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Abstract. The form factors of the weak currents, which appear in the semileptonic decays of the heavy
pseudoscalar mesons are calculated within the quark confinement model by taking into account, for the
first time, the structure of heavy-meson vertex and the finite quark mass contribution in the heavy-quark
propagators. The results are in quite good agreement with the experimental data.

PACS. 12.39.Ki Relativistic quark model – 13.20.He Decays of bottom mesons – 13.20.Fc Decays of
charmed mesons

1 Introduction

The study of semileptonic decays of heavy pseudoscalar
mesons can be used to determine the elements of the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. The decay
D → K(K∗)lν is related to |Vcs|, B → D(D∗)lν and
B → π(ρ)lν are proportional to |Vcb|2 and |Vub|2, respec-
tively. In the charm sector, however, the CKM elements
can be determined independently of the D semileptonic
decay rate using unitarity of the CKM matrix and the
smallness of Vcb and Vub [1–3]. Thus, the theoretical pre-
dictions for the form factors and their q2-dependence can
be tested.

The study of heavy-to-heavy transitions in decays of
B → D(D∗)lν is considerably simplified by the spin-flavor
symmetry [4]. In the limit of infinite quark mass, in fact,
the quark mass and spin decouple from the dynamics of
the decay, leading to numerous symmetry relations among
form factors which can all be related to a single universal
form factor, the Isgur-Wise function. At zero recoil, this
function is known to be normalized to unity, which allows
one to determine |Vcb| from the measured B → D∗lν spec-
trum in the small region near the zero recoil point. The
theoretical symmetry corrections are of 1/m2

Q order due
to the Luke’s theorem [5].

The determination of |Vub| from the analysis of B →
π(ρ)lν decays is one of the most important and challenging
measurements in B-physics since the rate for these decays
is expected to be only about 1% of the inclusive semilep-
tonic decay rate. The exclusive calculations for B → Xulν
are more difficult than those for B → Xclν, because the
range of recoil velocities available to the light final-state
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mesons is much larger than for the charm mesons. One
therefore expects a much larger variation in the form fac-
tors, which are still poor known, that enter into the de-
cay rate. As a result, measurements of |Vub| are currently
quite model dependent, and there is substantial variation
among values obtained using different models [2,3].

The main goal of the present paper is to describe the
heavy-to-heavy and heavy-to-light transitions within the
quark confinement model (QCM) [6], by taking into ac-
count for the first time the nonlocal heavy-light quark
vertices.

The QCM approach is based on modelling the con-
fined light quarks with the assumption of local hadron-
quark coupling. It successfully describes many static and
non-static properties of light hadrons. The extension of
this approach to heavy-quark physics has been done in
[7] by assuming that the free Dirac propagators can be
employed for charm and bottom quarks. It might be jus-
tified by the observation that heavy-quarks weakly inter-
act with vacuum background fields, and therefore they
can be considered as free particles with large constituent
masses. The scaling laws for leptonic decay constants and
semileptonic form factors are reproduced in the heavy-
quark limit. In addition, the Isgur-Wise function has been
calculated. However, the Isgur-Wise function is larger than
in other approaches and in the fitted experimental data.
In [8,9] the infrared behavior of the heavy quark has been
taken into account by modifying its conventional propaga-
tor in terms of a single parameter ν and the heavy-to-light
form factors have been calculated. In this paper we in-
troduce the vertex function describing the distribution of
constituents inside a heavy meson. Such distribution is re-
lated to the heavy-meson Bethe-Salpeter amplitude in the
approach based on the Dyson-Schwinger equations [10].
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2 Model

The QCM approach [6] is based on the effective interaction
Lagrangian for the transition of hadron into quarks:

Lint(x) = gHH(x)

×
∫
dx1

∫
dx2ΦH(x;x1, x2)q̄(x1)ΓHλHq(x2) . (1)

Here, λH and ΓH are the Gell-Mann and Dirac matrices,
respectively, which provide the flavor and spin numbers of
mesons H. The function ΦH is related to the scalar part of
Bethe-Salpeter amplitude. The local form ΦH(x;x1, x2) =
δ(x−(x1+x2)/2)δ(x1−x2) has been used in the QCM [6].

