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Abstract. Electrodynamics for self-interacting scalar fields in spatially flat Friedmann–
Robertson–Walker spacetimes is studied. The corresponding 1-loop field equation for the
expectation value of the complex scalar field in the conformal vacuum is derived. For
exponentially expanding universes, the equations for the Bogoliubov coefficients describing the
coupling of the scalar field to gravity are solved numerically. They yield a non-local correction
to the Coleman–Weinberg effective potential which does not modify the pattern of minima found
in static de Sitter space. Such a correction contains a dissipative term which, accounting for the
decay of the classical configuration in scalar field quanta, may be relevant for the reheating stage.
The physical meaning of the non-local term in the semiclassical field equation is investigated
by evaluating this contribution for various background field configurations.

PACS numbers: 0260, 0370, 0420, 1110, 1115, 9880

1. Introduction

In a recent series of papers [1–3], some of the authors have studied the 1-loop effective
potential for grand unified theories in de Sitter space. Our main results were a better
understanding of the symmetry-breaking pattern first found in [4], a numerical approach to
small perturbations of de Sitter cosmologies [2], and the analysis of SO(10)GUT theories
in de Sitter cosmologies [3]. However, a constant Higgs field, with de Sitter 4-space
as a background in the corresponding 1-loop effective potential, is only a mathematical
idealization. A more realistic description of the early universe is instead obtained on
considering a dynamical spacetime such as the one occurring in Friedmann–Robertson–
Walker (FRW) models. Indeed, our early work [2] tried to study the case of a varying Higgs
field by introducing a function of the Euclidean-time coordinate which reduces to the 4-
sphere radius of de Sitter in the limit of constant Higgs field. Although the approximations
made in [2] were legitimate for numerical purposes, the gravitational part of the action,
and the 1-loop effective potential, were not actually appropriate for studying a dynamical
cosmological model.

Thus, relying on the work in [5, 6], this paper studies the first step towards the completion
of our programme, i.e. scalar electrodynamics with a self-interaction term for the complex
scalar field. The semiclassical field equations in time-variable backgrounds contain non-
local terms, which describe the coupling of the scalar field to the gravitational background.
The analysis of these equations is relevant for the reheating mechanism in inflationary
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cosmology and for the dynamics of dissipation via particle production [7]. Our analysis
deals with Lorentzian spacetime manifolds withFRW symmetries, and does not rely on zeta-
function regularization. Hence our geometric framework is substantially different from the
Riemannian 4-manifolds studied in [1–4], where the metric was positive-definite. Section 2
derives the field equations for a class of cosmological models where scalar electrodynamics
is studied inFRW universes. The Coleman–Weinberg potential, and its correction, derived
from the non-local term involving the Bogoliubov coefficients for the coupling of the scalar
field to gravity, are obtained numerically in section 3. The semiclassical field equation and
the physical meaning of such non-local terms are studied in detail in section 4. Concluding
remarks are presented in section 5, and relevant details are given in the appendix.

2. Model and field equations

For the reasons described in the introduction, we consider a complex scalar fieldφ with
a mass and a self-interaction term, coupled to the electromagnetic potentialAµ in curved
spacetime. Hence the action functional is

I ≡
∫

L
√

− detg d4x + boundary terms (2.1)

where (cf [6])

L ≡[
(∇µ + ieAµ)φ†][(∇µ − ieAµ)φ

] − m2φ†φ − 1

4!
λ(φ†φ)2 − ξRφ†φ − 1

4
FµνF

µν .

(2.2)

With a standard notation,∇ is the Levi-Civita connection on the background spacetime,ξ is
a dimensionless parameter,R denotes the trace of the Ricci tensor, andFµν ≡ ∇νAµ−∇µAν

is the electromagnetic-field tensor. Boundary terms are necessary to obtain a well-posed
variational problem, and their form is obtained after integration by parts in the volume
integral in (2.1). Covariant derivatives of the scalar field are here used to achieve a uniform
notation (cf [6] and [8]).

Following [5], we now split the complex scalar fieldφ as the sum of a variable real-
valued background fieldφc, and of a complex-valued fluctuationϕ, i.e.

