J. Phys. A: Math. GerB2 (1999) 5643-5655. Printed in the UK PIl: S0305-4470(99)03681-1

Qualitative properties of the Dirac equation in a central
potential

Giampiero Espositot¥ and Pietro Santorellif

T Istituto Nazionale di Fisica Nucleare, Sezione di Napoli, Mostra d’Oltremare Padiglione 20,
80125 Napoli, Italy

T Universit di Napoli Federico Il, Dipartimento di Scienze Fisiche, Complesso Universitario di
Monte S. Angelo, Via Cintia, Edificio G, 80126 Napoli, Italy

Received 20 April 1999

Abstract. The Dirac equation for a massive sp%nﬁeld in a central potentiaV in three
dimensions is studied without fixiregpriori the functional form of. The second-order equations

for the radial parts of the spinor wavefunction are shown to involve a squared Dirac operator for
the free case, whose essential self-adjointness is proved by using the Weyl limit point-limit circle
criterion, and a ‘perturbation’ resulting from the potential. One then finds that a potential of
Coulomb type in the Dirac equation leads to a potential term in the above second-order equations
which is not even infinitesimally form-bounded with respect to the free operator. Moreover, the
conditions ensuring essential self-adjointness of the second-order operators in the interacting case
are changed with respect to the free case, i.e. they are expressed by a majorization involving
the parameter in the Coulomb potential and the angular momentum quantum number. The same
methods are applied to the analysis of coupled eigenvalue equations when the anomalous magnetic
moment of the electron is not neglected.

1. Introduction

Inthe same year when Dirac derived the relativistic wave equation for the electron [1], the work
of Darwin and Gordon had already exactly solved such an equation in a Coulomb potential
in three spatial dimensions [2, 3]. Since those early days, several efforts have been produced
in the literature to solve the Dirac equation with other forms of central potentials, until the
recent theoretical attempts to describe quark confinement [4-8]. In the present paper we study
the mathematical foundations of the eigenvalue problem for a massivé $igia-in a central
potentialV (r) onR3, without specifyinga priori which function we choose fdr (r). In other

words, we prefer to draw conclusions ¥ir) from a careful mathematical investigation.

By doing so, we hope to elucidate the general framework of relativistic eigenvalue
problems on the one hand, and to develop powerful tools to understand some key features
of central potentials on the other. For this purpose, in section 2 we focus on the radial parts
of the spinor wavefunction, casting the corresponding second-order differential operators in
a convenient form for the subsequent analysis. In section 3, the Weyl limit point-limit circle
criterion [9] is used to prove that the squared Dirac operator for the free problem is essentially
self-adjoint on the sef'§° (0, oo) of smooth functions o0, co) with compact support away
from the origin. In section 4 some boundedness criteria for perturbations [9, 10] are first
described and then applied when the potential in the original Dirac equation consists of terms
of Coulomb and/or linear type. The effects of the anomalous magnetic moment of the electron
are studied in section 5. Concluding remarks and open problems are presented in section 6.
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2. Second-order equations for stationary states

For a charged particle with spin in a central field, the angular momentum operator and the parity
operator with respect to the origin of the coordinate system commute with the Hamiltonian.
Thus, states with definite energy, angular momentum and parity occur. The corresponding
spinor wavefunction for stationary states reads [11, 12]

w=<¢>=< 8(V)Qj.1,m )
X D2 F()Qrm

where;,;,, and ;, , are the spinor harmonics defined, for example, in [11,12], and
lzji%],l/=2j—l.