The coupling constants gH defined by what is usually
called the compositeness condition proposed in [11] and
extensively used in [6], is given by

ZH = 1− 3g2
H

4π2
Π̃ ′

H(m2
H) = 0 , (2)

where Π̃ ′
H is the derivative of the meson mass operator.

In the QCM-approach the light quark propagators are
given by an entire (non-pole) function to ensure the quark
confinement:

1
mq− �p ⇒

∫
dσµ

Λµ− �p = G(�p) =

1
Λ

[
a(− p2

Λ2
) +

�p
Λ
b(− p2

Λ2
)
]
, (3)

with the functions a and b defined by

a(−z) =
∫

µdσµ

µ2 − z
, b(−z) =

∫
dσµ

µ2 − z
. (4)

Moreover, to conserve the local properties of Feynman di-
agrams like the Ward identities, one has the following pre-
scription for the modification of a line with n-light quarks
within the Feynman diagram [9]:

n∏
i=0

1
mq− �pi

Γi ⇒
∫
dσµ

n∏
i=0

1
Λµ− �pi

Γi . (5)

It is useful to introduce the notation

σ(�k) ≡ σS(−k2)+ �kσV (−k2),

σS(z) ≡ µ

µ2 + z
, σV (z) ≡ 1

µ2 + z
,∫

dσµσS(z) = a(z) ,
∫

dσµσV (z) = b(z) ,∫
dσµσS(z1)σV (z2) =∫
dσµσV (z1)σS(z2) = −a(z1)− a(z2)

z1 − z2
,∫

dσµσV (z1)σV (z2) = −b(z1)− b(z2)
z1 − z2

,∫
dσµσS(z1)σS(z2) =

z1b(z1)− z2b(z2)
z1 − z2

,∫
dσµσV (z1)σ′

V (z2) =

− [b(z1)− b(z2)]− (z1 − z2)b′(z2)
z1 − z2

,

where the confinement functions employed in [6] have the
forms

a(u) = a0 exp(−u2−a1u), b(u) = b0 exp(−u2+b1u). (6)

The following values for the free parameters ai, bi, and Λ

a0 = b0 = 2 , a1 = 1 , b1 = 0.4 , Λ = 460 MeV

give a good description of the hadronic properties at low
energies [6].

The hadron-quark coupling constants for light, pseu-
doscalar and vector, mesons and heavy pseudoscalar
mesons are also determined from the compositeness con-
dition [6] and written down

gP =
2π√
3

√
2

RP (mP )
,

RP (x) = B0 +
x

4

1∫
0

du b(−ux

4
)
(1− u/2)√

1− u
. (7)

Note that from now on all masses and momenta in the
structural integrals are given in units of Λ.

The heavy-quark propagator is given by

SQ(k + p) =
1

MQ− �k− �p . (8)

3 Form factors

We consider the leptonic H(p) → lν, semileptonic heavy-
to-heavy B(p) → D(p′)lν and semileptonic heavy-to-light
H(p) → P (p′)lν decays, where H(p) represents a B (or
D) meson with momentum p (p2 = m2

H) and P (p′) can



M.A. Ivanov et al.: The semileptonic form factors of B and D mesons in the Quark Confinement Model 111

be a π or K meson with momentum p′ (p′2 = m2
P ). The

invariant amplitudes describing the decays are

A(H(p) → eν) =
GF√
2
VQq(ēOµν)M

µ
H(p), (9)

A(B(p) → D(p′)eν) =
GF√
2
Vbc(ēOµν)M

µ
BD(p, p′), (10)

