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Semileptonic decays of theBc meson
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We study the semileptonic transitionsBc→hc , J/c, D, D* , B, B* , Bs , Bs* in the framework of a
relativistic constituent quark model. We use experimental data on leptonicJ/c decay, lattice and QCD sum
rule results on leptonicBc decay, and experimental data on radiativehc transitions to adjust the quark model
parameters. We compute all form factors of the above semileptonicBc transitions and give predictions for
various semileptonicBc decay modes including theirt modes when they are kinematically accessible. The
implications of heavy quark symmetry for the semileptonic decays are discussed and are shown to be manifest
in our explicit relativistic quark model calculation. A comparison of our results with the results of other
calculations is performed.
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I. INTRODUCTION

Recently, the observation of the bottom-charmBc meson
at the Fermilab Tevatron has been reported by the Coll
Detector at Fermilab~CDF! Collaboration@1#. The Bc me-
sons were found in the analysis of their semileptonic deca
Bc

6→J/c l 6X. Values for the mass and the lifetime of theBc

meson were given asM (Bc)56.4060.3960.13 GeV and
t(Bc)50.4620.16

10.18(stat)60.03(syst) ps, respectively. Th
branching fraction forBc→J/c l n relative to that forBc
→J/cK was found to be

s~Bc!3Br~Bc→J/c ln!

s~B!3Br~Bc→J/cK !
50.13220.037

10.041~stat!

60.031~syst!20.020
10.032.

The study of theBc meson is of great interest due to som
of its outstanding features. It is the lowest bound state of
heavy quarks~charm and bottom! with open~explicit! flavor
that can be compared with the charmonium (cc̄ bound state!
and the bottomium (bb̄ bound state! which have hidden~im-
plicit! flavor. The states with hidden flavor decay strong
and electromagnetically whereas theBc meson decays
weakly since it is below theBD̄ threshold. Naively it might
appear that the weak decays of theBc meson are similar to
those of theB andD mesons. However, the situation is qui
different. The new spin-flavor symmetry arises for the s
tems containing one heavy quark when the mass of the he
quark goes to infinity@2#. It gives some relations between th
form factors of the physical processes. The deviations fr
heavy quark symmetry are large for theD meson and negli-
gibly small for theB meson. On the contrary, in the case
the Bc meson a consistent heavy quark effective theory~for
0556-2821/2001/63~7!/074010~17!/$20.00 63 0740
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both constituent quarks! cannot include the heavy flavo
symmetry@3#. However, the residual heavy quark spin sym
metry can be used to reduce the number of independ
semileptonic form factors at least near the zero recoil po
@4#.

In the naive spectator model, one would expect t
G(Bc)'G(B)1G(D) which gives t(Bc)'0.3 ps, i.e. 1.5
times less than the central CDF value. The dominance of
c→s transition will have to be investigated in future analys
when more data become available. Thus a reliable evalua
of the long distance contributions is very important f
studying the weakBc decay properties.

The theoretical status of theBc meson was reviewed in
@5#. In this paper we focus on its exclusive leptonic a
semileptonic decays which are sensitive to the descriptio
long distance effects and are free of further assumptio
such as, for example, factorization of amplitudes in no
leptonic processes. Our results on the semileptonic trans
form factors can of course be used for a calculation of
nonleptonic decays of theBc meson using the factorizatio
approach.

The exclusive semileptonic and nonleptonic~assuming
factorization! decays of theBc meson were calculated befor
in a potential model approach@6#. The binding energy and
the wave function of theBc meson were computed by usin
a flavor-independent potential with the parameters fixed
the cc̄ andbb̄ spectra and decays. The same processes w
also studied in the framework of the Bethe-Salpeter equa
in @7# and in the relativistic constituent quark model form
lated on the light front in@8#. Three-point sum rules of QCD
and nonrelativistic QCD~NRQCD! were analyzed in@9,10#
to obtain the form factors of the semileptonic decays ofBc

1

→J/c(hc) l
1n andBc

1→Bs(Bs* ) l 1n.
As shown by the authors of@4#, the form factors param-

etrizing theBc semileptonic matrix elements can be relat
©2001 The American Physical Society10-1
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to a smaller set of form factors if the decoupling of the sp
of the heavy quarks inBc and in the mesons produced in th
semileptonic decays is exploited. The reduced form fac
can be evaluated as overlap integral of the meson wave f
tions obtained, for example, using a relativistic poten
model. This was performed in@11#, where theBc semilep-
tonic form factors were computed and predictions for se
leptonic and non-leptonic decay modes were given.

In this paper we employ therelativistic constituent quark
model ~RCQM! @12# for the description ofBc semileptonic
meson decays. The RCQM is based on an effective Lagra
ian describing the coupling of hadronsH to their constituent
quarks, the coupling strength of which is determined by
compositeness conditionZH50 @13# whereZH is the wave
function renormalization constant of the hadronH. HereZH

1/2

is the matrix element between a physical particle state
the corresponding bare state. The compositeness cond
ZH50 enables us to represent a bound state by introduci
quasiparticle interacting with its constituents so that
renormalization factor is equal to zero. This does not m
that we can solve the QCD bound state equations but we
able to show that the conditionZH50 provides an effective
and self-consistent way to describe the coupling of the p
ticle to its constituents. One starts with an effective Lagra
ian written down in terms of quark and hadron variabl
Then, by using Feynman rules, theS-matrix elements de-
scribing hadronic interactions are given in terms of a se
quark diagrams. In particular, the compositeness condi
enables one to avoid a double counting of hadronic deg
of freedom. This approach is self-consistent and all calcu
tions of physical observables are straightforward. There
small set of model parameters: the values of the constitu
quark masses and the scale parameters that define the s
the distribution of the constituent quarks inside a given h
ron. This distribution can be related to the relevant Bet
Salpeter amplitudes.

The shapes of the vertex functions and the quark pro
gators can in principle be found from an analysis of t
Bethe-Salpeter and Dyson-Schwinger equations, res
tively, as done e.g. in@15#. The Dyson-Schwinger equatio
~DSE! has been employed to entail a unified and uniform
accurate description of light- and heavy-meson observa
@16#. In this paper we, however, choose a more phenome
logical approach where the vertex function is modeled b
Gaussian form, the size parameter of which is determined
a fit to the leptonic and radiative decays of the lowest ly
charm and bottom mesons. For the quark propagators we
the local representation.

The leptonic and semileptonic decays of the lower-lyi
pseudoscalar mesons (p, K, D, Ds , B, Bs! have been de-
scribed in Ref.@17# in which a Gaussian form was used f
the vertex function and free propagators were adopted for
constituent quarks. The adjustable parameters, the width
Bethe-Salpeter amplitudes in momentum space and the
stituent quark masses were determined from a least squ
fit to available experimental data and some lattice deter
nations. We found that our results are in good agreem
with experimental data and other approaches. It was
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shown that the scaling relations resulting from the sp
flavor symmetries are reproduced by the model in the he
quark limit.

