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Abstract. The Dirac equation for a massive spin-1
2 field in a central potentialV in three

dimensions is studied without fixinga priori the functional form ofV . The second-order equations
for the radial parts of the spinor wavefunction are shown to involve a squared Dirac operator for
the free case, whose essential self-adjointness is proved by using the Weyl limit point-limit circle
criterion, and a ‘perturbation’ resulting from the potential. One then finds that a potential of
Coulomb type in the Dirac equation leads to a potential term in the above second-order equations
which is not even infinitesimally form-bounded with respect to the free operator. Moreover, the
conditions ensuring essential self-adjointness of the second-order operators in the interacting case
are changed with respect to the free case, i.e. they are expressed by a majorization involving
the parameter in the Coulomb potential and the angular momentum quantum number. The same
methods are applied to the analysis of coupled eigenvalue equations when the anomalous magnetic
moment of the electron is not neglected.

1. Introduction

In the same year when Dirac derived the relativistic wave equation for the electron [1], the work
of Darwin and Gordon had already exactly solved such an equation in a Coulomb potential
in three spatial dimensions [2, 3]. Since those early days, several efforts have been produced
in the literature to solve the Dirac equation with other forms of central potentials, until the
recent theoretical attempts to describe quark confinement [4–8]. In the present paper we study
the mathematical foundations of the eigenvalue problem for a massive spin-1

2 field in a central
potentialV (r) onR3, without specifyinga priori which function we choose forV (r). In other
words, we prefer to draw conclusions onV (r) from a careful mathematical investigation.

By doing so, we hope to elucidate the general framework of relativistic eigenvalue
problems on the one hand, and to develop powerful tools to understand some key features
of central potentials on the other. For this purpose, in section 2 we focus on the radial parts
of the spinor wavefunction, casting the corresponding second-order differential operators in
a convenient form for the subsequent analysis. In section 3, the Weyl limit point-limit circle
criterion [9] is used to prove that the squared Dirac operator for the free problem is essentially
self-adjoint on the setC∞0 (0,∞) of smooth functions on(0,∞) with compact support away
from the origin. In section 4 some boundedness criteria for perturbations [9, 10] are first
described and then applied when the potential in the original Dirac equation consists of terms
of Coulomb and/or linear type. The effects of the anomalous magnetic moment of the electron
are studied in section 5. Concluding remarks and open problems are presented in section 6.
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2. Second-order equations for stationary states

For a charged particle with spin in a central field, the angular momentum operator and the parity
operator with respect to the origin of the coordinate system commute with the Hamiltonian.
Thus, states with definite energy, angular momentum and parity occur. The corresponding
spinor wavefunction for stationary states reads [11, 12]

ψ =
(
ϕ

χ

)
=
(

g(r)�j,l,m

(−1)
1+l−l′

2 f (r)�j,l′,m

)
where�j,l,m and�j,l′,m are the spinor harmonics defined, for example, in [11, 12], and
l = j ± 1

2, l′ = 2j − l.
The stationary Dirac equation in a central potentialV (r) takes the form (m0 being the rest

mass of the particle of linear momentumEp)(
m0c

2 + V (r) Eσ · Ep
Eσ · Ep −m0c

2 + V (r)

)(
ϕ

χ

)
= E

(
ϕ

χ

)
and leads eventually to the following coupled system of first-order differential equations
(having definedF(r) ≡ rf (r) andG(r) ≡ rg(r)):(

d

dr
+
k

r

)
G(r) = (λ1−W(r))F (r) (2.1)(

− d

dr
+
k

r

)
F(r) = (−λ2 −W(r))G(r) (2.2)

wherek = −l − 1 (if j = l + 1
2) or l (if j = l − 1

2), and we have defined

W(r) ≡ V (r)

h̄c
(2.3)

λ1 ≡ E +m0c
2

h̄c
(2.4)

λ2 ≡ −E +m0c
2

h̄c
. (2.5)

Equation (2.1) yields a formula forF(r) which, upon insertion into equation (2.2), leads to
the second-order equation[

d2

dr2
+ p(r)

d

dr
+ q(r)

]
G(r) = 0 (2.6)

where

p(r) ≡ W ′(r)
(λ1−W(r)) (2.7)

q(r) ≡ −k(k + 1)

r2
+
k

r
p(r) +W 2(r) + (λ2 − λ1)W(r)− λ1λ2. (2.8)