φ = φc + ϕ . (2.3)

The conformal vacuum[9] is chosen here, and the quantum fluctuationϕ has vanishing
expectation value in such a state,〈ϕ〉 = 0, so that〈φ〉 = φc. The field equations forAµ, φc

andϕ are obtained by setting to zero the corresponding functional derivatives of the action.
As far as the gauge potentialAµ is concerned, it is convenient to impose the Lorentz gauge
∇µAµ = 0. At this stage, to quantize the theory, one can follow the Gupta–Bleuler method,
or the Faddeev–Popov procedure, or to eliminate the residual gauge freedom by imposing
the relativistic gauge condition proposed by Ford [6], i.e.XµAµ = 0, whereX is a timelike
vector field. Such a field admits anatural form in FRW spacetimes (see below). Thus, on
defining the operator� ≡ gµν∇µ∇ν , the resulting form of the field equations is (cf [6])(
gµν� − Rµν

)
Aν = −2e2Aµφ†φ − ie

(
φ†∇µφ − φ∇µφ†) (2.4)[

� + m2 + ξR + 1
12λφ2

c − e2〈AµAµ〉 + 1
24λ〈ϕ2 + (ϕ†)2 + 4ϕϕ†〉]φc = ie〈Aµ∇µ(ϕ − ϕ†)〉

(2.5)[
� + m2 + ξR + 1

6λφ2
c

]
ϕ + 1

12λφ2
c ϕ† = 0 . (2.6)
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Note that equations (2.4)–(2.6) have been obtained by retaining in the action (2.1) only
terms quadratic in the fluctuationsϕ andAµ, and setting to zero all terms involving∇νAν

and its covariant derivatives in the field equations. The latter condition is sufficient to derive
(2.4). Moreover, we require that∇µφc should be proportional toXµ [6]. Note also that the
contribution of[

� + m2 + ξR + 1
12λφ2

c

]
φc

has been neglected in the course of deriving (2.6), since equation (2.5) implies that such a
contribution is of second order in the quantum fluctuations. By taking the complex conjugate
of equation (2.6), and definingϕ ≡ (ϕ1 + iϕ2)/

√
2, λ1 ≡ λ/2 andλ2 ≡ λ/6, the addition

and subtraction of the resulting equations leads to decoupled equations for the real and
imaginary parts ofϕ, i.e.[

� + m2 + ξR + 1
2λjφ

2
c

]
ϕj = 0 for all j = 1, 2 . (2.7)

Moreover, by virtue of our particular gauge conditions, equation (2.5) takes the form (see
the appendix)[
� + m2 + ξR + 1

12λφ2
c − e2〈AµAµ〉 + 1

4λ1〈ϕ2
1〉 + 1

4λ2〈ϕ2
2〉

]
φc = 0 . (2.8)

Interestingly, the effects of quantum fluctuations in (2.8) reduce to a linear superposition
of the self-interaction term studied in [5] and of the electromagnetic term studied in [6],
without any coupling. The term〈AµAµ〉 is evaluated on considering the integral equation
equivalent to (2.4), as shown in [6] and in the appendix. Such an analysis proves that, in
the case of a spatially flatFRW background, the renormalized expectation value ofAµAµ in
the conformal vacuum can be written as [6]

〈AµAµ〉 = B XµXνRµν (2.9)

whereB = 9.682× 10−3. In particular, in a de Sitter universe,〈AµAµ〉 = 12BH 2, where
H is the Hubble parameter [6].