Using this approach we have elaborated the so-ca
relativistic three-quark model~RTQM! to study the proper-
ties of heavy baryons containing a single heavy quark~bot-
tom or charm!. For the heavy quarks we used propagat
appropriate for the heavy quark limit. Physical observab
for the semileptonic and nonleptonic decays as well as
the one-pion and one-photon transitions have been succ
fully described in this approach@18#. Recently, the RTQM
was extended to include the effects of finite quark mas
@19#. We mention that the authors of@20# have developed a
relativistic quark model approach to the description of mes
transitions which has similarities to our approach. They a
use an effective heavy meson Lagrangian to describe
couplings of mesons to quarks. They use, however, po
like meson-quark interactions. Loop momenta are explic
cut off at around 1 GeV in the approach@20#. In our ap-
proach we use momentum dependent meson-quark inte
tions, which provides for an effective cutoff of the loop in
tegration. We would also like to mention a rece
investigation@21# where the same quark-meson Lagrang
employed in@12# was used. The authors of@21# employed
dipole vertex to describe various leptonic and semilepto
decays of both the heavy-light mesons and theBc meson.

In this paper we follow the strategy adopted in Re
@16,17#. The basic assumption on the choice of the ver
function in the hadronic matrix elements is made after tr
sition to momentum space. We employ the impulse appro
mation in calculating these matrix elements which has b
used widely in phenomenological DSE studies~see, e.g.,
Ref. @16#!. In the impulse approximation one assumes t
the vertex functions depend only on the loop moment
flowing through the vertex. We present a general meth
which greatly facilitates the numerical evaluations that oc
in the Feynman-type calculations involving quark loops~see
also @12,17#!.

The basic emphasis of this work is to study leptonic a
semileptonic decays of theBc meson. We use Gaussian ve
tex functions with size parameters for heavy-light mesons
in Ref. @17#. In this paper we limit our attention to the bas
semileptonic decay modes of theBc meson. A new feature o
our calculation is that we also discuss semileptonic dec
involving the t lepton. We discuss in some detail how o
quark loop calculations reproduce the heavy quark limit
lations between form factors at zero recoil. Explicit expre
sions for the reduced set of form factors in this limit a
given.

II. MODEL

We employ an approach@12# based on the effective inter
action Lagrangian which describes the coupling betwe
hadrons and their constituent quarks. For example, the c
pling of the mesonH into its constituentsq1 andq2 is given
by the Lagrangian
0-2
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SEMILEPTONIC DECAYS OF THEBc MESON PHYSICAL REVIEW D 63 074010
Lint~x!5gHH~x!E dx1E dx2FH~x,x1 ,x2!

3q̄~x1!GHlHq~x2!. ~2.1!

Here,lH andGH are Gell-Mann and Dirac matrices, respe
tively, which entail the flavor and spin quantum numbers
the mesonH. The functionFH is related to the scalar part o
Bethe-Salpeter amplitude and characterizes the finite siz
the meson.FH is invariant under the translationFH(x
1a,x11a,x21a)5FH(x,x1 ,x2) which is necessary for the
Lorence invariance of the Lagrangian~2.1!. For instance, the
separable form

FH~x,x1 ,x2!5dS x2
x11x2

2 D f „~x12x2!2
… ~2.2!

has been used in@12# for pions with f (x2) being a Gaussian
The straightforward generalization of the vertex functi
~2.2! to the case of an arbitrary pair of quarks with differe
masses is given by

FH~x,x1 ,x2!5dS x2
m1x11m2x2

m11m2
D f „~x12x2!2

….

~2.3!

The authors of@21# used a dipole form for the Fourier tran
form of the functionf (x2). Here we follow the slightly dif-
ferent strategy as proposed in Refs.@16,17#. The choice of
the vertex function in the hadronic matrix elements is spe
fied after transition to momentum space. We employ the
pulse approximation in calculating the one-loop transit
amplitudes. In the impulse approximation one assumes
the vertex functions depend only on the loop moment
flowing through the vertex. The impulse approximation h
been used widely in phenomenological DSE studies~see,
e.g., Ref.@16#!. The final results of calculating a quark loo
diagram depend on the choice of loop momentum flow.
the heavy quark transitions discussed in this paper the
momentum flow is, however, fixed if one wants to reprodu
the heavy quark symmetry results.

To demonstrate our assumption, we consider the me
mass function defined by the diagram in Fig. 1. We have

FIG. 1. One-loop self-energy type diagram needed for the ev
ation of the compositeness condition.
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PH~x2y!5E dx1E dx2FH~x,x1 ,x2!

3E dy1E dy2FH~y,y1 ,y2!

3tr$S~y12x1!GHS~x22y2!GH%. ~2.4!

Then we calculate the Fourier transform of the meson m
function ~2.4!:

P̃H~p!5E e2 ipxPH~x!

5E dq

~2p!4E dk1

~2p!4E dk2

~2p!4
F̃H

3~2p,k1 ,2k2!F̃H~q,2k1 ,k2!

3tr$S~k” 1!GHS~k” 2!GH%. ~2.5!

The Fourier transform of the functionF(x1 , . . . ,xn) which
is invariant under the translationxi→xi1a can be written as

F̃~q1 , . . . ,qn!5E dx1•••E dxn

3expS i(
i 51

n

xiqi DF~x1 , . . . ,xn!

3~2p!4dS (
i 51

n

qi D n4E dx1•••E dxn

3dS (
i 51

n

xi D expS i(
i 51

n

xiqi DF~x1 , . . . ,xn!

[~2p!4dS (
i 51

n

qi Df~q1 , . . . ,qn21!.

~2.6!

Using this property one finds

P̃H~p!5E dk

~2p!4
fH

2 ~k,p!tr$S~k”1p” !GHS~k” !GH%.

~2.7!

Here, we assume that the vertex functionfH depends only
on the loop momentumk. Besides, we assume thatfH is
analytical function which decreases sufficiently fast in t
Euclidean momentum space to render all loop diagrams
finite.

The coupling constantsgH are determined by the so
called compositeness conditionproposed in@13# and exten-
sively used in@14#. The compositeness condition means th
the renormalization constant of the meson field is equa
zero,

ZH512
3gH

2

4p2
P̃H8 ~mH

2 !50, ~2.8!

u-
0-3
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whereP̃H8 is the derivative of the meson mass function d
fined by the diagram in Fig. 1:

PP~p2!5E d4k

4p2i
fP

2 ~2k2!tr@g5S3~k” !g5S1~k”1p” !#,

~2.9!

PV~p2!5
1

3 Fgmn2
pmpn

p2 G E d4k

4p2i
fV

2~2k2!

