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Abstract
In the application of potential models, the use of the Dirac equation in
central potentials remains of phenomenological interest. The associated set
of decoupled second-order ordinary differential equations is here studied by
exploiting the phase-integral technique, following the work of Fröman and
Fröman that provides a powerful tool in ordinary quantum mechanics. For
various choices of the scalar and vector parts of the potential, the phase-integral
formulae are derived and discussed, jointly with formulae for the evaluation of
Stokes and anti-Stokes lines. A criterion for choosing the base function in the
phase-integral method is also obtained, and tested numerically. The case of
scalar confinement is then found to be more tractable.

PACS numbers: 03.65.Pm, 03.65.Sq, 12.39.Pn

1. Introduction

Several problems of interest in theoretical physics lead eventually to the differential equation
(

d2

dz2
+ R(z)

)
ψ(z) = 0, (1.1)

where R is a single-valued analytic function of the complex variable z. The form of (1.1)
suggests looking for solutions expressed through a prefactor A(z) and a phase w(z), i.e.

ψ±(z) = A(z) e±iw(z). (1.2)

The Wronskian of ψ+(z) and ψ−(z) is equal to −2iA2 dw
dz

, and on the other hand the Wronskian
of two linearly independent solutions of equation (1.1) is a constant. Thus, the prefactor A(z)
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reads as const × 1√
dw/dz

, and one has [1]

ψ(z) = 1√
q(z)

e±iw(z), (1.3)

where

w(z) =
∫ z

q(ζ ) dζ, (1.4)

the function w being the phase integral, while q is called the phase integrand. Moreover,
upon insertion of the exact solution (1.3), (1.4) into equation (1.1), one finds that the phase
integrand q(z) should satisfy the q-equation

f (z, q(z), R(z)) ≡ q− 3
2

d2

dz2
q− 1

2 +
R(z)

q2
− 1 = 0. (1.5)

In practice, however, the task of finding exact solutions of equation (1.5) is rather difficult.
The best one can do is often to determine a function Q that is an approximate solution of the
q-equation (1.5), so that

ε0 ≡ f (z,Q(z), R(z)) % 1. (1.6)

The approximate phase-integral method consists in finding approximate solutions of
equation (1.1) with an unspecified base function Q. A criterion for finding Q is that the
function ε0 defined in (1.6) should be much smaller than unity in the region of the complex z-
plane relevant for the problem. However, this criterion does not determine the base function Q
uniquely, the physicist has a whole set of base functions Q at his disposal, and this arbitrariness
can be exploited.

Over the years, many efforts have been devoted in the literature to the theoretical
investigation of light fermions confined by a potential field [2]. In the phenomenological
applications, when dealing with mesons consisting of a heavy quark and a light quark, one
can imagine that the heavy quark is indeed very heavy and acts as a ‘classical’ source that
can be represented as a superposition of Coulomb-like plus linear potential, better known as
the Cornell potential [3]. The mass occurring in the Dirac equation is therefore the mass of
the light quark. It is by now well known that, on using the Dirac equation, only Lorentz
scalar confinement leads to normalizable stationary states, while in a suitable variant of the
Dirac equation, called ‘no pair’, only Lorentz vector confinement has normal Regge behaviour.
Hereafter, we focus on the stationary Dirac equation for a quark of mass m in a Lorentz scalar
potential VS(r) and in the time component of a Lorentz vector potential VV (r), i.e. [4]

dF

dr
= −κ

r
F +

mc2 + E + VS − VV

h̄c
G, (1.7)

dG

dr
= κ

r
G +

mc2 − E + VS + VV

h̄c
F, (1.8)

where κ = −l − 1 if j = l + 1
2 , κ = l if j = l − 1

2 . In the resulting second-order equations,
first derivatives can be removed by putting
(

F(r)

G(r)

)
=

(√
E + mc2 + VS − VV 0

0
√

E − mc2 − VS − VV

) (
f (r)

g(r)