Following [5], we can now write the set of equations leading to the solution of (2.7) and
(2.8) in spatially flatFRW backgrounds. Without making any approximation, if one defines
(a being the cosmic scale factor)

τ ≡
∫ t

t0

dy

a(y)
(2.10)

and, for allj = 1, 2

�2
j,k ≡ k2 + a2(τ )

[
m2+

(
ξ − 1

6

)
R(τ) + 1

2λjφ
2
c (τ )

]
(2.11)

the 1-loop field equations resulting from (2.7) and (2.8) are (cf (3.32) and (3.33) in [5])

1

a2

d2φc

dτ 2
+ 2

a3

da

dτ

dφc

dτ
−e2〈AµAµ〉φc+∂Veff

∂φc

+ φc

4π2a2

2∑
j=1

1

2
λj

∫ ∞

0
dk k2�−1

j,k

[
sj,k+Rezj,k

] = 0

(2.12)
d

dτ
sj,k =

(
d

dτ
log�j,k

)
Rezj,k (2.13)

d

dτ
zj,k =

(
d

dτ
log�j,k

)(
sj,k + 1

2

)
− 2i�j,kzj,k . (2.14)
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The form of∂Veff/∂φc is given in the appendix. Equations (2.13) and (2.14) are necessary
to find solutions of (2.7) by using Fourier-transform techniques and a suitable change of
coordinates, as shown in [5]. The initial conditions forsj,k andzj,k are the ones appropriate
for the choice of a conformal vacuum, i.e. [5]

sj,k(τ = 0) = 0 zj,k(τ = 0) = 0 . (2.15)

Of course, the values ofm, ξ andλj should now be regarded as the renormalized values of
such parameters [5].

Note that the second line of equation (2.12) is a typical non-local term, resulting from the
self-interaction of the scalar field (see equation (2.7)) and from its coupling to the geometric
background. Moreover, a dissipative term exists which is part of the non-local correction
to the Coleman–Weinberg potential, and is due to the decay processes ofφc in scalar field
quanta. By means of such decays, energy is transferred fromφc to the relativistic degrees
of freedomϕ (i.e. radiation). As is well known, if this release of energy is sufficiently
strong, radiation becomes dominant and hence the inflationary phase ends. This leads to
the reheating stage, which is as important as the exponential expansion for the dynamics of
the early universe.

3. Numerical evaluation of the 1-loop effective potential

In this section, for the physically relevant case of an exponentially expandingFRW universe,
we compute the non-local term on the second line of (2.12). After integration of such a
term with respect toφc, the resulting expression is compared with the Coleman–Weinberg
potentialVeff.

The numerical analysis has been performed for a conformally invariant scalar field
(henceξ = 1

6 andm = 0), by solving equations (2.13) and (2.14) with the help of theNAG

routine D02BAF, with initial conditions (2.15). We have fixedλ = 10−2, which ensures the
reliability of the perturbative approach, and the Hubble parameterH = 10−1 MPL, which is
an intermediate choice between a chaotic model (H ' MPL) and aGUT inflationary phase
(H ' 10−4 MPL).

In the case of exponential expansion in the time variablet , which implies (see
equation (2.10))

a(τ) = a(0)

(1 − a(0)Hτ)
(3.1)

and for a classical field configuration independent ofτ , φc = φc0, we express the second
line of (2.12) as a function ofτ and φc0. In figure 1 we plot the integral with respect to
φc0 of the above quantity when the conformal timeτ varies between 0 and 1/H , which
corresponds to a largee-fold number,φc0 ∈ [0, 10 MPL], and a(0) has been set to 1. This
configuration fora(τ) and fixedφc0 corresponds to an exact de Sitter space, but unlike [1–
4], with a Lorentzian signature. The non-local term describes an energy exchange between
the gravitational field and the fieldφ (see equation (2.3)). Such an exchange may lead to
dissipative or non-dissipative processes in the early universe, depending on the sign of the
non-local term, as will be clear from the analysis in section 4. For a constant background
field φc, only a scale factor varying in time yields the above non-local corrections to the
Coleman–Weinberg potentialVeff.
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Figure 1. In Planck units (used also in
figures 2, 3, 4 and 5), the correction to
the Coleman–Weinberg potential resulting
from the Bogoliubov coefficients in (2.12)–
(2.14) is plotted againstτ andφc0.

Figure 2. The Coleman–Weinberg
1-loop effective potential is plotted
againstφc0, in the case of a de Sitter
background.