3tr@gmS3~k” !gnS1~k”1p” !#. ~2.10!

For simplicity, we extract the factor 1/4p2 from the defini-
tion of the meson mass operator. We use the local qu
propagators

Si~k” !5
1

mi2k”
, ~2.11!

wheremi is the constituent quark mass. As discussed in@12#,
we assume thatmH,mq1

1mq2
in order to avoid the appear

ance of imaginary parts in the physical amplitudes. This
reliable approximation for the heavy pseudoscalar mes
The above condition is not always met for heavy vector m
sons. As discussed in Sec. VI we shall therefore emp
equal masses for the heavy pseudoscalar and vector me
in our matrix element calculations but use physical mas
for the phase space.

III. METHOD FOR THE EVALUATION OF ONE-LOOP
DIAGRAMS WITH ARBITRARY VERTEX

FUNCTIONS

For the present purposes one has to evaluate one-
integrals of two- and three-point functions involving tens
integrands and product of vertex functions. In this section
describe a general method to efficiently enact these calc
tions for the general case ofn-point one-loop functions. We
note two simplifying features of our integration techniqu
The arising tensor integrals are reduced to simple invar
integrations. The sequence of integrations is arranged s
that the product of vertex functions is kept to the very e
and allowing for a full flexibility in the choice of vertex
functions.

We consider a ranks tensor integral in the Minkowsk
space as it appears in a general one fermion-loop calcula
of an n-point function~see the diagram in Fig. 2!. One has

I [n,s]
m1 , . . . ,ms5E d4k

ip2
F~2k2!

km1
•••kms

)
i 51

n

@mi
22~k1 l i !

2#

. ~3.1!

The outer momentapj ( j 51, . . . ,n) are all taken to be in-
coming. The momenta of the inner lines are given byk1 l i

with l i5( j 51
i pj such thatl n50. The maximum degree o
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the momentum tensor in the numerator arising from then
fermion propagators issmax5n. We employ the impulse ap
proximation dropping the dependence on the external m
menta inside the vertex functions and denote the produc
all vertex functions byF(2k2).

Using thea parametrization of Feynman one finds

I [n,s]
m1 , . . . ,ms5G~n!E dnadS 12(

i 51

n

a i D
3E d4k

ip2
F~2k2!

km1
•••kms

@Dn~a!2~k1P!2#n
,

~3.2!

where P5( i 51
n a i l i , and Dn(a)5( i , ja ia jdi j with di , j

5(1/2) @mi
21mj

22( l i2 l j )
2#.

Next we use the Cauchy integral representation for
function F(2k2) leading to

I [n,s]
m1 , . . . ,ms5G~n!E dnadS 12(

i 51

n

a i D
3E d4k

ip2 R dzF~2z!

2p i

3
km1

•••kms

@z2k2#@Dn~a!2~k1P!2#n
.

The new denominator factor is then included again via Fe
man parametrization, giving

FIG. 2. One-loop diagram withn legs and arbitrary vertex func
tions.
0-4
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I [n,s]
m1 , . . . ,ms5G~n11!E

0

1

dbbn21E dnadS 12(
i 51

n

a i D E d4k

ip2 R dzF~2z!

2p i

3
km1

•••kms

@~12b!z2~k1bP!21b Dn~a!2b~12b!P2#n11
.

e
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One then factors out the (12b) in the denominator and
shifts the integration variablek to k85(k1bP)/A12b to
obtain

I [n,s]
m1 , . . . ,ms5G~n11!E

0

1

dbS b

12b D n21E dna

3dS 12(
i 51

n

a i D E d4k

ip2 R dzF~2z!

2p i

3
~A12b k2b P!m1

•••~A12b k2b P!ms

@z2k21z#n11
.

The contour integral can be done again by Cauchy’s th
rem. On substitution ofb5t/(11t) one then has

I [n,s]
m1 , . . . ,ms5~2 !nE

0

`

dt
tn21

~11t !2E dna

3dS 12(
i 51

n

a i D E d4k

ip2
F ~n!~2k2

1z!Km1
•••Kms,

whereF (n) denotes thenth derivative of the functionF and
where

Km5
1

A11t
km2

t

11t
Pm, z5t Dn~a!2

t

11t
P2.

The momentum integration of the tensor integral can be tr
ally done by invariant integration. Finally we go to the E
clidean space by rotatingk0→ ik4 which gives k2→2kE

2

[u; then one encounters the scalar integrals

I [n,m]5~2 !nE
0

`

dt
tn21

~11t !21mE dna

3dS 12(
i 51

n

a i D E
0

`

duum11F (n)~u1z!. ~3.3!

Theu integration can be performed by partial integration a
one finally obtains

I [n,m]5~2 !n1mG~m12!E
0

`

dt
tn21

~11t !21mE dna

3dS 12(
i 51

n

a i DF (n2m22)~z!. ~3.4!
07401
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Sincemmax5@n/2#, Eq.~3.4! holds true for alln andm except
for the casen52 andm51. In this case we have

I [2,1]52E
0

`

dt
t

~11t !3E d2adS 12(
i 51

2

a i D E
z

`

duF~u!

5E
0

`

dtS t

11t D
2E d2adS 12(

i 51

2

a i D zt8F~z!,

~3.5!

wherezt85dz(t)/dt.
One has to remark that the integration over thea param-

eters in Eq.~3.4! can be done analytically up to a remainin
one-fold integral. However, the ease with which the nume
cal a integrations can be done does not warrant the effor
further analytical integrations. Using the integration tec
niques described in this section all necessary numerical i
grations encountered in this investigation can be perform
within minutes using a fast modern PC.

IV. HADRONIC MATRIX ELEMENTS

A. Quark-meson coupling constants

As already discussed in Sec. II, the quark-meson coup
constants are determined by the compositeness condi
Eq. ~2.8!. The derivatives of the meson-mass functions c
be written as

d

dp2
PP~p2!5

1

2p2
pa

d

dpaE d4k

4p2i
fP

2 ~2k2!

3tr@g5S3~k” !g5S1~k”1p” !#

5
1

2p2E d4k

4p2i
fP

2 ~2k2!

3tr@g5S3~k” !g5S1~k”1p” !p” S1~k”1p” !#,

~4.1!

d

dp2
PV~p2!5

1

3

1

2p2
pa

d

dpa Fgmn2
pmpn

p2 G
3E d4k

4p2i
fV

2~2k2!

3tr@gmS3~k” !gnS1~k”1p” !#
0-5
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5
1

3 Fgmn2
pmpn

p2 G 1

2p2E d4k

4p2i
fV

2~2k2!

3tr@gmS3~k” !gnS1~k”1p” !p” S1~k”1p” !#.

~4.2!