A(H(p) → P (p′)eν) =
GF√
2
VQq(ēOµν)M

µ
HP (p, p

′), (11)

where GF is the Fermi weak-decay constant, VQq is the
appropriate element of the Cabibbo-Kobayashi-Maskawa
matrix (q denotes a light quark and Q a heavy-quark) and
the matrix elements of the hadronic currents are

Mµ
H(p) =

3
4π2

gHΛ
2

∫
d4k

4π2i
φH(−k2)

×tr
[
OµSQ(�k+ �p)γ5G(�k)

]
= fHp

µ , (12)

Mµ
BD(p, p′) =

3
4π2

gBgDΛ

∫
d4k

4π2i
φB(−k2)φD(−k2)

×tr
[
Sc(�k+ �p′)OµSb(�k+ �p)γ5G(�k)γ5

]
=

fBD
+ (q2)(p+p′)µ + fBD

− (q2)(p−p′)µ , (13)

Mµ
HP (p, p

′) =
3
4π2

gHgPΛ

∫
dσµ

∫
d4k

4π2i
φH(−k2)

×tr
[
OµSQ(�k+ �p)γ5σ(�k)γ5σ(�k+ �p)

]
=

fHP
+ (q2)(p+p′)µ + fHP

− (q2)(p−p′)µ . (14)

From the compositeness condition (in eq. (2)), the expres-
sion for the propagators, in eqs. (3), (4) and (8), and the
method outlined in [10], we obtain for the heavy decay
constants and heavy-to-heavy form factors

gH =

√
4π2

3J (+)
3 (mH ,mH)

,

fH =
3
4π2

gH J2(mH),

fBD
± =

3
4π2

gBgD J
(±)
3 (mB ,mD)

(15)

with

J2(mH) =∫ ∞

0

du
u

(1 + u)2
z′φH(z)

[(
1 +

u

2

)
a(z) +

u

2
MQb(z)

]
,

J
(+)
3 (mH ,mH) =

∫ ∞

0

du
u

(1 + u)3
φ2

H(z)

×
[
MQa(z) +

1
2
b(z)

(
2z + u(m2

H +M2
Q + z)

)]
,

J
(+)
3 (mB ,mD) =

1
2

∫ 1

0

dx
∫ ∞

0

du
u

(1 + u)3
φB(zx)φD(zx) {a(zx) (Mb +Mc)

+b(zx)
[
u

(
MbMc +m2

D(1− x) + xm2
B + zx

)
+ 2zx

]}
,

J
(−)
3 (mB ,mD) =

1
2

∫ 1

0

dx
∫ ∞

0

du
u

(1 + u)3
φB(zx)φD(zx)

×{a(zx) [Mc −Mb + 2u (Mc − x(Mb +Mc))]
+b(zx)u

[
(1− 2x)(zx −MbMc) +m2

D(1− x)− xm2
B

]}
,

where the variables are given by

z = uM2
Q − u

1 + u
m2

H ,

z′ =M2
Q − 1

(1 + u)2
m2

H ,

zx = u

{
x

[
M2

b − m2
B

1 + u

]
+ (1− x)

×
[
M2

c − m2
D

1 + u

]
− u

1 + u
x(1− x)q2

}
.

For the heavy-to-light form factors, instead, the analytical
expressions are

fHP
± (q2) = gHgP

[
3
4π2

]
2
π

∫ ∞

0

rdr
∫ ∞

0

dα
(1 + α)3

×
∫ 1

−1

dγ√
1− γ2

φH(z1)
1
2
[G1 ±G2],

where the functions G1(z1, z2) and G2(z1, z2) can be writ-
ten as

G1 = FSS(z1, z2) + z1FV V (z1, z2)− 2m2
P t

2FV V ′(z1, z2)
G2 = MQ(1 + u)FSV (z1, z2) +

(
z1(1 + u) + um2

H

)
×FV V (z1, z2) + 2t2 (FSS′(z1, z2) + z1FV V ′(z1, z2)) ,

and

z1 = r2 + uM2
Q − um2

H

1 + u
, t = r

√
1− γ2 ,

z2 = x2 + iy2 =[
r2 + uM2

Q − uq2

1 + u
− m2

P

1 + u

]
+ i

[
2rγmP√
1 + u

]
.
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Table 1. Prediction for leptonic decay constants (in GeV), form factors and ratios. The ”Obs.” are extracted from refs. [1,
14–19] (q2

M = (mB − mD)
2).