Equation (2.6) should be supplemented by the boundary conditionG(0) = 0. It then describes
a Sturm–Liouville equation nonlinear in the spectral parameter. In [13], the equivalence has
been proved of the radial Dirac equations (2.1) and (2.2) to the parameter-dependent Sturm–
Liouville equation (2.6) (the parameterλ used in [13] corresponds to ourE, andm0c

2 = 1 units
are used therein). By equivalence we mean that, under suitable assumptions on the potential,
the functionG solving equation (2.6) is found to belong to the prescribed spaceH 1

0 (R+), i.e. the
space of absolutely continuous functions on [0,∞) which are square integrable onR+ jointly
with their first derivative and vanish at the origin. Now we can use a well known technique
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to transform equation (2.6) into a second-order equation where the coefficient ofd
dr vanishes.

This is achieved by defining the new function� such that [14]

�(r) ≡ G(r) exp 1
2

∫
p(r) dr. (2.9)

In the few cases where exact analytic formulae are available in the literature one studies
equation (2.6) and its counterpart forF (see equation (2.13)). However, equation (2.9) has
the advantage of leading to a second-order equation for� in a form as close as possible
to ‘perturbations’ of Schr̈odinger operators, and is hence preferred in our paper devoted to
qualitative and structural properties. In non-relativistic quantum mechanics, such a method
leads to a unitary map [9] transforming the radial Schrödinger equation in a central potential
into an equation involving a radial Schrödinger operator− d2

dr2 + U(r) acting on square-
integrable functions onR+ which vanish at the origin. In our relativistic eigenvalue problem
the transformation of the Hilbert space of square-integrable functions is no longer unitary, but
remains of practical value. All nonlinear properties of the resulting Sturm–Liouville boundary-
value problem are in fact encoded into a single function playing the role of a parameter-
dependent potential term (see below), rather than two functionsp andq as in (2.6)–(2.8). The
function� is then found to obey the differential equation[

− d2

dr2
+
l(l + 1)

r2
+ PW,E(r)

]
�(r) = (E2 −m2

0c
4)

h̄2c2
�(r) (2.10)

having defined

PW,E(r) ≡ −W 2(r) +
1

2

W ′′

(λ1−W) +
3

4

(
W ′

λ1−W
)2

− k
r

W ′

(λ1−W) +
2E

h̄c
W(r). (2.11)

Such an equation may be viewed as follows: since the potentialW ‘perturbs’ the ‘free’ problem
for whichW vanishes in equations (2.1) and (2.2), in the corresponding second-order equation
(2.10) one deals with a ‘free operator’

Alr ≡ −
d2

dr2
+
l(l + 1)

r2
for all l = 0, 1, . . . (2.12)

perturbed by the multiplication operatorPW,E(r) defined in (2.11). An interesting programme
is therefore emerging at this stage:

(i) First, prove (essential) self-adjointness of the ‘free’ operatorAlr on a certain domain.
(ii) Second, try to understand whether the operatorAlr + PW,E(r) in equation (2.10) remains

self-adjoint on the same domain. If this condition is too restrictive, try to derive all
properties of this ‘perturbed’ second-order operator.

If one first uses equation (2.2) to relateG(r) to dF
dr andF , one finds instead the Sturm–

Liouville equation (cf [13])[
d2

dr2
+ p̃(r)

d

dr
+ q̃(r)

]
F(r) = 0 (2.13)

supplemented by the boundary conditionF(0) = 0, where (cf (2.7) and (2.8))

p̃(r) ≡ − W ′(r)
(λ2 +W(r))

(2.14)

q̃(r) ≡ −k(k − 1)

r2
− k
r
p̃(r) +W 2(r) + (λ2 − λ1)W(r)− λ1λ2. (2.15)

Thus, after defining (cf (2.9))

�̃(r) ≡ F(r) exp 1
2

∫
p̃(r) dr (2.16)
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one finds for�̃(r) the second-order differential equation[
− d2

dr2
+
k(k − 1)

r2
+ P̃W,E(r)

]
�̃(r) = (E2 −m2

0c
4)

h̄2c2
�̃(r) (2.17)

having now defined (cf (2.11))

