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Abstract

We employ the relativistic constituent quark model to give a unified description of the leptonic and semileptonic decays
Ž .of pseudoscalar mesons p , K , D, D , B, B . The calculated leptonic decay constants and form factors are found to be ins s

good agreement with available experimental data and other approaches. We reproduce the results of spin-flavor symmetry in
the heavy quark limit. q 1999 Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

Semileptonic decays of pseudoscalar mesons al-
low to evaluate the elements of the Cabibbo–

Ž .Kobayashi–Maskawa CKM matrix, which are fun-
damental parameters of the Standard Model. The
decay K™p en provides the most accurate determi-
nation of V , the semileptonic decays of D and Bus

Ž ) . Ž ) .mesons, D™K K ln , B™D D ln and B™
Ž . < < < <p r ln , can be used to determine V , V andcs cb

< <V , respectively. The effects of strong interactionsub

in these processes can be expressed in terms of form
factors, which depend on q2, the squared momentum
transferred to the leptonic pair. Information on the
form factors are obtained by measuring the distribu-
tions of q2 and decay angles.

The decays of heavy D and B mesons are of
particular interest due to the spin-flavor symmetry

w xobserved for infinite quark masses 1 . This symme-
try allows to reduce the number of form factors and
express them in terms of the universal Isgur–Wise

w xfunction 2 . Also the scaling laws derived for some
physical observables can be, in principle, tested ex-
perimentally. Since the Isgur–Wise function cannot
be calculated from first principles, many models and
nonperturbative approaches, which exhibit the heavy
quark symmetry, have been employed to describe
relevant phenomena. However, it was found out, that
the finite mass corrections are very important, espe-
cially, in the charm sector. It appears that in some
sense a step back should be done from using the
heavy quark symmetry as a guide under model build-
ing to the straightforward calculations with full quark
propagators. Then one has to check the consistency
of the results with the spin-flavor symmetry in the
heavy quark limit.
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In this paper we employ the relativistic con-
Ž . w xstituent quark model RCQM 3 for the simultane-

ous description of both light and heavy flavored
meson leptonic and semileptonic decays. This model
is based on the effective Lagrangian describing the
coupling of mesons with their quark constituents,
and the compositeness condition. The physical pro-
cesses are described by the one-loop quark diagrams
with free constituent propagators and meson-quark
vertices related to the Bethe–Salpeter amplitudes.

Ž .The masses of lower-lying pseudoscalar PS mesons
should be less than the sum of quark constituent
masses to provide the absence of imaginary parts
corresponding to quark production. The adjustable
parameters, the widths of Bethe–Salpeter amplitudes
in momentum space and constituent quark masses,
are determined from the best fit of available experi-
mental data and some lattice determinations. We
found that our results are in good agreement with
experimental data and other approaches. Also we
reproduce the results of spin-flavor symmetry for
leptonic decay constants and semileptonic form fac-
tors in the heavy quark limit.

The shapes of vertex functions and quark propa-
gators should be found from the Bethe–Salpeter and
Dyson–Schwinger equations, respectively. This is

Ž .provided by the Dyson–Schwinger Equation DSE
w x4 studies. A DSE-approach has been employed to
provide a unified and uniformly accurate description

w xof light- and heavy-meson observables 5,6 .
A similar approach, based on the effective heavy

w xmeson Lagrangian, has been described in Ref. 7 in
terms of a model based on meson-quark interactions,
where mesonic transition amplitudes are represented
by diagrams with heavy mesons attached to quark
loops. The free propagator has been used for light
quarks. However, the quark propagator obtained in
the heavy quark limit has been employed for heavy
quarks.

2. The model

w xWe employ an approach 3 based on the effective
interaction Lagrangian which describes the transition
of hadron into quarks. For example, the transition of

the meson H into its constituents q and q is given1 2

by the Lagrangian

LL x sg H x dx dx F x ; x , x q xŽ . Ž . Ž . Ž .H Hint H 1 2 H 1 2 1

=G l q x . 1Ž . Ž .H H 2

Here, l and G are the Gell–Mann and DiracH H

matrices, respectively, which provide the flavor and
spin numbers of the meson H. The function F isH

related to the scalar part of Bethe–Salpeter ampli-
Ž .tude. For instance, the separable form F x; x , xH 1 2

Ž Ž . . ŽŽ .2 .sd xy x qx r2 f x yx has been used1 2 1 2
w xin Ref. 3 for pions.

