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a b s t r a c t

We extend the existence theorems in Barchiesi et al. (2017), for models of nematic
elastomers and magnetoelasticity, to a larger class in the scale of Orlicz spaces.
These models consider both an elastic term where a polyconvex energy density is
composed with an unknown state variable defined in the deformed configuration,
and a functional corresponding to the nematic energy (or the exchange and
magnetostatic energies in magnetoelasticity) where the energy density is integrated
over the deformed configuration. In order to obtain the desired compactness and
lower semicontinuity, we show that the regularity requirement that maps create
no new surface can still be imposed when the gradients are in an Orlicz class with
an integrability just above the space dimension minus one. We prove that the fine
properties of orientation-preserving maps satisfying that regularity requirement
(namely, being weakly 1-pseudomonotone, H1-continuous, a.e. differentiable, and
a.e. locally invertible) are still valid in the Orlicz–Sobolev setting.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Motivated by the modelling of nematic elastomers, Barchiesi & DeSimone [4] analysed the minimization
of functionals of the form

I(u,n) =
∫
Ω

Wmec(Du(x),n(u(x)))dx +
∫

u(Ω)
|Dn(y)|2dy (1.1)

where Ω ⊂ R3, u ∈ W 1,p(Ω ,R3) for some p > 3, n ∈ H1(u(Ω),R2), and

Wmec(F,n) = W
(

(α−1n ⊗ n +
√
α(I − n ⊗ n))F

)
(1.2)

for a certain α > 0 and some polyconvex energy function W . Functionals with a similar structure appear
also in models describing the nematic mesogens with the Landau–de Gennes theory, and in magnetoelasticity
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and plasticity, see, e.g., [5,6,12,18,28]. The major difficulties are that I depends on the composition of the
two unknowns and that the nematic director n is defined in the domain u(Ω) which is also determined only
as a part of the solution of the variational problem. The analysis is based on the inverse function theorem
for Sobolev maps due to Fonseca & Gangbo [18], which is valid for W 1,p maps from a domain in Rn to Rn

when p > n. Using the results for the Sobolev regularity of the inverse obtained in [20–23], both the local
invertibility theorem of Fonseca & Gangbo and the analysis of Barchiesi & DeSimone were generalized by
Barchiesi, Henao & Mora-Corral [5] to a suitable class of maps in W 1,p(Ω ,R3) for all p > 2. The importance
of relaxing the hypothesis on the integrability exponent p is that, on the one hand, they are related to the
coercivity that the stored energy function W is assumed to possess and, on the other hand, the analysis
should ideally depend as little as possible on the behaviour of W at infinity (for physical reasons). Here the
less restrictive condition that∫

Ω

A(|Du(x)|)dx < ∞ (1.3)

for some Young function A : [0,∞) → [0,∞] satisfying∫ ∞ t

A(t)dt < ∞ (1.4)

(e.g. A(t) := t2 logα t for any α > 1) is shown to be also sufficient to establish the existence of minimizers
for functionals like I(u,n) in (1.1).

In the paper [26], the authors investigated the minimal analytic assumptions on a map u : Ω → Rn

to guarantee continuity, differentiability a.e. and the Lusin (N) condition. As far as the condition (N) is
concerned, the n-absolute continuity introduced by Malý in [30] plays an important role. It turned out that
this condition is satisfied by a function u ∈ W 1,1(Ω) whenever their weak partial derivatives are in the
Lorentz space Ln,1(Ω). In particular, they characterize the space Ln,1 in terms of an Orlicz integrability
condition. This condition is exactly the one stated in [9], see Proposition 2.6. We will prove this condition
on manifolds of dimension n− 1.

Our result, on the one hand, enlarges the class of maps in which the minimization problem can be set.
On the other hand, it sheds new light on results on invertibility of maps and interpenetration of matter.
In fact, we can consider the class of Orlicz–Sobolev maps and define accordingly the notion of zero surface
energy (E(u) = 0, see Definition 2.15). This, in turn, when imposed together with the positivity of the
Jacobian determinant, is equivalent to the requirement that DetDu = detDu (where DetDu denotes the
distributional determinant, see Definition 2.14) and that u preserves orientation in the topological sense.

Theorem 1.1. Let A be a Young function satisfying (1.4) and suppose that u ∈ W 1,A(Ω .Rn) satisfies
detDu ∈ L1

loc(Ω), Then we have the equivalence:

• E(u) = 0 and detDu > 0 a.e.;
• (adjDu)u ∈ L1

loc(Ω .Rn), detDu(x) ̸= 0 for a.e. x ∈ Ω , detDu = DetDu and deg(u, B(x, r)) ≥ 0 for
every x ∈ Ω and a.e. r ∈ (0,dist(x, ∂Ω)).