)
. (1.9)

Section 2 studies the second-order equations resulting from the radial Dirac
equations (1.7) and (1.8), preparing the ground for the application of the phase-integral
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method. Section 3 describes various possible choices of the basis function in the phase-
integral method. Section 4 arrives at a general criterion for choosing a suitable base function
Q. Section 5 performs a numerical analysis of the applicability of such a criterion. Section 6
studies Stokes and anti-Stokes lines for the squared Dirac equation in a central potential,
inspired by the choice of Q made in the simpler analysis of central potentials in ordinary
quantum mechanics. Concluding remarks and open problems are presented in section 7.

2. Second-order equations from the radial Dirac equation

With the notation in the introduction, our starting point is the following set of decoupled
second-order equations obtained from the radial Dirac equation:

(
d2

dr2 + Rf (r) 0
0 d2

dr2 + Rg(r)

) (
f (r)

g(r)

)
= 0, (2.1)

where the ‘potential’ terms read [4]

Rf (r) ≡ (E − VV )2 − (mc2 + VS)
2

(h̄c)2
− κ(κ + 1)

r2

+
[

V ′
V − V ′

S

mc2 + E + VS − VV

]
κ

r
− (V ′′

V − V ′′
S )

2[mc2 + E + VS − VV ]

− 3
4

[
V ′

V − V ′
S

mc2 + E + VS − VV

]2

, (2.2)

Rg(r) ≡ (E − VV )2 − (mc2 + VS)
2

(h̄c)2
− κ(κ − 1)

r2

+
[

V ′
V + V ′

S

mc2 − E + VS + VV

]
κ

r
− (V ′′

V + V ′′
S )

2[mc2 − E + VS + VV ]

− 3
4

[
V ′

V + V ′
S

mc2 − E + VS + VV

]2

. (2.3)

Note that, for energies E < −mc2, the following difficulty arises: the relation between f (r)

and F(r) in (1.9) becomes singular at the point r = rf such that VV (rf )−VS(rf ) = E + mc2.
Thus, the effective potential Rf (r) in (2.2) becomes infinite at r → rf . The solutions become
meaningless near the point r = rf because the phase integrals diverge. Similar remarks [5–7]
hold for g(r) and the effective potential in (2.3). However, this difficulty is purely formal
because the original Dirac system (1.7) and (1.8) is not singular at the point r = rf . A
powerful JWKB analysis of the first-order Dirac system (1.7) and (1.8) can be found in [7].

Equations (2.1)–(2.3) suggest exploiting the known properties of the differential
equation (1.1), which, as we said, is much studied in classical mathematical physics and
ordinary quantum mechanics. The change of dependent and independent variable that
preserves the form of (1.1) without first derivative is given by

ψ(z) ≡ 1√
Q(z)

ϕ(z), (2.4)

w(z) ≡
∫ z

Q(ζ ) dζ, (2.5)

where the function Q is not specified for the time being but will be suitably chosen later.
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Upon defining

ε ≡ R

Q2
− 1 + Q−3/2 d2

dz2
(Q−1/2), (2.6)

equation (1.1) can be expressed in the equivalent form
[

d2

dw2
+ (1 + ε)

]
ϕ(w) = 0. (2.7)

Equation (2.7) is more convenient because it can be turned into a system of two linear
differential equations of the first order. For this purpose, one assumes that the complex
w-plane is cut in such a way that the functions appearing are all single-valued and ϕ can read

ϕ(w) = a1(w) eiw + a2(w) e−iw. (2.8)

If we further impose that

a′
1(w) eiw + a′

2(w) e−iw = 0, (2.9)

the first derivative of ϕ reduces to

dϕ
dw

= ia1 eiw − ia2 e−iw, (2.10)

and one obtains the desired system of two first-order ordinary differential equations, i.e. [8]

da1

dw
= i

2
ε(a1 + a2 e−2iw), (2.11)

da2

dw
= − i

2
ε(a2 + a1 e2iw). (2.12)