In figure 2, we plot the Coleman–Weinberg potentialVeff(φc) (resulting from the
integration of (A.7) forµ1 = µ2 = MPL and Veff(0) = V0 = 3M2

PLH
2/(8π)) for the

same choice of parameters. As one can see from figures 1 and 2, the contribution of
non-local terms to the 1-loop effective potential is very small, and hence its effect on the
semiclassical equation of motion is negligible in a first approximation (see section 4).
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4. Semiclassical field equation and non-local effects

The analysis of the previous section has shown that the effect of the Bogoliubov coefficients
on the Coleman–Weinberg potential does not modify the pattern of minima found in static
de Sitter space [8]. It is therefore legitimate to study the equation (2.12) when, in a
first approximation, its second line is neglected, and then to use the resulting solution to
evaluate the non-local correction. Here, the value ofVeff(0) is set equal toV0 as above, and
it dominates the energy, as it occurs in a de Sitter universe, forφc < MPL.

On studying the limiting form of equation (2.12) when the second line is neglected,
it can be easily seen that the self-interaction term (see equation (A.7)) plays a key role
in obtaining a sensible physical model. In other words, for vanishingλ, equation (2.12)
admits a runaway exact solution forφc in the form (denoting byD1 andD2 two integration
constants)

φc = D1 exp(−β1Ht) + D2 exp(−β2Ht) (4.1)

whereβ1 ≡ 1
2

(
3 + √

9 + 48Be2
)

andβ2 ≡ 1
2

(
3 − √

9 + 48Be2
)
, and we have re-expressed

τ in terms oft by means of (2.10). This behaviour results from the particular form taken
by the potential in (2.12), i.e.−6BH 2e2φ2

c , which is unbounded from below.
We thus study the equation given by the first line of (2.12) with non-vanishingλ, i.e.

1

a2

d2φc

dτ 2
+ 2

a3

da

dτ

dφc

dτ
− e2〈AµAµ〉φc + ∂Veff

∂φc

= 0 (4.2)

subject to the initial conditionsφc(0) = MPL and dφc/dτ(τ = 0) = 0. In figures 3 and 4,
φc(τ ) and dφc/dτ are plotted. As one might expect,φc(τ ) decreases until it reaches the
zero value, by virtue of the nature of the potential (see figure 2), whilst the kinetic energy
increases.

Figure 3. The solution of the semi-
classical field equation (4.2) for the
background field configuration is plot-
ted againstτ .
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Figure 4. The derivative with respect
to τ , for the numerical solution plotted
in figure 3.

We have then used the solution of (4.2) to evaluate the non-local effects in our model.
For this purpose, starting from the definitions of energy densityρφc

and pressurepφc
of the

background scalar field in a de Sitter universe, i.e.

ρφc
≡ 1

2φ̇2
c + Veff − 6Be2H 2φ2

c (4.3)

pφc
≡ 1

2φ̇2
c − Veff + 6Be2H 2φ2

c (4.4)

one gets from (2.12) the equation

dρφc

dτ
+ 3Ha(ρφc

+ pφc
) = −2(φc(τ ), τ )

dφc

dτ
. (4.5)

With our notation,2 corresponds to the whole second line of (2.12),

2(φc(τ ), τ ) ≡ φc

4π2a2

2∑
j=1

1

2
λj

∫ ∞

0
dk k2�−1

j,k [sj,k + Rezj,k] . (4.6)

If the right-hand side of (4.5) can be viewed as a dissipative term, which implies that it
always takes negative values and depends quadratically on dφc/dτ , the Bianchi identity
leads to the following equation for the energy densityρR of radiation:

dρR

dτ
+ 4Ha ρR = 2(φc(τ ), τ )

dφc

dτ
. (4.7)
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Figure 5. The right-hand side of
equation (4.5) is plotted againstτ .