The stationary Dirac equation in a central potentiat) takes the form being the rest
mass of the particle of linear momentuyi

moc? + V (r) o-p eY_g(?
o-p —moc®+ V() )\ x )~ \x

and leads eventually to the following coupled system of first-order differential equations
(having defined (r) = rf (r) andG(r) = rg(r)):

d &k
(d_ + —> G(r)= R —W()F(r) (2.1)
r r
d %k
(—d— + —) F(r) = (=x2 = W(r)G(r) (2.2)
r r
wherek = —1 — 1 (if j =1+ 1) or (if j =1 — 1), and we have defined
Wiy = L0 (2.3)
hc
2
ay = B moc (2.4)
hc
_ 2
pp = Lt moc (2.5)
he

Equation (2.1) yields a formula faF (r) which, upon insertion into equation (2.2), leads to
the second-order equation

d? d
[m‘*}’(’”)d—r‘nl(’”)] G@r)=0 (2.6)
where
W)
p(r) = G W) (2.7)
k(k+1) k
q(r) = — ( r: a —p* W2(r) + (k2 = M)W (r) — Mha. (2.8)

Equation (2.6) should be supplemented by the boundary condition= 0. It then describes

a Sturm-Liouville equation nonlinear in the spectral parameter. In [13], the equivalence has
been proved of the radial Dirac equations (2.1) and (2.2) to the parameter-dependent Sturm—
Liouville equation (2.6) (the parameteused in [13] corresponds to ofr, andmoc? = 1 units

are used therein). By equivalence we mean that, under suitable assumptions on the potential,
the functionG solving equation (2.6) is found to belong to the prescribed spg¢&.), i.e. the

space of absolutely continuous functions ond®) which are square integrable & jointly

with their first derivative and vanish at the origin. Now we can use a well known technique
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to transform equation (2.6) into a second-order equation where the coefficigrmzmrhishes.
This is achieved by defining the new functi@nsuch that [14]

Q@) = G(r)exp%/p(r) dr. (2.9)

In the few cases where exact analytic formulae are available in the literature one studies
equation (2.6) and its counterpart fbr(see equation (2.13)). However, equation (2.9) has
the advantage of leading to a second-order equatior2fan a form as close as possible

to ‘perturbations’ of Schirdinger operators, and is hence preferred in our paper devoted to
qualitative and structural properties. In non-relativistic quantum mechanics, such a method
leads to a unitary map [9] transforming the radial Sclinger equation in a central potential

into an equation involving a radial Sdidinger operator—%z2 + U(r) acting on square-
integrable functions o, which vanish at the origin. In our relativistic eigenvalue problem
the transformation of the Hilbert space of square-integrable functions is no longer unitary, but
remains of practical value. All nonlinear properties of the resulting Sturm—Liouville boundary-
value problem are in fact encoded into a single function playing the role of a parameter-
dependent potential term (see below), rather than two funciiargq as in (2.6)—(2.8). The
function2 is then found to obey the differential equation

a2 I(+1) (E? — mbc?)
[_W + —7 + Pw,E(r)i| Q(r) = TQ(;’) (2.10)
having defined
1w 3/ W kW 2F
= — 2 — — —_——— —
Pre = Wi+ g s () S e e, e

Such an equation may be viewed as follows: since the potéfitipérturbs’ the ‘free’ problem
for which W vanishes in equations (2.1) and (2.2), in the corresponding second-order equation
(2.10) one deals with a ‘free operator’
, &1+
A= T dr2 * re
perturbed by the multiplication operatBy, g (r) defined in (2.11). An interesting programme
is therefore emerging at this stage:

forall 1=0,1,... (2.12)

(i) First, prove (essential) self-adjointness of the ‘free’ operdfoon a certain domain.

(ii) Second, try to understand whether the operator Py £ (r) in equation (2.10) remains
self-adjoint on the same domain. If this condition is too restrictive, try to derive all
properties of this ‘perturbed’ second-order operator.