Such a system can be written in the matrix form as

da

dw
= M(w)a, (2.13)

having set

M(w) ≡ i
2
ε

(
1 e−2iw

− e2iw −1

)
, (2.14)

a(w) =
(

a1(w)

a2(w)

)
. (2.15)

At this stage, one can replace the differential equation (2.13) by the integral equation

a(w) = a(w0) +
∫ w

w0

M(w1)a(w1) dw1, (2.16)

which can be solved by iteration, starting from the solution formula

a(w) = F(w,w0)a(w0), (2.17)

where

F(w,w0) = 1 +
∫ w

w0

dw1M(w1) +
∫ w

w0

dw1M(w1)

∫ w1

w0

dw2M(w2)

+
∫ w

w0

dw1M(w1)

∫ w1

w0

dw2M(w2)

∫ w2

w0

dw3M(w3) + · · · (2.18)
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Under the assumption that
∑

j

|Mij (w)| ! m(w), (2.19)

where m(w) is a non-negative quantity, one finds that, in any region of the complex w-plane
where the integral

∫ w

w0
m(w1) dw1 is bounded, the series in (2.18) is absolutely and uniformly

convergent. From (2.4), the original equation (1.1) is then solved by

ψ(z) = a1
eiw(z)

√
Q(z)

+ a2
e−iw(z)

√
Q(z)

= a1(z)f1(z) + a2(z)f2(z), (2.20)

where

f1(z) ≡ 1√
Q(z)

eiw(z), f2(z) ≡ 1√
Q(z)

e−iw(z). (2.21)

Our main source on this topic [8] contains all details about useful approximate formulae for
the F-matrix and many peculiar properties of the phase-integral approximation, which should
not be confused with the JWKB method [1].

3. Choice of the base function

The function Q in section 2 need not coincide, when squared up, with the function R in
equation (1.1). A guiding principle in the choice of the base function is as follows: first find
the pole of higher order (if any) in R(z), and then choose Q(z) in such a way that it cancels
exactly such a pole (see below).

3.1. Scalar confinement

For example, the scalar confinement is achieved with the potentials [2]

VS = ar, VV = 0, (3.1)

for which the ‘potential terms’ Rf and Rg in (2.2) and (2.3) reduce to

Rf = E2 − (mc2 + ar)2

(h̄c)2
− κ(κ + 1)

r2
− a

(mc2 + E + ar)

κ

r
− 3

4
a2

(mc2 + E + ar)2
, (3.2)

Rg = E2 − (mc2 + ar)2

(h̄c)2
− κ(κ − 1)

r2
+

a

(mc2 − E + ar)

κ

r
− 3

4
a2

(mc2 − E + ar)2
. (3.3)

The experience gained in ordinary quantum mechanics suggests therefore choosing [8]

Q2
f ≡ Rf +

κ(κ + 1)

r2
, (3.4)

Q2
g ≡ Rg +

κ(κ − 1)

r2
. (3.5)
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3.2. Logarithmic potential

More generally, however, bearing in mind that singularities in (2.2) and (2.3) might receive a
further contribution from VV or VS if they were of logarithmic type, one can take

VS = 1
a

log
(

r

r0

)
, VV = 0, (3.6)

bearing also in mind that only a scalar potential is able to confine a quark in the Dirac equation,
and that a relativistic Qq system is indeed well described by the choice (3.6), as shown in [9].
The potential terms Rf and Rg in (2.2) and (2.3) are then found to develop also a logarithmic
singularity at r = 0, because the l’Hospital rule for taking limits implies that

lim
r→0

1
r2 log(r)

= lim
r→0

1

r2 log2(r)
= ∞.