The evaluation of the integrals is done by using t
method outlined in Sec. III. The compositeness condit
reads

3gH
2

4p2
NH51, where NH5

d

dp2
PH~p2!U

p25m
H
2

~4.3!

NH5
1

2E0

`

dtS t

11t D
2E

0

1

da a$•••%H

$•••%P5FP~z!
1

11t F423
at

11t G2F P8 ~z!

3H 2m1m31
at

11t
@m1

222m1m31p2#

2p2S at

11t D
2S 22

at

11t D J ,

$•••%V5FV~z!
1

11t F22
at

11t G2F V8 ~z!

3H 2m1m31
at

11t
@m1

222m1m31p2#

2p2S at

11t D
2S 22

at

11t D J .

Here,m1 stands for the heavy quark (b or c) andm2 for the
light quarks (u, d, s) in the case of heavy-light systems, an
for c in the case of double-heavy systems. The funct
FH(z) is the product of two vertex functionsFH(z)
5fH

2 (z) with

z5t@am1
21~12a!m3

22a~12a!p2#2
a2t

11t
p2.

B. Leptonic and radiative decays

The matrix elements of the leptonic and radiative dec
are defined by the diagrams in Figs. 3–6 and given by

iM P
m~p!5

3gP

4p2E d4k

4p2i
fP~2k2!

3tr@g5S3~k” !OmS1~k”1p” !#

5 f Ppm, ~4.4!
07401
n

n

s

MV
m~p!52CV•

3gV

4p2E d4k

4p2i
fV~2k2!

3tr@e”* Sq~k” !gmSq~k”1p” !#

52mVCVf Ve* m, ~4.5!

iM Pgg~q1 ,q2!5CPgg

3gP

4p2E d4k

4p2i
fP~2k2!

3tr@g5Sq~k”2q” 2!e” 2* Sq~k” !e” 1* Sq~k”1q” 1!#,

5 igPgg«mnabe1*
me2*

nq1
aq2

b , ~4.6!

iM VPg~p,p8!5CVPg

3gVgP

4p2 E d4k

4p2i
FPV~2k2!

3tr@g5Sq~k”1p” !e”* Sq~k” !e” g* Sq~k”1q” !#

5 igVPg«mnabeg*
me* npaqb. ~4.7!

For ease of presentation, the expression for theV→Pg de-
cay is given for neutral-flavored mesons. Using the integ
tion techniques described in Sec. III one then arrives at
following analytical representation of the various one-lo
matrix elements:

f P5
3gP

4p2E0

`

dt
t

~11t !2E0

1

dafP~zP!

3Fm31~m12m3!
at

11t G ,

FIG. 4. Quark model diagram for vector meson radiative deca

FIG. 3. Quark model diagram for leptonic meson decays.
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zP5t@am1
21~12a!m3

22a~12a!p2#

2
ta2

11t
p2, ~4.8!

f V5
1

mV

3gV

4p2E0

`

dt
t

~11t !2E0

1

dafV~zV!

3Fmq
21

1

2
tzt81

at

11t S 12
at

11t D p2G ,
zV5t@mq

22a~12a!p2#2
ta2

11t
p2,

G~V→e1e2!5
4p

3

a2

mV
f V

2CV
2 , CV5eq

2~V5f,J/c,Y!,

~4.9!

gPgg5CPggmq

3gP

4p2E0

`

dtS t

11t D
2

3E d3adS 12(
i 51

3

a i D @2fP8 ~z0!#,

z05t~mq
22a1a2p2!2

t

11t
a1a2p2,

G~P→gg!5
p

4
a2mP

3gPgg
2 , Chcgg52ec

2 ,

~4.10!

FIG. 5. Quark model diagram for the decays of a neutral mes

FIG. 6. Quark model diagram for the radiative decay of a vec
meson into a pseudoscalar one.
07401
gVPg5CVPgmq

3gVgP

4p2 E
0

`

dtS t

11t D
2

3E d3adS 12(
i 51

3

a i D @2FVP8 ~zVP!#,

zVP5t~mq
22a1a3mV

22a1a2mP
2 !

2
t

11t
@a1~a11a2!mV

22a1a2mP
2 #,

G~V→Pg!5
a

24
mV

3S 12
mP

2

mV
2 D 3

gVPg
2 CJ/chcg52ec .

~4.11!

The electric quark chargeseq are given in units ofe.

C. Semileptonic form factors

The semileptonic decays of theBc meson can be induce
by either a beauty quark or a charm quark transition. In
relativistic quark model, the hadronic matrix element cor
sponding tob decay is defined by the diagram in Fig. 7 an
is given by

Mb
m
„P~p!→H~p8!…

5
3gPgH

4p2 E d4k

4p2i
FPH~2k2!

3tr@g5S3~k” !GHS2~k”1p” 8!OmS1~k”1p” !#,

~4.12!

whereFPH5fP•fH , GP5g5, andGV52 i e”* with e* •p8
50. For theb-decay case one has the Cabibbo-Kobayas
Maskawa-~CKM!-enhanced decays

b→c: Bc
1→~hc ,J/c!l 1n, m15mb , m25m35mc ,

and the CKM-suppressed decays

b→u: Bc
1→~D0,D* 0!l 1n, m15mb ,

m25mu , m35mc .

n.

r

FIG. 7. Quark model diagram for the semileptonicBc decays
involving b→c,u transitions. The lower leg in the loop is thec
quark.
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Thec-decay option of theBc meson is represented by th
Feynman diagram in Fig. 8 which gives

Mc
m
„P~p!→H~p8!…

5
3gPgH

4p2 E d4k

4p2i
FPH~2k2!

3tr@g5S3~k” !OmS2~k”1q” !GHS1~k”1p” !#.
~4.13!

Again one has the CKM-enhanced decays

c→s: Bc
1→~B̄s

0 ,B̄s*
0!l 1n, m15mb ,

m25ms , m35mc ,

and the CKM-suppressed decays

c→d: Bc
1→~B̄0,B̄* 0!l 1n, m15mb ,

m25md , m35mc .

FIG. 8. Quark model diagram for the semileptonicBc decays
involving c→s,d transitions. The upper leg in the loop is theb
quark.
07401
It is convenient to present the results of the matrix elem
evaluations in terms of invariant form factors. A standa
decomposition of the transition matrix elements into inva
ant form factors is given by

Mm
„P~p!→P8~p8!…5 f 1~q2! ~p1p8!m

1 f 2~q2! ~p2p8!m ~4.14!

and

iM m
„P~p!→V~p8!…

52gmne* n~mP1mV!A1~q2!1~p1p8!mp•e*

3
A2~q2!

mP1mV
1~p2p8!mp•e*

3
A3~q2!

mP1mV
2 i«mnabe* npap8b

2 V~q2!

mP1mV
.

~4.15!