If one first uses equation (2.2) to reladdr) to %—f and F, one finds instead the Sturm—
Liouville equation (cf [13])

o +p d +q F(r)=0 2.13
a2 P(r)a qr) | F(r) = (2.13)
supplemented by the boundary conditiB) = 0, where (cf (2.7) and (2.8))
o W'(r)
p(r) = T et W) (2.14)
k(k—1 k
Gr) = — ( — ) _ —p(r)+ W2(r) + (hp — AW (r) — Mha. (2.15)

Thus, after defining (cf (2.9))
Q(r) = F(r)exp3 / p(r)dr (2.16)
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one finds forQ(r) the second-order differential equation

& k(-1 - " (E2 —m3c?) <
[—W + 2 + PW,E(r)] Q(r) = TQ(V) (2.17)
having now defined (cf (2.11))
. 1w 3/ WOV kW 2E
= — 2 —_—— [— —_——_——— —
Pw(r) =—W5r) 2@2+W)+4(AT+W) FOar W) TR V) (2.18)

Sincek = —1 — 1if j =1+ 3, andk =1 if j =1 — 3, the ‘free’ operator in equation (2.17)
reads now

- a2 (+DHi+2
' r
2

- -1

Al E_%+@ forall 1=1,2,.... (2.1%)
r r

Note thatPy g(r) has a second-order polejat= W (see (2.11)) anaf’W,E(r) has a second-
order pole ath, = —W. Thus, the analysis of the interacting case (i.e. iftlr) # 0) is
performed in section 4 at fixed values Bfand away from such singular points.

3. Weyl criterion for the squared Dirac operator in the free case

The self-adjointness properties of the free operator (2.12) should be studied by considering
separately the case> 0 and the casé = 0. For positive values of the quantum number
Al turns out to be essentially self-adjoint. This means, by definition, that its closure (i.e. the
smallest closed extension) is self-adjoint, which implies that a unique self-adjoint extension
of Al exists [15]. In general, if several self-adjoint extensions exist, one has to understand
which one should be chosen, since they are distinguished by the physics of the system being
described[9, 15]. Thisiswhy itis so desirable to make sure thatthe operator under investigation
is essentially self-adjoint. We here rely on a criterion due to Weyl, and the key steps are as
follows [9].

The functionV is in thelimit circle case at zero if for some, and therefore xllall
solutions of the equation

d2

[—F + V(X)] P(x) = rp(x) (3.1)
X

are square integrable at zero, i.e. for them

/Oa lp(x)?dx < oo (3.2)

with finite values ofz, e.g.a €]0, 1]. If V(x) is not in the limit circle case at zero, itis said to
be in thelimit point case at zero. The Weyl limit point-limit circle criterion states thaV, i
a continuous real-valued function ¢@, co), then the operator

d2

is essentially self-adjoint 065° (0, co) if and only if V (x) is in the limit point case at both zero
and infinity. The property of being in the limit point at zero relies on the following theorem

[9].
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Theorem 3.1.Let V be continuous and positive near zero. If
V(x) > 3x7? (3.4)
near zero, ther® is in the limit point case at zero.

The limit point property abo means that the limit circle condition ab is not fulfilled,
i.e. the condition

/"0 lp(x)|?dx < oo (3.5)

does not hold. To understand when this happens, one can use the following [9].

Theorem 3.2.1f V is differentiable or{0, co) and bounded above by a paramek&on|[1, co),
and if

o dx
/1 ﬁ =00 (3.6)
V’(x)lV(x)I_% is bounded neato (3.7)
thenV (x) is in the limit point case ato.

Thus, a necessary and sufficient condition for the existence of a unique self-adjoint
extension ofQ is that its eigenfunctions should fail to be square integrable at zero and at
oo. Powerful operational criteria are provided by the check of (3.4), (3.6) and (3.7), which
only involve the potential.

In our problem, for all > 1, the ‘potential'V,(r) = ”’r;zl) is of course in the limit point at
zero, since the inequality (3.4) is then satisfied. MoreoVgr,) is differentiable on0, co),
bounded above by, = /(I + 1) on [1, o0), and such that

* dx 1 /oo X

/ = dx = o0 (3.8)
(el v

o 2

V/(V)|VZ(V)|7§ = —m forall r. (39)

Hence all conditions of theorem 3.2 are satisfied, which impliesithaj is in the limit point
at oo as well. By virtue of the Weyl limit point-limit circle criterion, the free operatér
defined in (2.12) is then essentially self-adjoint@]¥(0, co) for all / > 0.