We are then led to get rid of both the pole-like and logarithmic singularities of Q at r = 0, by
defining

Q2
f ≡ Rf +

κ(κ + 1)

r2
+

(
κ + 1

2

)

r2 log(r/r0)
+

3
4r2

1

log2(r/r0)
, (3.7)

Q2
g ≡ Rg +

κ(κ − 1)

r2
−

(
κ + 1

2

)

r2 log(r/r0)
+

3
4r2

1

log2(r/r0)
. (3.8)

Interestingly, we are suggesting a novel perspective on the logarithmic potential, arriving at it
from the point of view of the singularity structure of the base function in the phase-integral
method.

3.3. A linear plus Coulomb-type potential

One can also consider the Cornell potential [3] which is linear in the scalar part and of
Coulomb-type in the vector part, i.e.

VS = ar, VV = b

r
. (3.9)

As r → 0, the centrifugal term κ(κ±1)
r2 in Rf (respectively Rg) is then found to receive further

contributions with a second-order pole at the origin, so that we can remove such a singularity
in Q by defining

Q2
f ≡ Rf +

[
κ2 − 1

4 − (b/h̄c)2
]

r2
, Q2

g ≡ Rg +

[
κ2 + 7

4 − (b/h̄c)2
]

r2
.

However, the resulting integral (2.5) for the independent variable w is too complicated for
analytic or numerical purposes.

3.4. Analogy with central potentials in ordinary quantum mechanics

It is therefore more convenient, in our relativistic problem, to fully exploit the arbitrariness of
the base function Q by defining it in such a way that it coincides with the form taken by Q in
non-relativistic problems in a central potential. For example, for the Schrödinger equation in
a central potential it is helpful to deal with a Q function of the form [8] Q2 = 1 + 2η

r
. In our

problem, both Rf in (2.2) and Rg in (2.3) contain exactly, i.e. without making any expansion,
the term − 2Eb

(h̄c)2
1
r
, which is indeed of the form 2η

r
with

η ≡ − Eb

(h̄c)2
. (3.10)
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We thus look for

Q2
f (r) = Rf (r) + uf (r) = 1 +

2η
r

. (3.11)

In this equation, the desired additional term can be obtained in the exact form as

uf (r) = 1 +
2η
r

− Rf (r),

where Rf leads to exact cancellation of the terms proportional to 1
r
. We then find, from (2.5)

and (3.11) (see [8]),

wf (r) = 2η

{√
r

2η

(
1 +

r

2η

)
+ log

[√
r

2η
+

√
1 +

r

2η

]}

, (3.12)

and, from (2.6),

εf = Rf

Q2
f

− 1 + Q
− 3

2
f

d2

dr2
Q

− 1
2

f = Rf

Q2
f

− 1 − Q
− 1

2
f

d2

dw2
Q

1
2
f , (3.13)

which yield, by virtue of (2.21),

f (r) = a1,f

eiwf (r)

√
Qf (r)

+ a2,f

e−iwf (r)

√
Qf (r)

, (3.14)

where the functions a1,f and a2,f can be obtained from (2.13)–(2.18), with ε = εf in (2.14).
By following an analogous procedure, we find

Q2
g(r) = Rg(r) + ug(r) = 1 +

2η
r

= Q2
f (r), (3.15)

wg(r) = wf (r), (3.16)

εg = Rg

Q2
g

− 1 + Q
− 3

2
g

d2

dr2
Q

− 1
2

g = Rg

Q2
g

− 1 − Q
− 1

2
g

d2

dw2
Q

1
2
g , (3.17)

g(r) = a1,g

eiwg(r)

√
Qg(r)

+ a2,g

e−iwg(r)

√
Qg(r)

, (3.18)

bearing in mind that Rg )= Rf *⇒ εg )= εf , and setting now ε = εg in (2.14) for the
evaluation of a1,g and a2,g .