Obs. Calc. Obs. Calc.

∗ fD 0.191+19
−28 0.165 ∗ fB 0.172+27

−31 0.135
∗ fDK

+ (0) 0.74 ± 0.03 0.77 Br(D → Klν) (6.8± 0.8) · 10−2 8.8 · 10−2

∗ |Vcb|fBD
+ (q2

M ) (5.09± 0.81) 10−2 5.1 10−2 Br(B → Dlν) (2.00± 0.25) · 10−2 3.5 · 10−2

∗ fBπ
+ (0) 0.27 ± 0.11 0.55 Br(B → πlν) (1.8± 0.6) · 10−4 3.3 · 10−4

The functions FII appearing in G1 and G2 are defined as

FSS(z1, z2) ≡
∫

dσµσS(z1)σS(z2),

FV V ′(z1, z2) ≡
∫

dσµσV (z1)σ′
V (z2), etc.

Before closing this section, we discuss the behaviour of the
heavy-to-heavy form factors in the limit of Mb, Mc → ∞.
We shall show that our model reproduces, in this limit, all
the scaling laws predicted by the Heavy-Quark Effective
Theory at leading order.

In particular, in the heavy-quark limit (m2
H = (MQ +

E)2 and MQ → ∞) one finds

3g2
H

4π2

1
2MQ

IHH = 1,

IHH =

∞∫
0

duφ2
H(z̃){a(z̃) +√

ub(z̃)},

fP = Λ

√
2
MQ

√
3

2π

√
1

IHH

×
∞∫
0

du(
√
u− E)φH(z̃){a(z̃) + 1

2
√
ub(z̃)},

f± =
MQ ±MQ′

2
√
MQMQ′

ξ(w),

where the Isgur-Wise function, ξ(w), is given by

ξ(w) =
1

IHH

1∫
0

dτ
W

×
∞∫
0

duφ2
H(z̃W )

[
a(z̃W ) +

√
u/Wb(z̃W )

]
(16)

with

W = 1 + 2τ(1− τ)(w − 1),

z̃W = u− 2E
√
u/W , z̃ = u− 2E

√
u .

It is readily seen that the upper bound for the Isgur-Wise
function is obtained for E = 0, namely

ξ(w) ≤ ξ̄(w) = ξ(w)|E=0 =

1
1 +R

{
ln[w +

√
w2 − 1]√

w2 − 1
+

2R
1 + w

}
, (17)

where

R =

∞∫
0

du φ2
H(u)

√
u b(u)

∞∫
0

du φ2
H(u) a(u)

.

As a consequence of eq. (17) the slope parameter has the
lower bound

ρ2 = −ξ′(1) = 1
3

[
1 +

1
2

R

1 +R

]
≥ 1

3
.

In the heavy-quark limit (p2 = (MQ +E)2, (p′)2 = 0
and MQ → ∞) one finds for the heavy-to-light form fac-
tors that

f±(q2) → gπ

4π

√
6

IHH

∞∫
0

du(
√
u− E)φH(z̃1)

×
1∫

0

dτ
√
MQ

[
1
MQ

G̃1 ± G̃2

]
. (18)

Here

G̃1 = FSS(z̃1, z̃2) + z̃1FV V (z̃1, z̃2) ,

G̃2 = FSV (z̃1, z̃2) + τ
√
uFV V (z̃1, z̃2) ,

with the FII ’s defined before, z̃1 = u − 2E
√
u, z̃2 = z̃1 +

2Xτ
√
u, and

X = v · p′ = MQ

2

[
1− q2

M2
Q

]
.