When! = 0, however (for whichk = —1), A’ reduces to the operatercjf , which
has deficiency indiceél, 1). Recall that for an (unbounded) operat®rwith adjoint BT,
deficiency indices are the dimensions of the spaces of solutions of the equatiors +iu.
More precisely, one first defines the deficiency sub-spaéB () being the domain oB™)

H+(B) = {u € D(BY) : BTu = iu} (3.10)

H_(B) = {u € D(BY : BTu = —iu} (3.11)
with the corresponding deficiency indices

n+(B) = dimH.(B) (3.12)

n_(B) = dimH_(B). (3.13)

The operatoB is self-adjointifand only i+ (B) = n_(B) = 0, but has self-adjoint extensions
provided thati.(B) = n_(B) [9,15]. In our case, half of the solutions of the equations

(A?)Tu = +iu are square-integrable d, which implies thai.(A°) = n_(A°) = 1. This
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is easily proved because such equations with complex eigenvalues reduce to the ordinary
differential equation [9]

d2
—We“" = ie"” (3.14)
and
d2
— 78 = e (3.15)

In the former case, on setting= p€?, with p andd € R, one findsp = +1,6 = — 7%, Which
leads to the two roots of the equatiem? = i:

1 i
=— - — 3.16
(051 \/E \/E ( )
1 [
ap=———+—. 3.17
T2 2 (3.17)
In the latter casayp solves the algebraic equatiart = i, and hence one finds the roots
o, (3.18)
wp = ——= —_— .
T2 /2
1 i
=—— - —. 3.19
w? ﬁ ﬁ ( )

Only the rootsw, andw, are compatible with the request of square-integrable solutions of
(3.14) and (3.15) oR,, and hence one finds. (A% = n_(A% = 1 as we anticipated.
This property implies that a one-parameter family of self-adjoint extension$ exists, with
domainD(A?) given by

D(A%) = (u € L(R+) s u, u’ € ACioc(R+); u” € L(R+); u(0) = Bu'(0)}. (3.20)
Here ACoc(R+) denotes the set of locally absolutely continuous functions on the positive
half-line, the prime denotes differentiation with respect,tandg is a real-valued parameter.

Bearing in mind the limiting form of equation (2.10) wheée- 0 andW = 0, this means that
one is studying the case characterized by

(E% — m%c“)
R%c?

for which the square-integrable eigenfunctiorH)g‘;_i2 reads ¢ being a real constant to ensure

reality of E)

A= <0 (3.21)

u(r) =oce VP, (3.22)
On defining

(u,v) = /OO u*(ryv(r)dr
0

the boundary condition in (3.20) is obtained after integrating twice by parts in the integral
defining the scalar product®u, v) to re-express it in the fornau, (A%Tv), with « in the
domain ofA? andv in the domain of the adjointA®)™. One then finds that bothandv should

obey the boundary condition (3.20). In the light of (3.20)—(3.22) one obtains the very useful
formula

1=—VIrl (3.23)
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which implies

h%c?
E* =mge >

This means that in a relativistic problem a lower limit & (and hence fofg|) exists, to avoid
havingE? < 0.

To complete the analysis of squared Dirac operators in the free case, one has also to
consider the operators’. defined in (2.18) and (2.1%). The former has a ‘potential’ term
(’"12#2) which is in the limit point case at both zero and infinity for/alk 0. The latter has a
‘potential’ term“.z2 which is in the limit point at zero with the exception of the value 1 of the

quantum numbelr, for which A~’, reduces to the operate{d%, and hence we repeat the logical
steps proving that such an operator has a one-parameter family of self-adjoint extensions. Once

more, their domain is given by equation (3.20).