The various invariant form factors can be extracted fro
the one-loop expressions~4.12! and~4.13! by using the tech-
niques described in Sec. III. One finds that the form fac
integrands factorize into a common piece times a piece s
cific to the different form factors. One can thus write

F~q2!5
3

4p2
gPgH

1

2E0

`

dtS t

11t D
2E d3a dS 12(

i 51

3

a i D
3$•••%F ~4.16!

whereF5 f 6 ,Ai ,V. For the 02→02 b→c,u form factors
f 1 one has
$•••% f 1

b 5FPP~zb!
1

11t F423~a11a2!
t

11t G2FPP8 ~zb!H ~m11m2!m3

1
t

11t
@2~a11a2!~m1m31m2m32m1m2!1a1p21a2p82#

2S t

11t D
2S 22~a11a2!

t

11t D @~a11a2!~a1p21a2p82!2a1a2q2#J ,

zb5tS (
i 51

3

a imi
22a1a3p22a2a3p822a1a2q2D 2

t

11t
Pb

2 , Pb5a1p1a2p8.

For the correspondingc→s,d form factor one has

$•••% f 1

c 52FPP~zc!
1

11t F113a1

t

11t G1FPP8 ~zc!H m2m3

1
t

11t
@a1~m1m21m1m32m2m3!1a2q2#1S t

11t D
2

@a1
2p22a2

2q2!]

2S t

11t D
3

a1@a1~a11a2!p22a1a2p821a2~a11a2!q2#J ,
0-8
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zc5tS (
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a imi
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2 , Pc5a1p1a2q.
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Expressions for the remaining 02→02 and 02→12 form
factorsf 2 , Ai andV are given in the Appendix. The mass
mi ( i 51,2,3) appearing in the form factor expressions
constituent quark masses with a labeling according to E
~4.12! and~4.13!. The values of the constituent quark mass
as well as the vertex functions entering the form factor
pressions will be specified in Sec. VI.

For the calculation of physical quantities it is more co
venient to use helicity amplitudes. They are linearly rela
to the invariant form factors@22#. For the 02→02 transi-
tions one has

H0~q2!5
2mPP

Aq2
f 1~q2!, ~4.17!

Ht~q2!5
1

Aq2
$~mP

2 2mP8
2

! f 1~q2!1q2f 2~q2!%.

~4.18!

For the 02→12 transitions one has

H6~q2!52~mP1mV!A1~q2!7
2mPP

~mP1mV!
V~q2!,

~4.19!

H0~q2!5
1

2mVAq2 H 2~mP
2 2mV

22q2!~mP1mV!

3A1~q2!1
4mP

2 P2

mP1mV
A2~q2!J , ~4.20!

Ht~q2!5
mPP

mVAq2 H 2~mP1mV!A1~q2!1~mP2mV!

3A2~q2!1
q2

mP1mV
A3~q2!J , ~4.21!

where

P5
Al~mP

2 ,mH
2 ,q2!

2mP
5

@~q1
2 2q2!~q2

2 2q2!#1/2

2mP

with q6
2 5(mP6mH)2.

Then the partial helicity rates are defined as

dG i

dq2
5

GF
2

~2p!3
uVf f 8u

2
~q22ml

2!2P

12mP
2q2

uHi~q2!u2, i 56,0,t,

~4.22!

whereVf f 8 is the relevant element of the CKM matrix, an
ml is the mass of charged lepton.
07401
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Finally, the total partial rates including lepton mass e
fects can be written as@22#

dGPP8

dq2
5S 11

ml
2

2q2D dG0
PP8

dq2
13

ml
2

2q2

dG t
PP8

dq2
, ~4.23!

dGPV

dq2
5S 11

ml
2

2q2D FdG1
PV

dq2
1

dG2
PV

dq2
1

dG0
PV

dq2 G
13

ml
2

2q2

dG t
PV

dq2
. ~4.24!

In the following we shall present numerical results of t
total decay widths, polarization ratio and forward-backwa
asymmetry. The relevant expressions are given by

G5E
ml

2

(mP2mH)2

dq2
dG

dq2
, a52

G0

G11G2
21,

AFB5
3

4

G22G1

G
. ~4.25!

V. HEAVY QUARK SPIN SYMMETRY

Our model allows us to evaluate form factors direc
from Eq. ~4.16! without any approximation. However, i
would be interesting to explore whether the heavy quark s
symmetry relations derived in Ref.@4# can be reproduced in
our approach. As was shown~see, for instance,@17#! our
model exhibits all consequences of the spin-flavor symme
for the heavy-light systems in the heavy quark limit. F
example, the quark-meson coupling and leptonic decay c
stants behave as

gH→A2m1

2p

A3ÑH

,

ÑH5E
0

`

dufH
2 ~u22EAu!

m31Au

m3
21u22EAu

, ~5.1!

f H→ 1

Am1

A 3

2p2ÑH
E

0

`

du@Au2E#fH~u22EAu!

3
m31Au/2

m3
21u22EAu

, ~5.2!

in the heavy quark limit:p25mH
2 5(m11E)2 when m1

→`. Equations~5.1! and ~5.2! make the heavy quark mas
dependence of the coupling factorsgH and f H explicit since
0-9
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we have factorized the coupling factor contributions into
heavy mass dependent piece and a remaining heavy
independent piece. Moreover, Eqs.~5.1! and ~5.2! showgH

and f H scale asm1
1/2 andm1

21/2, respectively.
As is well known~see Ref.@4#!, heavy flavor symmetry

cannot be used for hadrons containing two heavy quarks.
one can still derive relations near zero recoil by using he
quark spin symmetry.

First, we consider the semileptonic decaysBc

→B̄s(B̄
0)e1n andBc→B̄s* (B̄* 0)e1n which correspond toc

decay into lights and d quarks, respectively. Since the e
ergy released in such decays is much less than the ma
the b quark, the four-velocity of theBc meson is almost
unaffected. Then the initial and final meson momenta can
written as

p5mBc
v, p85mBv1r ,

wherer is a small residual momentum@v•r 52r 2/(2mB)#.
The heavy quark spin symmetry can be realized in the
lowing way. We split theB-meson masses into the sum
b-quark mass and binding energy:

mBc
[mP5m11E1 , mB[mH5m11E2 .

Then we go to the heavy quark mass limitmb[m1→` in
which theb-quark propagator acquires the form

1

m12p”2k”
⇒ 11v”

22~kv1E1!
. ~5.3!

The decoupling of thec-quark spin allows us to reliably
neglect thek integration becausek is small compare to the
heavyc-quark mass. One has

1

m32k”
⇒ 1

m3
. ~5.4!

As a consequence, the hadronic matrix element descri
the weakc-quark decay simplifies:

Mc
m5

A2mP•2mH

AÑP•ÑH

1

m3
E d4k

4p2i
FPH~2k2!

