (a1t ap)(a1p®+ amp’?) — ay 0]
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1 1
{--1a= Mot my Fev(Zp) 77 (My+2My—Mg) — Fpy(2y)| Mpmpms + 5(924' p'?—qg’)ms
t
2 1+t{[a1m1+(26¥1+az) My~ (3ay+ az)Ma]p?+[ (e +2a) My + aymy— (e +3ay) mg]p’?

2

—[aym;+ aomy— (ag+ a)Mg]g?} — (Mg +my—ma)[(ag+ ap) (a1 p?+ asp’?) — ag 0] 1rt

t 2

1+t

t )2
=

{"'}Rzz(mp"‘mv)[ﬂ:v(zb)]{_ Mg — T [aami+ aomy— (Say+ az)mg]+2(my — M) g (@ + ap)

{ -}23=(mp+ mv)[}_év(zb)]{ T laimitamy+ (g —ax)Mg]+2(My—mg)ay(a;— ay)

1+t

t
{ 1= (mp+ mv)[_}-’pv(zb)]lms 1+t[a1(ml m3)+a2(m2—m3)]].

We use the abbreviations

t
Po=a1p+azp’, Zb:t(z am? = ayasp®~ azazp'?— ajayq? —1—+tpﬁ-
=1
c decay:
1 t )
{3 —SJVPP(Zc)lth 1- (a1+2a2)1+t + Fpp(ze) | —2mymg+myms+ l+t[(a1+2a2)

2
X (MyMy+MyMg—MyMs) — 2(a; + ap) p?+ 2a,p’ 2 — apg®] +

1+t

X[(3a2+6ajar+2a3)p?—2ay(ay+ ay)p'?+ an(2a;+ 3a;)q?]

3

1 (a1+2a2)[a1(a1+a2)p2—alazp'2+a2(al+a2)qz]},

FeolZe)7—/

1
(My—2m,—mg) — Fp\(Ze)| —mMymomg+ E(p2+q2_p/2)m3}

1
1+t

c _
L da, Mp+ My,

1 t
2 1+t{[011m1 (2a1+ ap)My— (3ay+ ap) Mz]p?+[ — aymy + ayMy+ (ag + az)ms]p’?

2

+[ (@1 +2a)m; — aymy— (a;+ 3a,)Ms]g?} — (M —my—mg)[ as(a;+ a,)p?

1+t

+ay(ag+ az)qz—alazp’z]] ,

1+t[a1m1 aMy,— (3a+ ay)mg]

2

{- -}2\2=<mp+mv>[—fev<zc>]{m3

—2(my—mg)ay(a;+ ay) 1rt
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t
{ta,=(mp+ mv)[ﬁ’:v(zc)]| —3mg+ 1—+t[—(3a1+4a2)m1—a2m2+(5a1+ 7 az)Mg]

2

+2(my—mg) (a1 +2ay) (a1 + ay) it

t
{-v=(mp+ mv)[_}—év(zc)]{ mz+ m[al(ml_m3)+ az(mz_ms)]] .

Here we have used the abbreviations

3

Pc=a1p+azq, Zc:t( 21 aim?— ajasp®— apa39°— aja,p’? | — %Pg
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