(3.24)

4. Second-order operators in the interacting case

Now we would like to understand whether the general results on perturbations of self-adjoint
operators make it possible to obtain a better understanding of effects produced by the central
potential W (r) in equations (2.10) and (2.17) (the essential self-adjointness of the Dirac
Hamiltonian with non-vanishingV is studied in [16], and several comments can be found

in the following sections). For this purpose, the key steps are as follows [9].

(i) Let A andB be densely defined linear operators on a Hilbert spagéth domainsD (A)
andD(B), respectively. IfD(A) ¢ D(B) and if, for some: andb in R,

IBell < allAg|l +bl¢l forall ¢ e D(A) (4.1

thenB is said to beA-bounded The infimum of suchx is called therelative boundof B
with respectta. If the relative bound vanishes, the operakas said to bénfinitesimally
smallwith respect toA.

(i) The Kato—Rellich theorem states that4fis self-adjoint,B is symmetric, and is A-
bounded with relative boundl < 1, thenA + B is self-adjoint onD(A).

(iii) If the potential V can be written as

V=Vi+V, (4.2)

with Vi € L2(R®) andV, € L>®(R®), and ifV is real-valued, then the operaterA +V (x)
is essentially self-adjoint oﬂg"(R3) and self-adjoint onD(—A). As a corollary, the
operator— A —§ is essentially self-adjoint 065° (R3).

(iv) Ananalogue of the Kato—Rellich theorem exists which can be used to study the case when
B is notA-bounded. The result can be stated after recalling the following definitions.
Let A be a self-adjoint operator ai. On passing to a spectral representatiord afith
associated measurgs, }_; on the spectrum o, so thatA is multiplication byx on the
direct suma™_, L?(R, du,), one can consider

N )
I= {{%(x)}ffl : Z/ o1 ()2 dpsy < OO} (4.3)
n=1Y —®
and hence define, fa¥ andg € Z,

N 00
R EDS f X (X) Y (x) Aty (4.4)
n=1Y -
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Such & is called thequadratic formassociated witti, and one writes
0(A) =1T. (4.5)

Theform domainof the operatod is then, by definitionQ (A), and can be viewed as the
largest domain on which can be defined.

(v) The KLMN theorem states that, if is a positive self-adjoint operator anddfe, v) is a

(vi)

(Vi)

symmetric quadratic form o@(A) such that

1Ble, )| < alp, Ap) +b(p, @) forall ¢ e D(A) (4.6)
for somea < 1 andb € R, then there exists a unique self-adjoint oper&tavith

Q(C) = 0(A) 4.7)
and

(@, CY) = (9, AY) + Blo, ¥) forall ¢,y € Q(O). (4.8)

Such aC is bounded below by-b.

If A is a positive self-adjoint operator, aidis a self-adjoint operator such that

Q(A) C O(B) (4.9)
and

(@, Bo)| < alp, Ap) +b(p, @) forall ¢ € D(A) (4.10)

for somea > 0 andb € R, thenB is said to berelatively form-boundedvith respect

to A. Furthermore, ifa can be chosen arbitrarily smalB is said to benfinitesimally
form-boundedvith respect taA.

If the operatorB is self-adjoint and relatively form-bounded, the parametbeing< 1,
with respectto a positive self-adjoint operatothen the KLMN theorem makes it possible
to define the ‘sum’A + B, although this mathematical construction may differ from the
operator sum. In particulaB can be form-bounded with respect Aoeven though the
intersection of their domains may be the empty set.

(viii) The KLMN theorem s physically relevant because itleads to the definition of Hamiltonians

even when the Kato—Rellich criterion is not fulfilled. In other words, the request of dealing

with L? + L> potentials is too restrictive. For example, the potentiglr) = —r—
belongs toL? + L* only if @ < 3. However, ife € [, 2), one can use the KLMN

theorem because, for all < 2, one can prove thatr~* is infinitesimally form-bounded
with respect to-A [9].