P̃W,E(r) ≡ −W 2(r)− 1

2

W ′′

(λ2 +W)
+

3

4

(
W ′

λ2 +W

)2

− k
r

W ′

(λ2 +W)
+

2E

h̄c
W(r). (2.18)

Sincek = −l − 1 if j = l + 1
2, andk = l if j = l − 1

2, the ‘free’ operator in equation (2.17)
reads now

Ãlr ≡ −
d2

dr2
+
(l + 1)(l + 2)

r2
for all l = 0, 1, . . . (2.19a)

Ãlr ≡ −
d2

dr2
+
l(l − 1)

r2
for all l = 1, 2, . . . . (2.19b)

Note thatPW,E(r) has a second-order pole atλ1 = W (see (2.11)) and̃PW,E(r) has a second-
order pole atλ2 = −W . Thus, the analysis of the interacting case (i.e. withW(r) 6= 0) is
performed in section 4 at fixed values ofE and away from such singular points.

3. Weyl criterion for the squared Dirac operator in the free case

The self-adjointness properties of the free operator (2.12) should be studied by considering
separately the casel > 0 and the casel = 0. For positive values of the quantum numberl,
Alr turns out to be essentially self-adjoint. This means, by definition, that its closure (i.e. the
smallest closed extension) is self-adjoint, which implies that a unique self-adjoint extension
of Alr exists [15]. In general, if several self-adjoint extensions exist, one has to understand
which one should be chosen, since they are distinguished by the physics of the system being
described [9, 15]. This is why it is so desirable to make sure that the operator under investigation
is essentially self-adjoint. We here rely on a criterion due to Weyl, and the key steps are as
follows [9].

The functionV is in the limit circle case at zero if for some, and therefore allλ, all
solutions of the equation[

− d2

dx2
+ V (x)

]
ϕ(x) = λϕ(x) (3.1)

are square integrable at zero, i.e. for them∫ a

0
|ϕ(x)|2 dx <∞ (3.2)

with finite values ofa, e.g.a ∈]0, 1]. If V (x) is not in the limit circle case at zero, it is said to
be in thelimit point case at zero. The Weyl limit point-limit circle criterion states that, ifV is
a continuous real-valued function on(0,∞), then the operator

O ≡ − d2

dx2
+ V (x) (3.3)

is essentially self-adjoint onC∞0 (0,∞) if and only ifV (x) is in the limit point case at both zero
and infinity. The property of being in the limit point at zero relies on the following theorem
[9].
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Theorem 3.1.LetV be continuous and positive near zero. If

V (x) > 3
4x
−2 (3.4)

near zero, thenO is in the limit point case at zero.

The limit point property at∞ means that the limit circle condition at∞ is not fulfilled,
i.e. the condition∫ ∞

a

|ϕ(x)|2 dx <∞ (3.5)

does not hold. To understand when this happens, one can use the following [9].

Theorem 3.2. If V is differentiable on(0,∞)and bounded above by a parameterK on[1,∞),
and if ∫ ∞

1

dx√
K − V (x) = ∞ (3.6)

V ′(x)|V (x)|− 3
2 is bounded near∞ (3.7)

thenV (x) is in the limit point case at∞.

Thus, a necessary and sufficient condition for the existence of a unique self-adjoint
extension ofO is that its eigenfunctions should fail to be square integrable at zero and at
∞. Powerful operational criteria are provided by the check of (3.4), (3.6) and (3.7), which
only involve the potential.

In our problem, for alll > 1, the ‘potential’Ṽl(r) ≡ l(l+1)
r2 is of course in the limit point at

zero, since the inequality (3.4) is then satisfied. Moreover,Ṽl(r) is differentiable on(0,∞),
bounded above byχl ≡ l(l + 1) on [1,∞), and such that∫ ∞

1

dx√
χl − Ṽl(x)

= 1√
l(l + 1)

∫ ∞
1

x√
x2 − 1

dx = ∞ (3.8)

Ṽ ′l (r)|Ṽl(r)|−
3
2 = − 2√

l(l + 1)
for all r. (3.9)

Hence all conditions of theorem 3.2 are satisfied, which implies thatṼl(r) is in the limit point
at∞ as well. By virtue of the Weyl limit point-limit circle criterion, the free operatorAlr
defined in (2.12) is then essentially self-adjoint onC∞0 (0,∞) for all l > 0.