We should now recall that, by virtue of the identity [8]

M(w1)M(w2) · · · M(wn)

=
( i

2

)n

ε(w1)ε(w2) · · · ε(wn)[1 − e−2i(w1−w2)][1 − e−2i(w2−w3)]

· · · [1 − e−2i(wn−1−wn)]
(

1 e−2iwn

− e2iw1 − e2i(w1−wn)

)
, (3.19)

the F-matrix in (2.17)–(2.18) can be expressed through a fairly simple series, i.e. [8]

F11(w,w0) = 1 +
∫ w

w0

dw1
i
2
ε(w1)

+
∫ w

w0

dw1
i
2
ε(w1)

∫ w1

w0

dw2
i
2
ε(w2)[1 − e−2i(w1−w2)] + · · · , (3.20)

7
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F12(w,w0) =
∫ w

w0

dw1
i
2
ε(w1) e−2iw1

+
∫ w

w0

dw1
i
2
ε(w1)

∫ w1

w0

dw2
i
2
ε(w2)[1 − e−2i(w1−w2)] e−2iw2 + · · · , (3.21)

F21(w,w0) = −
∫ w

w0

dw1
i
2
ε(w1) e2iw1

−
∫ w

w0

dw1
i
2
ε(w1) e2iw1

∫ w1

w0

dw2
i
2
ε(w2)[1 − e−2i(w1−w2)] + · · · , (3.22)

F22(w,w0) = 1 −
∫ w

w0

dw1
i
2
ε(w1)

−
∫ w

w0

dw1
i
2
ε(w1)

∫ w1

w0

dw2
i
2
ε(w2)[1 − e−2i(w1−w2)] e2i(w1−w2) + · · · . (3.23)

4. A general criterion for choosing the base function

We have also tried to find a base function Q by assuming its behaviour for small and large
values of r, i.e.

Q(r) = α1

r
+ α2 + α3r. (4.1)

This base function can be analytically integrated; thus, in principle, we can obtain the phase
integral according to (2.5). To fix the free parameter entering the previous expression we
assume that the ε parameter in (2.6) should vanish at small and large distances. However,
this criterion does not ensure that ε remains small throughout the whole range of values of
r, and we have instead found regions where the resulting ε is, regrettably, larger than 1, thus
making our choices unsuitable. A general method is instead as follows. Since we have to
fulfill condition (1.6) with ε defined as in (2.6) and R = Rf or Rg, we re-express (1.6) in the
form ∣∣∣∣R − Q2 + Q1/2 d2

dz2
(Q−1/2)

∣∣∣∣ % Q2, (4.2)

and define

A ≡ R − Q2, (4.3)

B ≡ Q1/2 d2

dz2
(Q−1/2), (4.4)

or, the other way around,

A ≡ Q1/2 d2

dz2
(Q−1/2), (4.5)

B ≡ R − Q2, (4.6)

bearing in mind that

‖A| − |B‖ ! |A + B| ! |A| + |B|. (4.7)

Moreover, we can always make the conventional choice according to which |A| > |B|.
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Figure 1. The left-hand side of equation (4.9) is plotted versus r for section 3.1. The continuous
(dashed) line corresponds to k = −1 (k = 0). We have used m = 0.300 GeV, a = 0.308 GeV2

and E = 1.9 GeV.

When (4.3) and (4.4) hold, if both A and B are positive, conditions (1.6) and (2.6) yield

R − Q2 + Q1/2 d2

dz2
(Q−1/2) ! Q2, (4.8)

i.e.

R − 2Q2 + Q1/2 d2

dz2
(Q−1/2) ! 0. (4.9)

When (4.3) and (4.4) hold, if A > 0 and B < 0, conditions (1.6) and (2.6) yield

|R − Q2| −
∣∣∣∣Q

1/2 d2

dz2
(Q−1/2)

∣∣∣∣ ! Q2, (4.10)

which coincides with (4.9) because A = R − Q2 > 0 while B = −|B| < 0.
Nothing changes if instead (4.5) and (4.6) hold. For example, if A defined in (4.5) is

positive and B defined in (4.6) is negative, one finds from (1.6) and (2.6)

Q1/2 d2

dz2
(Q−1/2) − |R − Q2| ! Q2, (4.11)

which coincides with (4.9). Thus, in all possible cases, the family of as yet unknown base
functions Q has to be chosen in such a way that the majorization (4.9) is always satisfied.