In our problem, the ‘potential’ terms in equations (2.10) and (2.17) are given by (2.11)

and (2.18), respectively. If the potenti&l(r) is of Coulomb type, i.e. being a dimensionful
constant)

W(r) = % (4.11)

the singular behaviour aPy ¢ (r) asr — 0 is dominated by (for &ixed valueof E)

(Pt

72

and the singular behaviour &y, () asr — 0 is given instead by (again for a fixed value of

E)

(y2+3-k)
r2 )
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Thus, as- — 0, the operators on the left-hand sides of both (2.10) and (2.17) reduce to

2 2_,,2_1
L,E[ d +(k”—4)] (4.12)

dr2 r2

In the operatol.,, the coefficient of~2 is no longer greater than or equalic(see (3.4)) for
the same values défensuring essential self-adjointness of the free problem. The inequality

K —y?-1>3 (4.13)
is instead fulfilled by

(+1%>y%+1 forall 1=0,1,... (4.14)
if k=—1—1,and by

2> y%+1 forall [=1,2,... (4.15)

if & = 1. Our result implies that, for alk| > 2, essential self-adjointness 61§°(0, co) of

the second-order operators on the left-hand sides of (2.10) and (2.17) is obtained provided that
ly| < /3. This reflects the fact that a Coulomb potential in the first-order system (2.1) and
(2.2) leads to ‘potential’ terms in the second-order equations (2.10) and (2.17) which are not
even infinitesimally form-bounded with respect to the squared Dirac operators in the free case,
because both the potential terms and the free operators contain terms proportiolalTio

study the limit point condition at infinity, we try to majorize the ‘potentij; ; obtained from

the Coulomb potential (4.11), and we find that

Eyl, y@+0lGa+IvD + 577

hc A2

if » € [1,00). Moreover, the integral (3.6) diverges whé&nis replaced byPy g, and the
condition (3.7) is fulfilled as well, because

| Pw,p(r)| <2

3 1
Pv/V,E(")|PW,E(”)|_E xr2 as r — oo.

The check of (3.6) and (3.7) faPy ; leads to the same results, and hence we use the Weyl
criterion of section 3 to conclude thégr fixed valuesf E, essential self-adjointness on
C5°(0, oo) of the second-order operators in equations (2.10) and (2.17) holds provided that
the inequalityk?> — y2 > 1 is satisfied. This rules olit= 0 in (4.14) and = 1in (4.15). One
then finds thaty | < +/3 as we said before.

The limiting form (4.12) is not affected by the addition of parts linear {6, 17, 18] to
the right-hand side of (4.11), because the singular behavioBygf(r) at fixed values o
asr — 0 is still dominated by the Coulomb potential. In contrast, a purely linear potential

W@)=Tr (4.16)

satisfies the request of infinitesimal form-boundedned;0f () with respect to the squared
Dirac operators in the free case, because then the singular behaviByr:6f) asr — 0 is
expressed by-AC1 and the singular part afy £ (r) asr — 0 reads—4L%. However, one
might consider finear terms with compact support, i.e. vanishing for gteater than some
finite ro, or weighted with exponential functions which ensure a fall-off condition at infinity,

e.g. the potential (cf [17])
W(r) =L +Trem (4.17)
r

wherep is positive. In such a case, the limiting behaviourgf; asr — 0 and as — oo
are still dominated by the Coulomb part in the poteni#gland hence we again find essential
self-adjointness o°§° (0, co) provided thak? — y2 > 1.
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In the physical literature, however, the potential has not been written in the form (4.17).
To achieve quark confinement, a purely linear term has instead been added to the Coulomb
part, also considering a split of the additional part into Lorentz scalar-type and Lorentz
vector-like potentials. Furthermore, such a vector contribution is sometimes omitted in a
phenomenological analysis, bearing in mind its non-perturbative nature (since the perturbative
part has vector nature instead) [19]. Needless to say, such arguments are not compelling.