The coupling constants g is given by the soH
w xcalled compositeness condition proposed in Ref. 8

w xand extensively used in Ref. 9 . That condition
means that the renormalization constant of the meson
field is equal to zero:

3g 2
H X 2˜Z s1y P m s0 , 2Ž .Ž .H H H24p

˜ Xwhere P is the derivative of the meson massH

operator defined by

d4k
2 2 2P̃ p s f ykŽ .Ž . HH H24p i

=tr G S ku G S ku qpu . 3Ž . Ž .Ž .H 2 H 1

The invariant amplitudes describing the leptonic
Ž . Ž . XŽ X.H p ™ ln and semileptonic H p ™H p ln de-

cays are written down

GF m
XA H p ™en s V eO n M p 4Ž . Ž . Ž .Ž . Ž .qq m H'2

A H p ™H X pX enŽ . Ž .Ž .
GF Xm

X Xs V eO n M p , p , 5Ž . Ž .Ž .qq m HH'2

where G is the Fermi weak-decay constant, V X isF qq

the appropriate element of the CKM matrix. The
matrix elements of the hadronic currents are given
by

3 d4k
m 2M p s g f ykŽ . Ž .HH H H2 24p 4p i

5 m m= tr g S ku O S ku qpu s f pŽ . Ž .2 1 H

6Ž .
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M m
X p , pXŽ .HH

3 d4k
2 2

X Xs g g f yk f ykŽ . Ž .HH H H H2 24p 4p i

=
X5 5 mtr g S ku g S ku qpu O S ku qpu 7Ž . Ž .Ž . Ž .3 2 1

m mX X2 2s f q pqp q f q pyp 8Ž . Ž . Ž .Ž . Ž .q y

Ž 2 .where f yk is related to the BS-amplitude inH

momentum space, and

1
S ku s 9Ž . Ž .i m ykui

is the propagator of the constituent quark with mass
m . As discussed before, to avoid the appearance ofi

Ž . Ž .imaginary parts in Eqs. 6 and 7 , we assume that
m -m qm which is a reliable approximationH q q1 2

for the lower-lying mesons considered here.
Ž .To evaluate the integral in Eq. 7

d4k
X 2

XI p , p s FF ykŽ . Ž .HHH 24p i

=tr g 5S ku g 5S ku qpuXŽ .� Ž .3 2

=g mS ku qpu , 10Ž .4Ž .1

Ž 2 . Ž 2 . Ž 2 .Xwhere FF yk sf yk Pf yk , we need toH H

calculate the following integrals:

J Ž0,m ,mn ,mnd .

4 Ž m m n m n d . Ž 2 .d k 1,k ,k k ,k k k FF y k
s .H X2 2 22 2 2 2p i Ž . Ž . w xm y kq p m y kq p m y kw x w x1 2 3

11Ž .

Using the Cauchy representation for the function
Ž 2 .FF yk and then the standard techniques of the

Ž XŽ .Feynman ayparametrization one finds FF z s
Ž . .dFF z rdz

2 3` t
X0 3J s dt d a d 1y a yFF zŽ .Ž .ÝH H i Iž / ž /1q t0 is1

12Ž .
3 3` t

m 3J sy dt d a d 1y aÝH H iž / ž /1q t0 is1

=P m yFF
X z 13Ž . Ž .Ž .a I

2 3` t
mn 3J s dt d a d 1y aÝH H iž / ž /1q t0 is1

=
1

1 mny g FF zŽ .I2½ 1q t

2t
Xm nyP P FF z 14Ž . Ž .a a I 5ž /1q t

2 3` t
mnd 3J s dt d a d 1y aÝH H iž / ž /1q t0 is1

= 1 mn d md n nd mg P qg P qg Pa a a2½
=

t
FF zŽ .I21q tŽ .

3t
Xm n dqP P P FF z 15Ž . Ž .a a a Iž / 51q t

where qspypX, P sa pqa pX, D sa a p2
a 1 2 3 1 3

X 2 2 w 3 2 xqa a p qa a q , and z s t Ý a m yD2 3 1 2 I is1 i i 3
2 Ž .yP tr 1q t .a

Ž .Finally, Eq. 10 becomes
mX X Xm 2 2 2

XI p , p s pqp I p , p ,qŽ . Ž . Ž .HH q

mX X2 2 2q pyp I p , p ,qŽ . Ž .y

with

I p2 , pX 2 ,q2Ž .q

2 3` t
1 3s dt d a d 1y aÝH H i2 ž / ž /1q t0 is1

1 t
= FF z 4y3 a qaŽ . Ž .I 1 2½ 1q t 1q t

t
XyFF z m qm m qŽ . Ž .I 1 2 3 1q t

= y a qa m m qm m ym mŽ . Ž .Ž 1 2 1 3 2 3 1 2

qa p2 qa pX 2 .1 2

2t t
2yP 2y a qa .Ž .a 1 2ž / ž / 51q t 1q t

16Ž .
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The normalization condition is written in the form

3g 2
H 2 2I p , p ,0 s1 17Ž .Ž .q24p

with m sm 'm.1 2

The integrals corresponding to the matrix element
Ž .of the leptonic decay H p ™ ln and radiative decay

Ž . Ž . Ž .of neutral meson H p ™g q qg q are calcu-1 2

lated following the same procedure. We have

d4k
m 2Y p s f ykŽ . Ž .H 24p i

=tr g 5S ku g m Iyg 5 S ku qpuŽ .� 4Ž .Ž .2 1

sp mY p2Ž .
` t

2Y p s dtŽ . H 2
0 1q tŽ .