3
tr@Om~m21k”1q” !GH~11v” !g5#

@22kv22E1#@m2
22~k1q!2#

, ~5.5!

where q5p2p85(mP2mH)v2r 5(E12E2)v2r[DEv
2r andm2 stands for the light quark mass (m25ms or md).
One has to emphasize that all above approximations are v
only close to the zero-recoil pointqmax

2 5DE2. Recalling the
transversality of the final vector meson fieldp8•e* 5mBv
1r •e* 50 and applying the integrations as described in S
III, one finds
07401
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Mc
m5

A2mP•2mH

AÑP•ÑH

1

m3
E

0

` dt t

~11t !2
E

0

`

daFPH~zc!

3$•••%PH ,

$•••%PP52S m21
at2DE

11t D vm2
1

11t
r m,

i $•••%PV52 i«mnabe*
n
var b

3
1

11t
1S m21

at2DE

11t D e* m

2
1

11t
vme* •r . ~5.6!

Here, zc5@at2/(11t)#(a12DE)1t(m2
222aE1)2@ t/(1

1t)#DE2. It is readily seen that the amplitudes ofc decay in
the heavy quark limit are expressed through two independ
functions

$•••%15S m21
at2DE

11t D , $•••%25
1

11t
.

To complete the description of the heavy quark limit
the c-decay modes, we give the expressions for the fo
factors in this limit. One has

F~qmax
2 !→

A2mP2mH

AÑPÑH

E
0

` dt t

~11t !2
E

0

`

daFPH~zc!$•••%F

~5.7!

where F5 f 6 ,Ai ,V. The form factor specific pieces ar
given by

$•••% f 1
52

1

2m1m3
S m21

at

11t D , $•••% f 2
5

1

m3

1

11t
,

$•••%A1
52

1

mP1mV

1

m3
S m21

at2DE

11t D ,

$•••%A2
5$•••%V5

mP1mV

2

1

m1m3

1

11t
,

$•••%A3
5

mP1mV

2

1

m1m3
F2

3

11t
14S m1

m3
21D t

11t G .
Superficially it appears that the form factorsf 1 andA1 are
suppressed by a factor of 1/m1. However, they must be kep
in the full amplitude to obtain the correct result in Eq.~5.6!;
for instance, one has

f 1~p1p8!m1 f 2~p2p8!m

5~2m1f 11DE f2!vm1~ f 12 f 2!r m.

A similar analysis applies to theb→u decays Bc
→(D0,D* 0)e1n. Again the heavy quark symmetry analys
0-10
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is only reliable close to zero recoil where theu quark from
the b→u decay has small momentum. One has

Mb
m5

A2mP•2mH

AÑP•ÑH

1

m3
E d4k

4p2i
FPH~2k2!

3
tr@g5GH~m21k”1p” 8!Om~11v” !#

@22kv22E1#@m2
22~k1p8!2#

, ~5.8!

where q5p2p85(m11E12mH)v2r . The light quark
massm2 in Eq. ~5.8! is theu-quark mass. One finds

Mb
m5

A2mP2mH

AÑPÑH

1

m3
E

0

` dt t

~11t !2
E

0

`

daFPH~zb!$•••%PH

~5.9!

with

$•••%PP5S m21
mH2at

11t D vm1
1

11t
r m,
07401
i $•••%PV52 i«mnabe* nvar bS m21
mH2at

11t D
2

1

11t
vme* •r .

Here, zb5@at2/(11t)# (a12mH)1t (m2
222aE1)2@ t/(1

1t)#mH
2 . Again, the amplitudes for theb→u decays are

expressed through two independent functions. The exp
sions for the form factors in the heavy quark limit close
zero recoil read

F~qmax
2 !→

A2mP2mH

AÑPÑH

E
0

` dt t

~11t !2
E

0

`

daFPH~zc!$•••%F ,

~5.10!

whereF5 f 6 ,Ai ,V and where

$•••% f 1
52$•••% f 2

5
1

2m3

1

11t
,

TABLE I. Leptonic decay constantsf H ~MeV! used in the least-squares fit.

Meson This model Other Ref.

p1 131 130.760.160.36 Expt.@35#

K1 160 159.861.460.44 Expt.@35#

D1 191 191228
119 Lattice @23,24#

1926112820
116115 Lattice @25#

194210
114610 Lattice @26#

Ds
1 206 206228

118 Lattice @23,24#
210692921

125117 Lattice @25#

213211
114611 Lattice @26#

B1 172 172231
127 Lattice @23,24#

1576112920
125123 Lattice @25#

164211
11468 Lattice @26#

Bs
1 196 1716102922

134127 Lattice @25#

18528
11369 Lattice @26#

Bc 479 Logarithmic potential@27#

500 Buchmu¨ller-Tye potential@27#

512 Power-law potential@27#

687 Cornell potential@27#

480 Potential model@6#

432 QCD-inspired QM@28#

400620 QCD spectral SR@29#

300 QCD SR@30#

360660 QCD SR@31#

300665 QCD SR@32#

385625 QCD SR@33#

420~13! Lattice NRQCD@34#

Bc 360 360 Our average of QCD SR

J/c 404 405617 Expt.@35#

Y 711 710637 Expt.@35#
0-11
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$•••%A1
5

1

mP1mV

1

m3
S m21

mH2at

11t D ,

FIG. 9. q2 dependence of theBc→hc form factors. Note that we
plot the negative of thef 2(q2) form factor.

FIG. 10. q2 dependence of theBc→J/c form factors. Note that
we plot the negative of theA3(q2) form factor.
07401
$•••%A2
52$•••%A3

5$•••%V5
mP1mV

2

1

m1m3

1

11t
.

Note that one needs to keep the next-to-leading term in
sum (f 11 f 2) to obtain the above amplitudes.

FIG. 11. q2 dependence of theBc→Bs form factors. Note that
we plot the negative of thef 1(q2) form factor.

FIG. 12. q2 dependence of theBc→Bs* form factors.
0-12
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The hadronic matrix elements of theb→c decaysBc
→(hc ,J/c)e1n simplify significantly in the heavy quark
limit. In this case bothb andc propagators may be replace
by their heavy quark limit forms in Eq.~5.3! with the same
velocity v. Again, the results will be valid only near zer
recoil. One has

Mcc
m 5

A2mP2mH

AÑPÑH

1

m3
E d4k

4p2i
FPH~2k2!

3
tr@g5GH~11v” !Om~11v” !#

@22kv22E1#@22kv22E2#
~5.11!

wherep5(m11E1)v, p85(m31E2)v1r . One finds

Mcc
m 5

A2mP2mH

AÑPÑH

1

2m3
E

0

`

duE
0

1

da

3FPH~u22Au„aE11~12a!E2…!%$•••%PH ,

~5.12!

$•••%PP512vm, i $•••%PV522e* m.