At the end point q2 = q2max (X = 0) one can reproduce
the well-known relations among form factors in the heavy-
quark limit

(f+ + f−)B

(f+ + f−)D
=

√
mD

mB
,

(f+ − f−)B

(f+ − f−)D
=

√
mB

mD
.

4 Results and discussion

The expressions obtained in the previous section for the
form factors and decay constants are valid for any kind of
vertex function φH(−k2). Here, we choose a Gaussian form
φ(−k2) = exp{k2/Λ2

H} in the Minkowski space. The mag-
nitude of ΛH characterizes the size of the BS-amplitude
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Fig. 1. The semileptonic D → K, B → D and B → π form
factors with, for comparison, a vector dominance, monopole
model eq. (19) and a lattice simulation [20]. Our results: solid
lines. Monopole: dotted lines. Lattice: data points.

and is an adjustable parameter in our approach. Thus, we
have four adjustable parameters: ΛD and ΛB plus the two
heavy-quark masses, or binding energies ED = mD −Mc

and EB = mB − Mb. The first two are fixed in such a
way the form factors fBπ

+ (q2) and fDK
+ (q2) are increasing

functions of q2; we choose ΛD = 0.56 GeV and ΛB = 0.67
GeV. The other parameters are fixed by the least-squares
fit to the observables measured experimentally or taken
from a lattice simulation (see asterisks in table 1).

The best fit is achieved for ED ≈ EB , thus we choose
to fix ED = EB in such a way we have only two free pa-
rameters. The best values are ED = EB = 0.554 GeV and
Vcb = 0.043 which is close to the world-accepted value [1].
The resulting values for the heavy to light form factors at
q2 = 0 are larger those predicted by other approaches. It
should be stressed that these values are practically fixed
by the assumption that the form factor should be increas-
ing functions of q2. Moreover, there is a strong correlation
between fH→L

+ (0) and the decay constant fH , i.e. smaller
values for form factors corresponds to small values for de-
cay constants. The situation changes if no assumptions are
done on the q2 behaviour of the form factors. We plot the
the q2-behaviour of the resulting form factors on fig.1. For
comparison, the vector dominance, pole model is shown:

fq→q′
+ (q2) =

fq→q′
+ (0)

1− q2/m2
Vqq′

(19)

with m2
Vqq′

being the mass of the lightest q̄q′-vector me-
son. We use mD∗

s
= 2.11 GeV for c → s, mB∗ = 5.325

GeV for b → u, mB∗
c
≈ mBc

= 6.4 GeV [12] for b → c

transitions. The values of fqq′
+ (0) are taken from table 1.

Also we calculate the branching ratios of semileptonic de-
cays by using widely accepted values of the CKM matrix
elements [1].

A few comments should be done concerning the com-
parison of our results with the results of paper [13] where
the weak decays of pseudoscalar mesons have been de-
scribed within the relativistic constituent quark model
with free quark propagators. Since there is no confinement
in that model the binding energies have been found to be
relatively small: ED = 0.20 GeV and EB = 0.22 GeV.
Those values provide the absence of imaginary parts in the
physical amplitudes describing the decays of the low-lying
pseudoscalar mesons. However, the excited states like vec-
tor mesons cannot be considered in a self-consistent man-
ner. The Quark Confinement Model allows us to give the
unified description of physical observables without quark
thresholds in the physical amplitudes and with a mini-
mum set of parameters: the only parameter Λ = 0.460
GeV, the size of confinement region, for light quark sec-
tor and four extra parameters (ΛB,D-the sizes of Bethe-
Salpeter amplitudes, and EB,D-the binding energies) for
heavy-quark sector. As a result, the accuracy of descip-
tion is less than in [13] while, the region of application is
considerably wider.
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