In figure 5 we plot the right-hand side of (4.5) corresponding to the solution of
equation (4.2). Note that its sign turns out to be positive for the largest part of theτ -interval,
and hence cannot actually lead to dissipative effects. A naturally occurring question is how
to interpret this lack of dissipation. Indeed, in the adiabatic approximation studied in [5],
the coupling of the scalar field to a fermionic field by a Yukawa term produces a vacuum
energy loss rate proportional to(Haφc +dφc/dτ)dφc/dτ . In this last expression the second
term is clearly a dissipative effect, since it does not depend on the sign of the velocity and
in the formula reported in [5] it occurs with the correct sign to represent an energy loss.
By contrast, the first term does depend on the sign of dφc/dτ and in de Sitter, whereH is
constant, it only represents a further quantum correction to the energy and pressure of the
φc fluid.

These considerations seem to suggest that also in our case, where one deals with decays
of the classical field configuration into its quanta, the non-local term in the semiclassical
field equation may be essentially a linear combination ofφc and dφc/dτ . If this property
holds, one can expect that the evaluation of(Haφc + dφc/dτ)dφc/dτ may indicate when
dissipative effects are likely to occur, depending on whether the first or the second term of
this linear combination is dominant. In other words, the sign of the right-hand side of (4.5)
shown in figure 5 can be understood by pointing out that for the solution of (4.2), shown in
figures 3 and 4, the ratio(dφc/dτ)/Haφc is smaller than 1 whilst dφc/dτ is negative, when
τ ∈ [0, 9.2 M−1

PL ]. Note that, in the neighbourhood ofτ = 9.2 M−1
PL , −2 dφc/dτ vanishes,

and this corresponds to the value ofτ such that the linear combination(Haφc + dφc/dτ)

vanishes.
As a further check of the conjecture about the functional dependence of the non-local

term of (2.12) onφc and dφc/dτ , one should also analyse other situations where, unlike
before, the ratio(dφc/dτ)/Haφc is larger than 1. This can be done, for example, by taking
as a trial function forφc(τ ) the linear combinationφc(τ ) = φc0 + ατ , whereα andφc0 are
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two arbitrary parameters. The resulting analysis, performed by varyingα andφc0 so as to
reproduce the conditions(dφc/dτ)/Haφc > 1 or (dφc/dτ)/Haφc < 1, seems to confirm
that, in de Sitter,2(φc(τ ), τ ) is indeed dominated by a term proportional to the combination
(Haφc + dφc/dτ).

5. Concluding remarks

This paper has studied scalar electrodynamics in a spatially flatFRW universe, by including a
self-interaction term for a conformally invariant scalar field (cf [5, 6, 10]). On imposing the
Lorentz gauge and the supplementary condition (A.4), the 1-loop equation for the expectation
value of the complex scalar field in the conformal vacuum shows a linear superposition of
the self-interaction term of [5] and of the electromagnetic term [6]. The results of our
investigation are thus as follows.

First, the numerical solution for the Bogoliubov coefficients in (2.13) and (2.14), subject
to the initial conditions (2.15), has been obtained and used to find the correction to the
Coleman–Weinberg effective potential by integrating with respect toφc the second line of
(2.12). The pattern of minima in the effective potential is not modified by the non-local
term in (2.12). For the particular values of parameters considered in our investigation, the
non-local corrections turn out to be several orders of magnitude smaller.

Second, the limiting form of equation (2.12), i.e. equation (4.2), has been studied,
and its numerical solution has been used to evaluate non-local effects in our cosmological
model. Such a solution corresponds to a slow-roll dynamics. Interestingly, the approximate
calculation of the function2 defined in (4.6) shows that2 does not lead necessarily to
dissipative effects in the early universe. Nevertheless, in a de Sitter model, the right-hand
side of (4.5) is very well approximated by the same combination ofφc and dφc/dτ which
results from the adiabatic case studied in [5], where the coupling of a scalar field to a
fermionic field was instead considered. More precisely, we have found that, for various
forms of φc(τ ), the right-hand side of (4.5) is essentially given by

− A
(
Ha φc + dφc

dτ

)dφc

dτ

whereA is a positive function ofτ . The first term in parentheses leads to a further quantum
correction to the energy density of the scalar field, at least when the functionA is slowly
varying. The second term is purely dissipative (see the end of section 2).