When l = 0, however (for whichk = −1), Alr reduces to the operator− d2

dr2 , which
has deficiency indices(1, 1). Recall that for an (unbounded) operatorB with adjointB†,
deficiency indices are the dimensions of the spaces of solutions of the equationsB†u = ±iu.
More precisely, one first defines the deficiency sub-spaces (D(B†) being the domain ofB†)

H+(B) ≡ {u ∈ D(B†) : B†u = iu} (3.10)

H−(B) ≡ {u ∈ D(B†) : B†u = −iu} (3.11)

with the corresponding deficiency indices

n+(B) ≡ dimH+(B) (3.12)

n−(B) ≡ dimH−(B). (3.13)

The operatorB is self-adjoint if and only ifn+(B) = n−(B) = 0, but has self-adjoint extensions
provided thatn+(B) = n−(B) [9, 15]. In our case, half of the solutions of the equations
(A0

r )
†
u = ±iu are square-integrable onR+, which implies thatn+(A

0
r ) = n−(A0

r ) = 1. This
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is easily proved because such equations with complex eigenvalues reduce to the ordinary
differential equation [9]

− d2

dr2
eαr = ieαr (3.14)

and

− d2

dr2
eωr = −ieωr . (3.15)

In the former case, on settingα = ρeiθ , with ρ andθ ∈ R, one findsρ = ±1, θ = −π
4 , which

leads to the two roots of the equation−α2 = i:

α1 = 1√
2
− i√

2
(3.16)

α2 = − 1√
2

+
i√
2
. (3.17)

In the latter case,ω solves the algebraic equationω2 = i, and hence one finds the roots

ω1 = 1√
2

+
i√
2

(3.18)

ω2 = − 1√
2
− i√

2
. (3.19)

Only the rootsα2 andω2 are compatible with the request of square-integrable solutions of
(3.14) and (3.15) onR+, and hence one findsn+(A

0
r ) = n−(A0

r ) = 1 as we anticipated.
This property implies that a one-parameter family of self-adjoint extensions ofA0

r exists, with
domainD(A0

r ) given by

D(A0
r ) = {u ∈ L2(R+) : u, u′ ∈ ACloc(R+); u′′ ∈ L2(R+); u(0) = βu′(0)}. (3.20)

HereACloc(R+) denotes the set of locally absolutely continuous functions on the positive
half-line, the prime denotes differentiation with respect tor, andβ is a real-valued parameter.
Bearing in mind the limiting form of equation (2.10) whenl = 0 andW = 0, this means that
one is studying the case characterized by

λ ≡ (E2 −m2
0c

4)

h̄2c2
< 0 (3.21)

for which the square-integrable eigenfunction of− d2

dr2 reads (σ being a real constant to ensure
reality ofE)

u(r) = σe−r
√|λ|. (3.22)

On defining

(u, v) ≡
∫ ∞

0
u∗(r)v(r) dr

the boundary condition in (3.20) is obtained after integrating twice by parts in the integral
defining the scalar product(A0

r u, v) to re-express it in the form(u, (A0
r )

†v), with u in the
domain ofA0

r andv in the domain of the adjoint(A0
r )

†. One then finds that bothu andv should
obey the boundary condition (3.20). In the light of (3.20)–(3.22) one obtains the very useful
formula

1= −β
√
|λ| (3.23)
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which implies

E2 = m2
0c

4 − h̄
2c2

β2
. (3.24)

This means that in a relativistic problem a lower limit forβ2 (and hence for|β|) exists, to avoid
havingE2 < 0.

To complete the analysis of squared Dirac operators in the free case, one has also to
consider the operators̃Alr defined in (2.19a) and (2.19b). The former has a ‘potential’ term
(l+1)(l+2)

r2 which is in the limit point case at both zero and infinity for alll > 0. The latter has a
‘potential’ term l(l−1)

r2 which is in the limit point at zero with the exception of the value 1 of the

quantum numberl, for whichÃlr reduces to the operator− d2

dr2 , and hence we repeat the logical
steps proving that such an operator has a one-parameter family of self-adjoint extensions. Once
more, their domain is given by equation (3.20).

4. Second-order operators in the interacting case

Now we would like to understand whether the general results on perturbations of self-adjoint
operators make it possible to obtain a better understanding of effects produced by the central
potentialW(r) in equations (2.10) and (2.17) (the essential self-adjointness of the Dirac
Hamiltonian with non-vanishingW is studied in [16], and several comments can be found
in the following sections). For this purpose, the key steps are as follows [9].