5. Numerical results on Q2
f ,g

In this section, we collect all numerical results regarding the choice of the squared base
function Q2

f,g by following the considerations in the previous sections. First of all we work in
the natural unit system (h̄ = c = 1), and we plot in figures 1–4 the left-hand side of equation
(4.9). The chosen range for r is the typical one for the heavy mesons phenomenology. The
numerical values for the parameter are taken from the phenomenological analysis of the meson
spectrum by using the Dirac equation [2]. In particular, we restrict ourselves to consider the
numerical parameter for the charmed particles. Moreover, it should be observed that in [2]
only the Cornell potential has been considered (cf subsection 3.3). However, we use the same
numerical values for parameters also in cases 3.1, 3.3 and 3.4 because the qualitative behaviour
of the results does not depend strongly on the numerical values of the parameters.

9
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Figure 2. The left-hand side of equation (4.9) is plotted versus r for section 3.2. The
continuous (dashed) line corresponds to k = −1 (k = 0). We have used m = 0.300 GeV,
a = 1/

√
0.308 GeV−1, E = 1.9 GeV and r0 = 1 GeV. The left (right) panel corresponds to

the case of f (g) in equation (2.1). Note the range of r. Moreover, it should be noted that, for
r ∈ [0, 1], the inequality in equation (4.9) is strongly violated.

Figure 3. The same as figure 1. Moreover, b = −0.579.

Figure 4. The same as figure 3. Here Q2
f,g are chosen as in section 3.4.

In figure 1, we have plotted the left-hand side of equation (4.9) for the (R,Q2) ≡(
Rf ,Q2

f

)
(left panel) and (R,Q2) ≡ (Rg,Q

2
g) (right panel). The light quark mass,

m = 0.300 GeV, a = 0.308 GeV2 and E = 1.9 GeV in Rf and Rg (cf equations (3.2)
and (3.3)). The plots in figures 2–4 are obtained by using the values collected in their captions.
It should be observed that in figure 1 we have used a confining linear potential and for Q2 the

10
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Figure 5. Here we plot the left-hand side of equation (6.8) minus 2, which is the value of the
constant in the same equation, versus θ . The curves have been obtained for η = (0.5, 1, 2) (dashed,
continuous, long dashed) lines (cf equation (3.10)) and A = 3. This figure shows that solutions to
equation (6.8) exist.

Figure 6. Here we plot the left-hand side of equation (6.9) versus θ . The plot is obtained for
η = (0.5, 1, 2) (dashed, continuous, long dashed) lines (cf equation (3.10)) and A = 3. As in the
case of figure 5, solutions to equation (6.9) exist.

choice in section 3.1. The inequality in (4.9) is satisfied for almost the whole physical range
of r.

In figure 2, the logarithmic potential has been considered (cf section 3.2) with r0 =
1 GeV−1. Also in this case we do not have direct phenomenological information on the values
of the parameters. Smaller values for r0 are responsible for the violation of inequality (4.9).

In figures 3 and 4 the Cornell potential is considered. In these figures the values of the
parameters are taken, as already said, from the phenomenological analysis. In figure 3, the
inequality is violated for Q2

g in the whole range of r, while the case inspired by ordinary
quantum mechanics (cf figure 4) violates the inequality in the region of small r.

6. Stokes and anti-Stokes lines

In the application of the phase-integral method to equation (1.1), a concept of particular
relevance is the one of Stokes and anti-Stokes lines. By definition, the differential
dw = q(z) dz (see (1.4)) is purely imaginary along a Stokes line, and real along an anti-
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Figure 7. We plot the left-hand side of equation (6.8) versus θ and A for η = 2 GeV.