The form factors are written down

F~qmax
2 !→

A2mP2mH

AÑPÑH

E
0

`

duE
0

1

da

3FPH~u22Au„aE11~12a!E2!…$•••%F

~5.13!

whereF5 f 6 ,Ai ,V. We have

TABLE II. Predictions for the form factors atq250 and q2

5qmax
2 for Bc→P decays.

P f1(0) f 1(qmax
2 ) f 2(0) f 2(qmax

2 )

hc 0.76 1.07 20.38 20.55
D 0.69 2.20 20.64 22.14

B 20.58 20.96 2.14 2.98
Bs 20.61 20.92 1.83 2.35

TABLE III. Predictions for the form factors atq250 for Bc

→V decays.

V A1(0) A2(0) A3(0) V(0)

J/c 0.68 0.66 21.13 0.96
D* 0.56 0.64 21.17 0.98

B* 20.27 0.60 10.8 3.27
Bs* 20.33 0.40 10.4 3.25
07401
$•••% f 1
5

m11m3

4m1m3
2

, $•••% f 2
52

m12m3

4m1m3
2

,

$•••%A1
5

1

mP1mV

1

m3
,

$•••%A2
52$•••%A3

5$•••%V5
mP1mV

4m1m3
2

.

Thus, our quark loop calculations reproduce the heavy qu
limit relations between form factors obtained in@4# near zero
recoil. Moreover, we give explicit expressions for the r
duced set of form factors in this limit.

VI. RESULTS AND DISCUSSION

Before presenting our numerical results we need
specify our values for the constituent quark masses
shapes of the vertex functions. As concerns the vertex fu
tions, we found a good description of various physical qu
tities @17# adopting a Gaussian form for them. Here we app
the same procedure usingfH(k2)5exp$2k2/LH

2 % in the Eu-
clidean region. The magnitude ofLH characterizes the siz
of the vertex function and is an adjustable parameter in
model. We reiterate that all the analytical results presente
Sec. V are valid for any choice of form factorfH(k2). For
example, we have reproduced the results of@21# where di-
pole form factor was adopted by using our general formu

In @17# we have studied various decay modes of thep, K,
D, Ds , B and Bs mesons. TheL parameters and the con
stituent quark masses were determined by a least-squar

TABLE IV. Predictions for the form factors atq25qmax
2 for

Bc→V decays.

V A1(qmax
2 ) A2(qmax

2 ) A3(qmax
2 ) V(qmax

2 )

J/c 0.86 0.97 21.71 1.45
D* 0.85 1.76 23.69 3.26

B* 20.42 0.49 18.0 5.32
Bs* 20.49 0.21 15.9 4.91

TABLE V. Comparison of the form factors at the zero reco
point q25qmax

2 calculated in the heavy quark limit with exact re
sults.

H f 1 f 2 A1 A2 A3 V

hc ,J/c 1.07 20.55 0.86 0.97 21.71 1.45
hc ,J/c ~HQL! 0.70 20.35 0.37 0.69 20.69 0.69
D, D* 2.20 22.14 0.85 1.76 23.69 3.26
D, D* ~HQL! 0.59 20.59 0.18 1.50 21.50 1.50
B, B* 20.96 2.98 20.42 0.49 18.0 5.32
B, B* ~HQL! 20.47 1.67 20.25 1.91 21.47 1.91
0-13
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TABLE VI. The numerical values ofmfit
2 (GeV2) andd in the form factor parametrization, Eq.~6.3!.

f 1 f 2 A1 A2 A3 V

Bc→hc ,J/c mfit
2 (6.37)2 (6.22)2 (8.20)2 (5.91)2 (5.67)2 (5.65)2

d 0.087 0.060 1.40 0.052 20.004 0.0013
Bc→Bs ,Bs* mfit

2 (1.73)2 (2.21)2 (1.86)2 (3.44)2 (1.73)2 (1.76)2

d 20.09 0.07 0.13 2107 20.09 20.052
in tal
e

r
e

m

f

to experimental data and lattice determinations. The obta
values for the charm and bottom quarks@see Eq.~6.1!# allow
us to consider the low-lying charmonium (hc andJ/c) and
bottonium (Y) states, and also the newly observedBc
meson:

mu

0.235

ms

0.333

mc

1.67

mb

5.06
. ~6.1!
n

s

ve
or
-

07401
ed Basically we use either the available experimen
values or the values of lattice simulations for th
leptonic decay constants to adjust the size parametersLH .
The value off Bc

is unknown and theoretical predictions fo
it lie within the 300–600 MeV range. We choose th
value of f Bc

5360 MeV, being the average QCD su

rule predictions, for fittingLBc
. The obtained values o

LH are listed in Eq.~6.2! as well as the values off H in
Table I:
Lp

1.16

LK

1.82

LD

1.87

LDs

1.95

LJ/c

2.12

LB

2.16

LBs

2.27

LBc

2.43

LY

4.425
. ~6.2!
qual

of
ider
The values ofLH are such thatLmi
,Lmj

if mi,mj .

This corresponds to the ordering law for sizes of bou
heavy-light states.

The situation with the determination ofLhc
is quite un-

usual. Naively one expects thatLhc
should be the same a

LJ/c . However, in this case the value of thehc→gg decay
width comes out to be 2.5 less than the experimental a
age. The experimental average can be reached only f
relatively large value ofLhc

54.51 GeV. Note that the val

ues of the other observables (J/c→hcg andBc→hcln de-
cay rates! are not so sensitive to the choice ofLhc

:

d

r-
a

Br~hc→gg!50.031~0.012! %,

expt5~0.03160.012! %,

Br~J/c→hcg!50.90~1.00! %, expt5~1.360.4! %,

Br~Bc→hcln!50.98~1.02! %.

The values in parentheses correspond to the case of e
sizes for the charmonium states.

We concentrate our study on the semileptonic decays
the Bc meson. To extend the number of modes, we cons
TABLE VII. Branching ratios BR(%) for the semileptonic decaysBc
1→Hl 1n, calculated with the CDF

central valuet(Bc)50.46 ps@1#.

H This model @9,10# @7# @6# @11# @8# @21#

hce n 0.98 0.860.1 0.78 1.0 0.15~0.5! 0.6 0.52
hct n 0.27
J/c e n 2.30 2.160.4 2.11 2.4 1.5~3.3! 1.2 1.47
J/c t n 0.59
D0e n 0.018 0.003 0.006 0.0003~0.002!
D0t n 0.0094
D* 0e n 0.034 0.013 0.019 0.008~0.03!
D* 0t n 0.019
B0e n 0.15 0.08 0.16 0.06~0.07!
B* 0e n 0.16 0.25 0.23 0.19~0.22!
Bs

0e n 2.00 4.0 1.0 1.86 0.8~0.9! 1.0 0.94
Bs*

0e n 2.6 5.0 3.52 3.07 2.3~2.5! 1.44
0-14
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also the decays into the vector mesonsD* , B* andBs* . We
will use the masses and sizes of their pseudoscalar par
for the numerical evaluation of the form factors to avoid t
appearance of imaginary parts in the amplitudes. Such
assumption is justified by the small differences of th
physical masses.