(i) LetA andB be densely defined linear operators on a Hilbert spaceH with domainsD(A)
andD(B), respectively. IfD(A) ⊂ D(B) and if, for somea andb in R,

‖Bϕ‖ 6 a‖Aϕ‖ + b‖ϕ‖ for all ϕ ∈ D(A) (4.1)

thenB is said to beA-bounded. The infimum of sucha is called therelative boundof B
with respect toA. If the relative bound vanishes, the operatorB is said to beinfinitesimally
smallwith respect toA.

(ii) The Kato–Rellich theorem states that ifA is self-adjoint,B is symmetric, andB is A-
bounded with relative bounda < 1, thenA +B is self-adjoint onD(A).

(iii) If the potentialV can be written as

V = V1 + V2 (4.2)

with V1 ∈ L2(R3) andV2 ∈ L∞(R3), and ifV is real-valued, then the operator−4+V (x)
is essentially self-adjoint onC∞0 (R3) and self-adjoint onD(−4). As a corollary, the

operator−4− e2

r
is essentially self-adjoint onC∞0 (R3).

(iv) An analogue of the Kato–Rellich theorem exists which can be used to study the case when
B is notA-bounded. The result can be stated after recalling the following definitions.
LetA be a self-adjoint operator onH . On passing to a spectral representation ofA with
associated measures{µn}Nn=1 on the spectrum ofA, so thatA is multiplication byx on the
direct sum⊕Nn=1L

2(R, dµn), one can consider

I ≡
{
{ψn(x)}Nn=1 :

N∑
n=1

∫ ∞
−∞
|x||ψn(x)|2 dµn <∞

}
(4.3)

and hence define, forψ andϕ ∈ I,

q(ϕ,ψ) ≡
N∑
n=1

∫ ∞
−∞

xϕ∗n(x)ψn(x) dµn. (4.4)
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Such aq is called thequadratic formassociated withA, and one writes

Q(A) ≡ I. (4.5)

Theform domainof the operatorA is then, by definition,Q(A), and can be viewed as the
largest domain on whichq can be defined.

(v) The KLMN theorem states that, ifA is a positive self-adjoint operator and ifβ(ϕ,ψ) is a
symmetric quadratic form onQ(A) such that

|β(ϕ, ϕ)| 6 a(ϕ,Aϕ) + b(ϕ, ϕ) for all ϕ ∈ D(A) (4.6)

for somea < 1 andb ∈ R, then there exists a unique self-adjoint operatorC with

Q(C) = Q(A) (4.7)

and

(ϕ, Cψ) = (ϕ,Aψ) + β(ϕ,ψ) for all ϕ,ψ ∈ Q(C). (4.8)

Such aC is bounded below by−b.
(vi) If A is a positive self-adjoint operator, andB is a self-adjoint operator such that

Q(A) ⊂ Q(B) (4.9)

and

|(ϕ, Bϕ)| 6 a(ϕ,Aϕ) + b(ϕ, ϕ) for all ϕ ∈ D(A) (4.10)

for somea > 0 andb ∈ R, thenB is said to berelatively form-boundedwith respect
to A. Furthermore, ifa can be chosen arbitrarily small,B is said to beinfinitesimally
form-boundedwith respect toA.

(vii) If the operatorB is self-adjoint and relatively form-bounded, the parametera being< 1,
with respect to a positive self-adjoint operatorA, then the KLMN theorem makes it possible
to define the ‘sum’A + B, although this mathematical construction may differ from the
operator sum. In particular,B can be form-bounded with respect toA even though the
intersection of their domains may be the empty set.

(viii) The KLMN theorem is physically relevant because it leads to the definition of Hamiltonians
even when the Kato–Rellich criterion is not fulfilled. In other words, the request of dealing
with L2 + L∞ potentials is too restrictive. For example, the potentialVα(r) = −r−α
belongs toL2 + L∞ only if α < 3

2. However, ifα ∈ [ 3
2, 2), one can use the KLMN

theorem because, for allα < 2, one can prove that−r−α is infinitesimally form-bounded
with respect to−4 [9].