One of the main motivations for studying non-local corrections to the Coleman–
Weinberg potential was their possible relevance for the reheating of the early universe
[7]. Our analysis confirms that they cannot be simply re-expressed by a term of the kind
0 dφc/dτ , as first found in [7], where a different approach to the effective action is used
with respect to [5]. A non-trivial open problem is the numerical evaluation of the function
A in our de Sitter model. Moreover, it appears necessary to understand how the form ofA

depends on the specific choice of the background fieldφc(τ ). Last, but not least, the whole
analysis should be repeated forFRW models which are not in a de Sitter phase.
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Appendix

Following [6], we denote byDµν

R (x, x ′) the photon retarded Green’s function, which satisfies
the equation (

δµ
ρ � − ∇µ∇ρ − Rµ

ρ

)
x
D

ρν

R (x, x ′) = gµν δ(x, x ′)/
√

− detg . (A.1)

Thus, by writingA
µ

in(x) for the photon in-field, the solution of (2.4) to ordere, in the
Lorentz gauge

∇µAµ = 0 (A.2)

is given by [6]

Aµ ∼= A
µ

in − ie
∫

d4x ′ √
− detg(x ′) D

µν

R (x, x ′)
(
φ†∇νφ − φ∇νφ

†)
in . (A.3)

The residual gauge freedom of the problem is dealt with by imposing the additional
condition [6]

XµAµ = 0 (A.4)

whereX is the same timelike vector field appearing in (2.9). Equations (A.2)–(A.4) imply
that, on inserting (A.3) into the right-hand side of (2.5), the only non-trivial contribution
still vanishes after integration by parts, since

D
µν

R ∇νφc = 0 ∇µ D
µν

R = 0 . (A.5)

In equation (2.12) for the expectation valueφc of the scalar fieldφ, the derivative
with respect toφc of the 1-loop effective potential is given, in the case of non-vanishing
renormalized mass, by (cf equation (3.15) of [5])
∂Veff

∂φc

= m2φc + ξRφc + 1

12
λφ3

c − 1

96π2
λ
(
ξ − 1

6

)
Rφc − 5

2304π2
λ2φ3

c

+ 1

384π2
λ

(
m2+

(
ξ − 1

6

)
R + 1

12
λφ2

c

)
φc log

∣∣∣∣m2 + (ξ − 1
6)R + 1

12λφ2
c

m2

∣∣∣∣
+ 1

128π2
λ

(
m2+

(
ξ − 1

6

)
R + 1

4
λφ2

c

)
φc log

∣∣∣∣m2 + (ξ − 1
6)R + 1

4λφ2
c

m2

∣∣∣∣
(A.6)

and form = 0 by (cf equation (3.16) of [5])

∂Veff

∂φc

= ξRφc + 1

12
λφ3

c + 1

4608π2
λ2φ3

c

(
log

∣∣∣∣ (ξ − 1
6)R + 1

12λφ2
c

(λ/12)µ2
1

∣∣∣∣ − 11

3

)
+ 1

512π2
λ2φ3

c

(
log

∣∣∣∣ (ξ − 1
6)R + 1

4λφ2
c

(λ/4)µ2
1

∣∣∣∣ − 11

3

)
+ 1

384π2
λ
(
ξ − 1

6

)
Rφc

(
log

∣∣∣∣ (ξ − 1
6)R + 1

12λφ2
c

(ξ − 1
6)µ2

2

∣∣∣∣ − 1

)
+ 1

128π2
λ
(
ξ − 1

6

)
Rφc

(
log

∣∣∣∣ (ξ − 1
6)R + 1

4λφ2
c

(ξ − 1
6)µ2

2

∣∣∣∣ − 1

)
. (A.7)

In agreement with the notation of section 2,m, ξ andλ are the renormalized values of our
parameters, andµ1 andµ2 are completely arbitrary renormalization points. Our equations
(A.6) and (A.7) are obtained by imposing the renormalization conditions (3.12a)–(3.12c)
of [5] and bearing in mind that the numerical coefficients in our equation (2.8) differ from
the ones occurring in equation (2.19) of [5], since we study a complex scalar field.
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