=
a t1

da m q m ym f zŽ . Ž .H 2 1 2 Y1q t0

18Ž .

d4k
mn 2K q ,q s f ykŽ . Ž .H1 2 24p i

=tr g 5S ku yqu g mS kuŽ .� Ž .2

=g nS ku qqu 4Ž .1

s i´ mna bq aq bK p2Ž .1 2

2
` t

2K p sm dtŽ . H ž /1q t0

=
1 1ya1 Xda da yf z 19Ž . Ž .Ž .H H1 2 K

0 0

w 2 Ž . 2 2 2 2where z s t a m q 1 y a m y a p q a p trY 1 2
Ž .x w 2 2 x 21 q t and z s t m y a a p q a a p trK 1 1 2 1 2
Ž .1q t .

The physical observables are expressed in terms
Ž . Ž .of the structural integrals written in Eqs. 16 , 18

Ž .and 19 :

gP 2g s K m ,Ž .Pgg P2'2 2 p

p
2 3 2G P™gg s a m g , 20Ž . Ž .P Pgg4

3
2f s g Y m ,Ž .P P P24p

22 2 2G f mF P l2 2< <XG P™ ln s V m m 1y , 21Ž . Ž .qq P l 28p mP

3
2 2 2 2

X Xf q s g g I m ,m ,q ,Ž . Ž .q P P q P P24p

G2
tF y2 2X < < < <XG P™P ln s V dt f tŽ . Ž .Hqq q3 3192p m 0P

=
3r2

t y t t y t , 22Ž . Ž . Ž .q y

Ž .2 ŽXwith t s m "m the extra factor 1r2 appears" P P
0 .for p in the final state .

2.1. HeaÕy quark limit

The leptonic heavy decay constants and semilep-
tonic heavy to heavy form factors acquire a simple
form in the heavy quark limit, i.e. when m 'M™`,1

X 2 Ž .2 X 2 Ž X .2m 'M ™` and p s MqE , p s M qE2
Ž .with E being a constant value. From Eq. 16 by

replacing the variables a ™a rM and a ™1 1 2

a rM X, one obtains2

X 2
`MqM t

I ™ P dtHXq ž /2 MM 1q t0

=
a t1 1 Xdaa dt yFF z mqŽ .Ž .H H

1q t0 0

X '`MqM dt mq u11s P duFF z 23Ž . Ž .˜H HX 2 22 MM W m qz0 0 ˜

Ž .Ž'where zsuy2 E urW , Ws1q2t 1yt wy˜
. Ž 2 X 2 X 2 . Ž X.1 and ws M qM y2 MM q r 2 MM .

The normalization condition can be obtained from
Ž . XEq. 23 by putting ws1 and M sM. We have

3g 2 1H Ž0. Ž0.P I s1, I s I ,q q N2 2 M4p

'` mq u
2I s duf z 24Ž .Ž .˜HN H 0 2m qz0 ˜0
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Table 1
Ž y1 .Calculated values of a range of observables g in GeV , leptonic decay constants in GeV, form factors and ratios are dimensionless .pgg

w xThe ‘‘Observed’’ are extracted from Refs. 10–16 . The quantities used in fitting our parameters are marked by ‘‘)’’

Observed Calculated Observed Calculated
Kp Ž .) g 0.274 0.242 f 0 0.98 0.98pgg q
D K Ž .) f 0.131 0.131 ) f 0 0.74 " 0.03 0.74p q
BDŽ .) f 0.160 0.160 f 0 0.73K q

q19 Bp Ž .) f 0.191 0.191 f 0 0.27 " 0.11 0.51D y28 q
fD y2 y2s Ž . Ž . Ž .) 1.08 8 1.08 Br K™p ln 4.82"0.06 P10 4.4P10
fD

q1 8 y2 y2Ž . Ž .f 0.206 0.206 Br D™Kln 6.8"0.8 P10 8.1P10D y28s
q2 7 y2 y2Ž . Ž .) f 0.172 0.172 Br B™Dln 2.00"0.25 P10 2.3P10B y31

fB y4 y4s Ž . Ž . Ž .) 1.14 8 1.14 Br B™p ln 1.8"0.6 P10 2.1P10
fB

f 0.196Bs

'where z suy2 E u . Then the leptonic decay con-˜0

stant and semileptonic form factors are written as

`1 3 'f ™ P du u yE f zŽ .˜HP H 02(' 2p IM 0N

=
'mq u r2

25Ž .
2m q z̃0

M X
"M

f ™ j w ,Ž ." X'2 MM

'`1 dt mq u1 2j w s duf z . 26Ž . Ž . Ž .˜H H H 2I W m qz0 0 ˜N

It is readily seen that we reproduce the scaling law
for both leptonic decay constants and form factors,
and obtain the explicit expression for the Isgur–Wise

w xfunction 1,2 .