In our problem, the ‘potential’ terms in equations (2.10) and (2.17) are given by (2.11)
and (2.18), respectively. If the potentialW(r) is of Coulomb type, i.e. (γ being a dimensionful
constant)

W(r) = γ

r
(4.11)

the singular behaviour ofPW,E(r) asr → 0 is dominated by (for afixed valueof E)

− (γ
2 + 1

4 + k)

r2

and the singular behaviour of̃PW,E(r) asr → 0 is given instead by (again for a fixed value of
E)

− (γ
2 + 1

4 − k)
r2

.
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Thus, asr → 0, the operators on the left-hand sides of both (2.10) and (2.17) reduce to

Lr ≡
[
− d2

dr2
+
(k2 − γ 2 − 1

4)

r2

]
. (4.12)

In the operatorLr , the coefficient ofr−2 is no longer greater than or equal to3
4 (see (3.4)) for

the same values ofl ensuring essential self-adjointness of the free problem. The inequality

k2 − γ 2 − 1
4 >

3
4 (4.13)

is instead fulfilled by

(l + 1)2 > γ 2 + 1 for all l = 0, 1, . . . (4.14)

if k = −l − 1, and by

l2 > γ 2 + 1 for all l = 1, 2, . . . (4.15)

if k = l. Our result implies that, for all|k| > 2, essential self-adjointness onC∞0 (0,∞) of
the second-order operators on the left-hand sides of (2.10) and (2.17) is obtained provided that
|γ | 6 √3. This reflects the fact that a Coulomb potential in the first-order system (2.1) and
(2.2) leads to ‘potential’ terms in the second-order equations (2.10) and (2.17) which are not
even infinitesimally form-bounded with respect to the squared Dirac operators in the free case,
because both the potential terms and the free operators contain terms proportional tor−2. To
study the limit point condition at infinity, we try to majorize the ‘potential’PW,E obtained from
the Coulomb potential (4.11), and we find that

|PW,E(r)| 6 2
|Eγ |
h̄c

+
[|γ (1 + k)|(λ1 + |γ |) + 3

4γ
2]

λ2
1

if r ∈ [1,∞). Moreover, the integral (3.6) diverges whenV is replaced byPW,E , and the
condition (3.7) is fulfilled as well, because

P ′W,E(r)|PW,E(r)|−
3
2 ∝ r− 1

2 as r →∞.
The check of (3.6) and (3.7) for̃PW,E leads to the same results, and hence we use the Weyl
criterion of section 3 to conclude that,for fixed valuesof E, essential self-adjointness on
C∞0 (0,∞) of the second-order operators in equations (2.10) and (2.17) holds provided that
the inequalityk2− γ 2 > 1 is satisfied. This rules outl = 0 in (4.14) andl = 1 in (4.15). One
then finds that|γ | 6 √3 as we said before.

The limiting form (4.12) is not affected by the addition of parts linear inr [6, 17, 18] to
the right-hand side of (4.11), because the singular behaviour ofPW,E(r) at fixed values ofE
asr → 0 is still dominated by the Coulomb potential. In contrast, a purely linear potential

W(r) = 0r (4.16)

satisfies the request of infinitesimal form-boundedness ofPW,E(r) with respect to the squared
Dirac operators in the free case, because then the singular behaviour ofPW,E(r) asr → 0 is
expressed by− k0

λ1

1
r

and the singular part of̃PW,E(r) asr → 0 reads− k0
λ2

1
r
. However, one

might consider linear terms with compact support, i.e. vanishing for allr greater than some
finite r0, or weighted with exponential functions which ensure a fall-off condition at infinity,
e.g. the potential (cf [17])

W(r) = γ

r
+ 0re−µr (4.17)

whereµ is positive. In such a case, the limiting behaviours ofPW,E asr → 0 and asr →∞
are still dominated by the Coulomb part in the potentialW , and hence we again find essential
self-adjointness onC∞0 (0,∞) provided thatk2 − γ 2 > 1.
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In the physical literature, however, the potential has not been written in the form (4.17).
To achieve quark confinement, a purely linear term has instead been added to the Coulomb
part, also considering a split of the additional part into Lorentz scalar-type and Lorentz
vector-like potentials. Furthermore, such a vector contribution is sometimes omitted in a
phenomenological analysis, bearing in mind its non-perturbative nature (since the perturbative
part has vector nature instead) [19]. Needless to say, such arguments are not compelling.