5. Inclusion of the anomalous magnetic moment

The second-order operators that we have analysed in the interacting case (see again
equations (2.10) and (2.17)) are not ‘squared Dirac operators’ because the eigenvalues of
the Dirac operator occur in their ‘potential term’. It is therefore important to compare more
carefully the predictions of the second-order equatiorf¥¢and<2) with the results obtained

from squared Dirac operators studied in [16]. The latter are used in [16] because a theorem
ensures that, given the (abstract) Dirac Hamiltonian

0 D_ W, O
= +
r <D+ o) (o W_> ®-1)
if one of the operatord_D. or D.D_ is essentially self-adjoint, then the operaforis
essentially self-adjoint as well, whe##, and W_ take into account the rest mass and the
potential (see theorem 5.9 in [16]).
Let us now consider the effect of the anomalous magnetic momeoftthe electron

in a central potentiaV/ (r). With the notation of our section 2, the resulting set of coupled
eigenvalue equations is found to be [16]

[d &k ,
ar + P uw (r)} G(r)= Q1= W(r)F(r) (5.2)
T od & ,
g TRV (r)} F(r) =(=22=-W(F)G(r) (5.3)
which implies, on using again the definition (2.9), tkat) obeys the second-order equation
a2 I(+1 . (E%2 — m2ch
a2 + p + P‘%;(r)i| Q@) = —cmzo Q) (5.4)

where we have defined (cf equation (5.48) in [16])
k
P (r) = Py p(r) + |:W” + W+ — W) hH — Z;W’} : (5.5)

For example, if a potentidh’ of Coulomb type is considered, one finds from (4.11) and (5.5)
that the limiting form of the eigenvalue equation (5.4yas> 0 is entirely dominated by the
term proportional tqt. More precisely, in such a limit equation (5.4) reduces to

d2 MZVZ
which is solved by
Q(r)y=re 7. (5.7)

An analogous method can be used o) defined in (2.16), finding a parameter-dependent
potential

p D " / 1 k ,
Plf]y)E(r)EPWE(r)"'M[_W +W2<,u+m>—2;Wi| (58)
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which leads again to the limiting behaviour (5.7) whgir) = £, but now forQ(r), asr — 0.

We can therefore see, in a physically relevant example, that our approach, leading to second-
order equations fof2 and<2, recovers qualitative agreement with the analysis in [16], where

it is shown that, no matter how singular the central potential &t 0 is, the Dirac operator

is always well defined as long as=# 0. In other words, our formula (5.5) clearly accounts

for the dominating effect of the anomalous magnetic moment with all potentials diverging at
the origin. However, a rigorous result on the relation between our approach and the squared
Dirac operators studied in [16] remains an interesting technical problem wheigvges 0

(cf [13)]).

6. Concluding remarks

The contributions of our paper, of a technical nature, consist in the application of analytic
techniques that can help us to understand some key qualitative features of central potentials for
the Dirac equation, with emphasis on the mathematical formulation of relativistic eigenvalue
problems. Although the methods used in our investigation are well known in the literature, the
overall picture remains, to our knowledge, original (see comments below). In particular, we
would like to mention the following points (at the risk of slight repetitions).

(i) The forms (2.10) and (2.17) of the second-order equations for the radial parts of the spinor
wavefunction, withPy, ¢ (r) and Py, ¢ (r) defined in (2.11) and (2.18), respectively, is very
convenient if one wants to understand whether the potential can affect the self-adjointness
domain of the free problem.

(ii) The identification of the domains of (essential) self-adjointness of the operators defined in
(2.12), (2.19) and (2.19) is helpful as a first step towards the problem with non-vanishing
potentialW (r), and clarifies the general framework.