3. Results and discussion

The expressions obtained in the previous section
for physical observables are valid for any vertex

Table 2
Values in GeV

L 1.16p

L 1.82K

L 1.87D

L 1.95Ds

L 2.16B

L 2.27Bs

Ž 2 .function f yk . Here, we choose a GaussianH
Ž 2 . � 2 2 4form f yk sexp k rL in Minkowski space.H

The magnitude of L characterizes the size of theH

BS-amplitude and is an adjustable parameter in our
approach. Thus, we have six L-parameters plus the
four quark masses, all of which are fixed via the
least-squares fit to the observables measured experi-

Žmentally or taken from lattice simulations see Table
.1 .

The fit yields the values of L-parameters and the
constituent quark masses which are listed in Tables 2
and 3.

The values of L are such that L -L ifm mi j

m -m . This corresponds to the ordering law fori j

sizes of bound states. The values of L s1.87 GeVD

and L s2.16 GeV are larger than those obtained inB
w xRef. 6 : L s1.41 GeV and L s1.65 GeV. TheD B

mass of u-quark and the parameter L are almostp

fixed from the decays p™mn and p 0 ™gg with
an accuracy of a few percent. The obtained value of
the u-quark mass m s0.235 GeV is less than theu

constituent-light-quark mass typically employed in
Žquark models for baryon physics m )m r3su N

.0.313 GeV . For instance, the value of m s0.420u

GeV was extracted from fitting nucleon observables

Table 3
Values in GeV

m 0.235u

m 0.333s

m 1.67c

m 5.06b
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Table 4

K ™p D™ K B™ D B™p

b 0.28 0.64 0.77 0.520

b 0.057 0.20 0.19 0.381

w xwithin our approach 3 . The different choice of
constituent quark masses is a common feature of

quark models with free propagators due to the lack
of confinement. However, we consider here the
low-lying mesons that allows us to fix the con-
stituent quark masses in a self-consistent manner. As
mentioned above, the meson masses must be less
than the sum of masses of their constituents. This
gives the restrictions on the choice of the meson
binding energies: E sm ym -m , E sm yK K s u D D

Fig. 1. The semileptonic K™p , D™K , B™D and B™p form factors with, for comparison, a vector dominance, monopole model Eq.
Ž . w x28 and a lattice simulation 23 . Our results: continuous lines. Monopole: dotted lines. Lattice: data points.
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m -m and E sm ym -m , which means thatc u B B b u

the binding energy cannot be relatively large as
w xcompared with those obtained in Ref. 6 : E s0.58D

GeV and E s0.74 GeV.B

Let us now consider the q2-behaviour of the form
factors. We use the three-parameter function for the
four f form factorsq

f 0Ž .XHH 2f q s 27Ž .Ž .q 22 2 2 21yb q rm yb q rmŽ . Ž .0 H 1 H

Ž .here b ,b and f 0 are parameters to be fitted. We0 1

collect the fitted values in Table 4 and report the
q2-dependence in Fig. 1.

For comparison, we plot, together with our re-
sults, the predictions of a vector dominance monopole
model:

f q ™ qX

0Ž .X qq ™ q 2f q s 28Ž .Ž .q 2 21yq rm XVq q

X2with m being a mass of lower-lying qq -vectorXVq q

meson. We choose m ) s2.11 GeV for c™s, m )D Bs

w x
)s5.325 GeV for b™u, m fm s6.4 GeV 17B Bc c

qqXŽ .for b™c transitions. The values of f 0 are takenq
from the Table 1. Also we calculate the branching
ratios of semileptonic decays by using widely ac-

w xcepted values of the CKM matrix elements 10 .
Our result for the slope of the K form factorl3

f Kp
X

0Ž .q2l sm s0.023 , 29Ž .q p Kpf 0Ž .q

is in good agreement with experiment: lexpt sq
w x VDM0.0286"0.0022 10 and VDM prediction: l sq

m2 rm2
) s0.025. This value is also consistent withp K

w xRefs. 18
One can see that the agreement with experimental

data and lattice results is very good, with the excep-
bu Ž .tion of the value of f 0 which is found to beq

larger than the monopole extrapolation of a lattice
Ž w x.simulation, QCD Sum Rules cf. 19 and some

Ž w x.other quark models see, for example, 20,21 . How-
ever, this result is consistent with the value calcu-

w xlated from Refs. 6,22 and allows us to reproduce
the experimental data for B™p ln with quite good
accuracy.
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