5. Inclusion of the anomalous magnetic moment

The second-order operators that we have analysed in the interacting case (see again
equations (2.10) and (2.17)) are not ‘squared Dirac operators’ because the eigenvalues of
the Dirac operator occur in their ‘potential term’. It is therefore important to compare more
carefully the predictions of the second-order equation for� (and�̃) with the results obtained
from squared Dirac operators studied in [16]. The latter are used in [16] because a theorem
ensures that, given the (abstract) Dirac Hamiltonian

T =
(

0 D−
D+ 0

)
+

(
W+ 0
0 W−

)
(5.1)

if one of the operatorsD−D+ or D+D− is essentially self-adjoint, then the operatorT is
essentially self-adjoint as well, whereW+ andW− take into account the rest mass and the
potential (see theorem 5.9 in [16]).

Let us now consider the effect of the anomalous magnetic momentµ of the electron
in a central potentialV (r). With the notation of our section 2, the resulting set of coupled
eigenvalue equations is found to be [16][

d

dr
+
k

r
− µW ′(r)

]
G(r) = (λ1−W(r))F (r) (5.2)[

− d

dr
+
k

r
− µW ′(r)

]
F(r) = (−λ2 −W(r))G(r) (5.3)

which implies, on using again the definition (2.9), that�(r) obeys the second-order equation[
− d2

dr2
+
l(l + 1)

r2
+ P (µ)W,E(r)

]
�(r) = (E2 −m2

0c
4)

h̄2c2
�(r) (5.4)

where we have defined (cf equation (5.48) in [16])

P
(µ)

W,E(r) ≡ PW,E(r) +µ

[
W ′′ +W ′2(µ + (λ1−W)−1)− 2

k

r
W ′
]
. (5.5)

For example, if a potentialW of Coulomb type is considered, one finds from (4.11) and (5.5)
that the limiting form of the eigenvalue equation (5.4) asr → 0 is entirely dominated by the
term proportional toµ. More precisely, in such a limit equation (5.4) reduces to[

d2

dr2
− µ

2γ 2

r4

]
�(r) = 0 (5.6)

which is solved by

�(r) = re− µγ

r . (5.7)

An analogous method can be used for�̃(r) defined in (2.16), finding a parameter-dependent
potential

P̃
(µ)

W,E(r) ≡ P̃W,E(r) +µ

[
−W ′′ +W ′2

(
µ +

1

(λ2 +W)

)
− 2

k

r
W ′
]

(5.8)
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which leads again to the limiting behaviour (5.7) whenW(r) = γ

r
, but now for�̃(r), asr → 0.

We can therefore see, in a physically relevant example, that our approach, leading to second-
order equations for� and�̃, recovers qualitative agreement with the analysis in [16], where
it is shown that, no matter how singular the central potential atr = 0 is, the Dirac operator
is always well defined as long asµ 6= 0. In other words, our formula (5.5) clearly accounts
for the dominating effect of the anomalous magnetic moment with all potentials diverging at
the origin. However, a rigorous result on the relation between our approach and the squared
Dirac operators studied in [16] remains an interesting technical problem wheneverW(r) 6= 0
(cf [13]).

6. Concluding remarks

The contributions of our paper, of a technical nature, consist in the application of analytic
techniques that can help us to understand some key qualitative features of central potentials for
the Dirac equation, with emphasis on the mathematical formulation of relativistic eigenvalue
problems. Although the methods used in our investigation are well known in the literature, the
overall picture remains, to our knowledge, original (see comments below). In particular, we
would like to mention the following points (at the risk of slight repetitions).

(i) The forms (2.10) and (2.17) of the second-order equations for the radial parts of the spinor
wavefunction, withPW,E(r) andP̃W,E(r) defined in (2.11) and (2.18), respectively, is very
convenient if one wants to understand whether the potential can affect the self-adjointness
domain of the free problem.

(ii) The identification of the domains of (essential) self-adjointness of the operators defined in
(2.12), (2.19a) and (2.19b) is helpful as a first step towards the problem with non-vanishing
potentialW(r), and clarifies the general framework.