(This figure is in colour only in the electronic version)

Stokes line. Thus, the Stokes lines are lines along which the absolute value of eiw(z) increases
or decreases most rapidly, while the anti-Stokes lines are level lines for constant absolute
values of eiw(z) [1].

For example, for the case studied in our subsection 3.4 one can evaluate at complex
r = A eiθ the phase integral (3.12). One then finds, after repeated application of the Gauss
representation of complex numbers, and upon defining

Ã ≡ 1 +
A

2η
cos(θ), B̃ ≡ A

2η
sin(θ), (6.1)

θ̃ ≡ arctan
(

A sin(θ)

(2η + A cos(θ))

)
, (6.2)

α ≡

√
A

2η
cos

θ

2
+ (Ã2 + B̃2)

1
4 cos

θ̃

2
, (6.3)

β ≡

√
A

2η
sin

θ

2
+ (Ã2 + B̃2)

1
4 sin

θ̃

2
, (6.4)

ϕ ≡ arctan

[√
A
2η sin θ

2 + (Ã2 + B̃2)
1
4 sin θ̃

2

]

[√
A
2η cos θ

2 + (Ã2 + B̃2)
1
4 cos θ̃

2

] , (6.5)

the following split of wf (r) into the real and imaginary part:

Re wf = 2η

[√
A

2η
(Ã2 + B̃2)

1
4 cos

(
θ − θ̃

2

)
+

1
2

log(α2 + β2)

]

, (6.6)

Im wf = 2η

[√
A

2η
(Ã2 + B̃2)

1
4 sin

(
θ + θ̃

2

)
+ ϕ

]

. (6.7)
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Figure 8. Here we plot | eiwf | versus θ . The curves have been obtained for η = (1, 2) (continuous,
long dashed) lines (cf equation (3.10)) and A = 3.

From what we said before, along an anti-Stokes line, dwf is real, and hence Imwf is constant.
We thus find from equations (6.5) and (6.7) the transcendental equation

arctan

[√
A
2η sin θ

2 + (Ã2 + B̃2)
1
4 sin θ̃

2

]

[√
A
2η cos θ

2 + (Ã2 + B̃2)
1
4 cos θ̃

2

] +

√
A

2η
(Ã2 + B̃2)

1
4 sin

(
θ + θ̃

2

)
= const. (6.8)

Moreover, since dwf is purely imaginary along a Stokes line, we are led to consider the
equation

Re wf = constant.

This becomes, from (6.6), the transcendental equation
[√

2A

η
(Ã2 + B̃2)

1
4 cos

(
θ − θ̃

2

)
+ log(α2 + β2)

]

= const. (6.9)

In general, we cannot give analytical solutions to equations (6.8) and (6.9). However, the
fact that, for reasonable values of the parameters, solutions to such equations exist is crucial.
In this respect, in figures 5 and 6 we show that, for η = (0.5, 1, 2) and A = 3, they can be
solved for a constant value and for zero, respectively. In particular, equation (6.8) has either
zero or six roots depending on the choice of the value for the constant, unlike the case of
equation (6.9), where at most three zeros can be found depending on the constant.

Following what we say at the beginning of this section, the absolute value of eiwf

increases or decreases along the Stokes lines while it remains constant along anti-Stokes lines.
Figure 8 displays this behaviour in a neat way.

7. Concluding remarks and open problems

Second-order equations for relativistic systems have been investigated for many years,
including the work in [10], and supersymmetric extensions considered in [11]. In ordinary
quantum mechanics, the most powerful choice of the base function is the Langer choice
[12–14], but the peculiar technical difficulties of the effective potentials (2.2) and (2.3) for the
Dirac equation cannot be solved in the same way, and one has to rather resort to the JWKB
method along the lines in [7]. It was here our intention to investigate potentialities and limits
of the phase-integral method, which actually differs from JWKB methods [1]. Our results
are of a qualitative nature, while we fail to obtain bound-state energies from the integrals in

13



J. Phys. A: Math. Theor. 42 (2009) 395203 G Esposito and P Santorelli

sections 2 and 3. At a deeper level, the problem arises of solving coupled systems of first-order
ordinary differential equations which, when decoupled, give rise to a pair of equations of the
form (1.1). The phase-integral method, originally developed for second-order equations of
the form (1.1), should have implications for the solutions of the original first-order system as
well. This expectation should be made precise, and its relation with the JWKB method should
be elucidated.