In Figs. 9–12 we show the calculatedq2 dependence
in the full physical regions of the semileptonic for
factors of the CKM-enhanced transitionsBc→hc , Bc

→J/c and Bc→Bs , Bc→Bs* . The values of form factors
at maximum and zero recoil are listed in Tables II–I
The comparison of the exact values of form factors
zero recoil and those obtained in the heavy quark li
is given in Table V. Our results indicate that the correctio
to the heavy quark limit at the zero recoil pointq25qmax

2

can be as large as a factor 2 inb-c transitions and a facto
of almost 5 in b-u and c-d transitions. This is not so
surprising considering the semileptonic decays of theD
meson where similar corrections can amount to a facto
two @16#.

The form factors can beapproximatedby the form

f ~q2!5
f ~0!

12q2/mfit
2 2d~q2/mfit

2 !2
~6.3!

with the dimensionless values off (0) given in Tables II
and III. Note that the form factorf 1(q2) for the Bc
→hc transition rises withq2 as is appropriate in the
time-like region. When plotted againstv5p•p8/

TABLE VIII. The polarization ratioa and forward-backward
asymmetryAFB .

H a AFB

J/c 1.15 20.21
D* 0 0.10 20.46
B* 0 0.94 0.35
Bs*

0 1.09 0.29
07401
ers

an
r

t
it
s

f

(min•mout)5(min
2 1mout

2 2q2)/(2 min•mout), they would
fall with v as one is familiar with heavy quark effectiv
theory.

It is interesting that the obtained values ofmfit
2 for

the CKM-enhanced transitions~see Table VI! are very
close to the values of the appropriate lower-lying (q̄q8)
vector mesons (mB

c*
'mBc

56.4 GeV for b→c, mD
s*

52.11 GeV forc→s.!. The parameterd characterizes the
admixture of aq4 term in the denominator. Its magnitude
relatively small for all form factors of the CKM-enhance
transitions exceptA1 for the Bc→J/c transition andA2 for
Bc→Bs* which have a rather flat behavior. This means th
those form factors can be reliably approximated by a vec
dominance form. However, one cannot approximate the fo
factors for the CKM-suppressed transitions by a pole-l
function only.

We use the calculated form factors in Eq.~4.25! to
evaluate the branching ratios for various semileptonicBc
decay modes including theirt modes when they are
kinematically accessible. We report the calculated val
of a wide range of branching ratios in Table VII. Th
results of other approaches are also given for comparis
The values of branching ratios of the CKM-enhanc
modes with an electron in the final state are of ord
1 –2 %. The values of branching ratios of th
CKM-suppressed modes are considerably less.
modes with at lepton in the final state are suppress
due to the reduced phase space in these modes.
complete our predictions for the physical observab
we give in Table VIII the values of the polarization rat
and forward-backward asymmetry for the promine
decay modes.
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APPENDIX

In this appendix we list the remaining form factor expressions appearing in the curly brackets in Eq.~4.16! which have not
been listed in the main text.

b decay:

$•••% f 2

b 52FPP~zb!
1

11t F3~a12a2!
t

11t G1FPP8 ~zb!H ~m12m2!m31
t

11t
@~a12a2!~m1m31m2m32m1m2!

1a1p22a2p82#2~a12a2!@~a11a2!~a1p21a2p82!2a1a2q2#S t

11t D
3J ,
0-15
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$•••%A1

b 5
2

mP1mV
HFPV~zb!

1

11t
~m112m22m3!2FPV8 ~zb!Fm1m2m31

1

2
~p21p822q2!m3

1
1

2

t

11t
$@a1m11~2a11a2! m22~3a11a2!m3#p21@~a112a2!m11a2m22~a113a2!m3#p82

2@a1m11a2m22~a11a2!m3#q2%2~m11m22m3!@~a11a2!~a1p21a2p82!2a1a2q2#S t

11t D
2G J ,

$•••%A2

b 5~mP1mV!@FPV8 ~zb!#H 2m32
t

11t
@a1m11a2m22~3a11a2!m3#12~m12m3!a1~a11a2!S t

11t D
2J ,

$•••%A3

b 5~mP1mV!@FPV8 ~zb!#H m31
t

11t
@a1m11a2m21~a12a2!m3#12~m12m3!a1~a12a2!S t

11t D
2J ,

$•••%V
b5~mP1mV!@2FPV8 ~zb!#H m31

t

11t
@a1~m12m3!1a2~m22m3!#J .

We use the abbreviations

Pb5a1p1a2p8, zb5tS (
i 51

3

a imi
22a1a3p22a2a3p822a1a2q2D 2

t

11t
Pb

2 .

c decay:

$•••% f 2

c 53 FPP~zc!
1

11t F12~a112a2!
t

11t G1FPP8 ~zc!H 22m1m31m2m31
t

11t
@~a112a2!

3~m1m21m1m32m2m3!22~a11a2!p212a2p822a2q2#1S t

11t D
2

3@~3a1
216a1a212a2

2!p222a2~a11a2!p821a2~2a113a2!q2#

2S t

11t D
3

~a112a2!@a1~a11a2!p22a1a2p821a2~a11a2!q2#J ,

$•••%A1

c 5
2

mP1mV
HFPV~zc!

1

11t
~m122m22m3!2FPV8 ~zc!F2m1m2m31

1

2
~p21q22p82!m3G

1
1

2

t

11t
$@a1m12~2a11a2!m22~3a11a2!m3#p21@2a1m11a2m21~a11a2!m3#p82

1@~a112a2!m12a2m22~a113a2!m3#q2%2S t

11t D
2

~m12m22m3!@a1~a11a2!p2

1a2~a11a2!q22a1a2p82#J ,

$•••%A2

c 5~mP1mV!@2FPV8 ~zc!#H m31
t

11t
@a1m12a2m22~3a11a2!m3#

22~m12m3!a1~a11a2!S t

11t D
2J ,
074010-16
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$•••%A3

c 5~mP1mV!@FPV8 ~zc!#H 23m31
t

11t
@2~3a114a2!m12a2m21~5a117a2!m3#

12~m12m3!~a112a2!~a11a2!S t

11t D
2J ,

$•••%V
c 5~mP1mV!@2FPV8 ~zc!#H m31

t

11t
@a1~m12m3!1a2~m22m3!#J .

Here we have used the abbreviations

Pc5a1p1a2q, zc5tS (
i 51

3

a imi
22a1a3p22a2a3q22a1a2p82D 2

t

11t
Pc

2 .
cl

-

l.

.
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