(iii) A potential of Coulomb type, although quite desirable from a physical point of view, leads
to some non-trivial features with respect to the non-relativistic case. We have in fact
seen thatPW,E(r) andP̃W,E(r) fail to be infinitesimally form-bounded with respect to the
squared Dirac operators in the free case, ifW(r) contains a Coulomb term. Moreover,
the limit-point condition at zero for the potential in the second-order operators in the
interacting case is only fulfilled if the inequalities (4.14) or (4.15) hold. In other words, the
essential self-adjointness onC∞0 (0,∞) of the second-order operators with non-vanishing
potential is still obtained, but under more restrictive conditions expressed by (4.14) and
(4.15). This may have non-trivial physical implications: if essential self-adjointness fails
to hold, we know from section 3 that different self-adjoint extensions of the second-order
operators exist, characterized by the choice of a regular boundary condition atr = 0 (cf
(3.20)). The lowest values ofl (for which (4.13) does not hold), corresponding to the
bound states of greater phenomenological interest, might therefore find an appropriate
mathematical description within the framework of self-adjoint extensions of symmetric
operators. It remains to be seen how much freedom is left, on physical grounds, to specify
the boundary conditions for the self-adjoint extension.

(iv) On considering the effect of the anomalous magnetic moment, equation (2.10) is replaced
by equation (5.4), with the potential term defined in (5.5). For all potentials diverging at
the origin, the effect of the anomalous magnetic moment is then dominating asr → 0.

Indeed, as far as the Dirac operator is concerned, one can prove its essential self-adjointness
on C∞0 (R3 − {0}) in the presence of a Coulomb potential provided that|γ | (see (4.11)) is
majorized by1

2

√
3, as is shown in [16], following work by Weidmann (see p 130 in [16]
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and references therein). In our paper, however, we have focused on second-order differential
operators, and the consideration of a central potential, with the associated Hilbert space

L2(R+, r
2 dr)⊗ L2(S2, d�)

has eventually led to the second-order operators occurring in (2.10) and (2.17) and acting
on square-integrable functions on the positive half-line. Our calculations, summarized in the
points (i)–(iv) above, remain therefore original. We should notice that the condition|γ | < 1

2

√
3

found in [16] is compatible with our inequalities (4.14) and (4.15) for alll > 2. In other
words, the condition onγ ensuring essential self-adjointness of the Dirac operator leads also
to essential self-adjointness of the second-order operators studied in our paper, whereas the
converse does not hold (one may find a|γ | smaller than

√
3 but greater than12

√
3). Our analysis

has possibly the merit of having shown that some extra care is necessary whenl = 0, 1, but
this should not be unexpected, if one bears in mind from section 3 that already in the free case
the valuesl = 0, 1 make it necessary to perform a separate analysis (cf [20]).

We should also acknowledge that in [21] the essential self-adjointness of powers of the
Dirac operator had been proved, but in cases when the potentialV is smooth. In particular,
when the potential is aC∞ function onR3, no growth conditions on it are necessary to ensure
essential self-adjointness of any power of the Dirac operator [9, 21]. In our problem, however,
we have considered a Coulomb term in the potential, which is singular at the origin. Although
a regular solution of the eigenvalue problem exists [8, 18], since the origin remains a Fuchsian
singular point, the domain of essential self-adjointness of the second-order operators in the
interacting case is changed. This is reflected by the inequality (4.13) for the fulfillment of the
limit-point condition at zero, which now involvesγ , and hence the atomic number [11, 12].
Note also that, to find a real-valued solution which is regular at the origin in a Coulomb field,
one only needs the weaker conditionk2 > γ 2 [11, 12]. Thus, a careful investigation of the
essential self-adjointness issue picks out a subset of the general set of real-valued regular
solutions.

For simplicity, we have considered at the end of section 4 only one ‘linear’ term. More
precisely, however, two linear terms are often studied, of a scalar and vector nature, respectively
[8]. Moreover, a naturally occurring question is whether one can extend our qualitative analysis
to study the (essential) self-adjointness issue for operators involving the square root of the

Laplacian [22], i.e.
√
−c2h̄2 4 +m2

0c
4− Ze2

r
. Such problems have been the object of intensive

investigations, but more work could be done from the point of view of rigorous mathematical
foundations. In the light of the above remarks, there is some encouraging evidence that new
insight into the choice of phenomenological central potentials can be gained by applying
some powerful analytic techniques along the lines described in our paper. In the near future,
one might therefore hope to re-interpret from a deeper perspective the previous work in the
literature, including the class of potentials responsible for quark confinement.
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