Although the decoupled second-order equations obtained from the radial Dirac equation
are formally analogous to the second-order equations to which the phase-integral method can
be applied, the actual implementation is much harder because the ‘potential’ terms Rf and Rg

therein contain complicated denominators built from the potentials VS and VV in the radial
Dirac equation [4, 15]. This implies that the actual choice of base function Q is a difficult
problem. In section 3 we have described some possible choices of Q, and in section 4 we have
arrived at the majorization (4.9) to select Q, tested numerically in section 5. The analysis of
(4.9) for the Cornell potential shows that an appropriate base function can be found for the
case k = −1 (see figure 3). Moreover, for the logarithmic potential the plots displayed in
figure 2 show that (4.9) is not fulfilled in the whole range of r. The investigation of Stokes
and anti-Stokes lines in section 6 is also, as far as we know, original in our context. It remains
to be seen, however, whether such lines can be of direct phenomenological interest.

The work in [4], despite being devoted to the amplitude-phase method, did not investigate
the same technical issues as us. Thus, no obvious comparison can be made. The years to come
will hopefully tell us whether the choices of Q satisfying (4.9) exist for which the F-matrix in
(2.18) can be actually evaluated. In the affirmative case, one would gain conclusive evidence
in favour of the superiority of the phase-integral method. In the negative case, one would
instead gain a better understanding of the boundaries to our knowledge.
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[8] Fröman N and Fröman P O 1965 JWKB Approximation. Contributions to the Theory (Amsterdam: North-

Holland)
[9] Kaburagi M, Kawaguchi M, Morii T, Kitazoe T and Morishita J 1980 Phys. Lett. B 97 143

[10] Goldberg I B and Pratt R H 1987 J. Math. Phys. 28 1351
[11] Cooper F, Khare A and Sukhatme U 1995 Phys. Rep. 251 267
[12] Langer R E 1937 Phys. Rev. 51 669
[13] Crothers D S F 2008 Semiclassical Dynamics and Relaxation (Berlin: Springer)
[14] Linnaeus I J and Thylwe K E 2009 Eur. Phys. J. D 53 283
[15] Esposito G and Santorelli P 1999 J. Phys. A: Math. Gen. 32 5643

14

http://dx.doi.org/10.1103/PhysRevD.51.5079
http://dx.doi.org/10.1103/PhysRevD.17.3090
http://dx.doi.org/10.1103/PhysRevD.21.203
http://dx.doi.org/10.1088/0031-8949/77/06/065005
http://dx.doi.org/10.1088/1751-8113/41/11/115304
http://dx.doi.org/10.1070/PU1972v014n06ABEH004735
http://dx.doi.org/10.1007/s11232-005-0090-1
http://dx.doi.org/10.1016/0370-2693(80)90567-5
http://dx.doi.org/10.1063/1.527537
http://dx.doi.org/10.1016/0370-1573(94)00080-M
http://dx.doi.org/10.1103/PhysRev.51.669
http://dx.doi.org/10.1140/epjd/e2009-00140-7
http://dx.doi.org/10.1088/0305-4470/32/30/310

	1. Introduction
	2. Second-order equations from the radial Dirac equation
	3. Choice of the base function
	3.1. Scalar confinement
	3.2. Logarithmic potential
	3.3. A linear plus Coulomb-type potential
	3.4. Analogy with central potentials in ordinary quantum mechanics

	4. A general criterion for choosing the base function
	5. Numerical results on
	6. Stokes and anti-Stokes lines
	7. Concluding remarks and open problems
	Acknowledgments
	References