(i) A potential of Coulomb type, although quite desirable from a physical point of view, leads
to some non-trivial features with respect to the non-relativistic case. We have in fact
seen thaPy g(r) and ﬁW,E(r) fail to be infinitesimally form-bounded with respect to the
squared Dirac operators in the free caséd¥ifr) contains a Coulomb term. Moreover,
the limit-point condition at zero for the potential in the second-order operators in the
interacting case is only fulfilled if the inequalities (4.14) or (4.15) hold. In other words, the
essential self-adjointness 61§° (0, co) of the second-order operators with non-vanishing
potential is still obtained, but under more restrictive conditions expressed by (4.14) and
(4.15). This may have non-trivial physical implications: if essential self-adjointness fails
to hold, we know from section 3 that different self-adjoint extensions of the second-order
operators exist, characterized by the choice of a regular boundary conditica at(cf
(3.20)). The lowest values of(for which (4.13) does not hold), corresponding to the
bound states of greater phenomenological interest, might therefore find an appropriate
mathematical description within the framework of self-adjoint extensions of symmetric
operators. It remains to be seen how much freedom is left, on physical grounds, to specify
the boundary conditions for the self-adjoint extension.

(iv) On considering the effect of the anomalous magnetic moment, equation (2.10) is replaced
by equation (5.4), with the potential term defined in (5.5). For all potentials diverging at
the origin, the effect of the anomalous magnetic moment is then dominating-a®.

Indeed, as far as the Dirac operator is concerned, one can prove its essential self-adjointness
on C(R3 — {0}) in the presence of a Coulomb potential provided thdt(see (4.11)) is
majorized by%ﬁ, as is shown in [16], following work by Weidmann (see p 130 in [16]
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and references therein). In our paper, however, we have focused on second-order differential
operators, and the consideration of a central potential, with the associated Hilbert space

L3R4, r?dr) ® L?(S?, dQ2)

has eventually led to the second-order operators occurring in (2.10) and (2.17) and acting
on square-integrable functions on the positive half-line. Our calculations, summarized in the
points (i)—(iv) above, remain therefore original. We should notice that the congition %ﬁ

found in [16] is compatible with our inequalities (4.14) and (4.15) forlalt 2. In other

words, the condition oy ensuring essential self-adjointness of the Dirac operator leads also

to essential self-adjointness of the second-order operators studied in our paper, whereas the
converse does not hold (one may fingrasmaller than,/3 but greaterthaéﬁ). Our analysis

has possibly the merit of having shown that some extra care is necessary whenl, but

this should not be unexpected, if one bears in mind from section 3 that already in the free case
the valueg = 0, 1 make it necessary to perform a separate analysis (cf [20]).

We should also acknowledge that in [21] the essential self-adjointness of powers of the
Dirac operator had been proved, but in cases when the poté&htsasmooth. In particular,
when the potential is @ function onR3, no growth conditions on it are necessary to ensure
essential self-adjointness of any power of the Dirac operator [9, 21]. In our problem, however,
we have considered a Coulomb term in the potential, which is singular at the origin. Although
aregular solution of the eigenvalue problem exists [8, 18], since the origin remains a Fuchsian
singular point, the domain of essential self-adjointness of the second-order operators in the
interacting case is changed. This is reflected by the inequality (4.13) for the fulfillment of the
limit-point condition at zero, which now involves, and hence the atomic number [11, 12].
Note also that, to find a real-valued solution which is regular at the origin in a Coulomb field,
one only needs the weaker conditibh > y2 [11,12]. Thus, a careful investigation of the
essential self-adjointness issue picks out a subset of the general set of real-valued regular
solutions.

For simplicity, we have considered at the end of section 4 only one ‘linear’ term. More
precisely, however, two linear terms are often studied, of a scalar and vector nature, respectively
[8]. Moreover, a naturally occurring question is whether one can extend our qualitative analysis
to study the (essential) self-adjointness issue for operators involving the square root of the

Laplacian [22], i.e,/—c?h? A +m3c* — #. Such problems have been the object of intensive
investigations, but more work could be done from the point of view of rigorous mathematical
foundations. In the light of the above remarks, there is some encouraging evidence that new
insight into the choice of phenomenological central potentials can be gained by applying
some powerful analytic techniques along the lines described in our paper. In the near future,
one might therefore hope to re-interpret from a deeper perspective the previous work in the
literature, including the class of potentials responsible for quark confinement.
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