This article explains the new ideas and the results in the literature of Orlicz–Sobolev spaces that are
required to generalize the analysis of [5] (full details of the proofs are not given since that would render
the article unnecessarily long, given the technical difficulties). Section 2 is for notation and preliminaries.
Section 3 proves that weakly monotone maps having the integrability (1.3)–(1.4) are continuous at every
point outside an H1-null set (in the classical sense, not only in the sense of quasi-continuity). The functional
class of orientation-preserving Orlicz–Sobolev maps creating no surface, proposed for the modelling of
nematic elastomers, is defined and studied in Section 4. Concretely, maps in this class are proved to be
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1-pseudomonotone, [19]; to have a precise representative that satisfies Lusin’s condition and is H1-continuous
and a.e. differentiable; to be, in a certain sense, open and proper; and to be locally invertible around almost
every point, the local inverses and their minors being Sobolev and sequentially weakly continuous. The
main existence theorem, for functionals, such as (1.1), defined both in the reference and in the deformed
configuration, is stated finally in Section 5.

2. Notation and preliminaries

2.1. General notation

We will work in dimension n ≥ 3, and Ω is a bounded open set of Rn. Vector-valued and matrix-valued
quantities will be written in boldface. Coordinates in the reference configuration will be denoted by x, and
in the deformed configuration by y.

The characteristic function of a set A is denoted by χA. Given two sets U, V of Rn, we will write U ⊂⊂ V

if U is bounded and Ū ⊂ V . The open ball of radius r > 0 centred at x ∈ Rn is denoted by B(x, r); unless
otherwise stated, a ball is understood to be open. The (n− 1)-dimensional sphere in Rn centred at x0, with
radius r, is denoted by S(x0, r) or Sr(x0).

Given a square matrix A ∈ Rn×n, the adjugate matrix adj A satisfies (det A)I = A adj A, where I denotes
the identity matrix. The transpose of adj A is the cofactor cof A. If A is invertible, its inverse is denoted
by A−1. The inner (dot) product of vectors and of matrices will be denoted by ·. The Euclidean norm of
a vector x is denoted by |x|, and the associated matrix norm is also denoted by |·|. Given a,b ∈ Rn, the
tensor product a ⊗ b is the n× n matrix whose component (i, j) is ai bj . The set Rn×n

+ denotes the subset
of matrices in Rn×n with positive determinant.

The Lebesgue measure in Rn is denoted by Ln, and the (n− 1)-dimensional Hausdorff measure by Hn−1.
The abbreviation a.e. stands for almost everywhere or almost every; unless otherwise stated, it refers to the
Lebesgue Ln measure. For 1 ≤ p ≤ ∞, the Lebesgue Lp, Sobolev W 1,p and bounded variation BV spaces
are defined in the usual way. So are the functions of class Ck, for k a positive integer of infinity, and their
versions Ck

c of compact support. The set of (positive or vector-valued) Radon measures is denoted by M.
The conjugate exponent of p is written p′. We do not identify functions that coincide a.e.; moreover an Lp

or W 1,p function may eventually be defined only at a.e. point of its domain. We will indicate the domain
and target space, as in, for example, Lp(Ω ,Rn), except if the target space is R, in which case we will simply
write Lp(Ω). Given S ⊂ Rn, the space Lp(Ω , S) denotes the set of u ∈ Lp(Ω ,Rn) such that u(x) ∈ S for
a.e. x ∈ Ω . The space W 1,p

loc (Ω) is the set of functions u defined in Ω such that u|A ∈ W 1,p(A) for any open
A ⊂⊂ Ω ; we will analogously use the subscript loc for other function spaces. Weak convergence (typically, in
Lp or W 1,p) is indicated by ⇀, while ∗

⇀ is the symbol for weak∗ convergence in M or in BV . The supremum
norm in a set A (typically, a sphere) is indicated by ∥·∥∞,A, while −

∫
A

denotes the integral in A divided by
the measure of A. The identity function in Rn is denoted by id. The support of a function is indicated by
spt.

The distributional derivative of a Sobolev function u is written Du, which is defined a.e. If u is
differentiable at x, its derivative is denoted by Du(x), while if u is differentiable everywhere, the derivative
function is also denoted by Du. Other notions of differentiability, which carry different notations, are
explained in Section 2.4.

If µ is a measure on a set U , and V is a µ-measurable subset of U , then the restriction of µ to V is denoted
by µ V . The measure |µ| denotes the total variation of µ.

Given two sets A,B of Rn, we write A ⊂ B a.e. if Ln(A\B) = 0, while A = B a.e. means A ⊂ B a.e. and
B ⊂ A a.e. An analogous meaning is given to the expression Hn−1-a.e. With △ we denote the symmetric
difference of sets: A△B := (A \B) ∪ (B \A).

In the proofs of convergence, we will continuously use subsequences, which will not be relabelled.
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2.2. Orlicz-Sobolev spaces

We follow the presentation in [7] and refer the reader to [27,37,38] for a comprehensive treatment. A
function A : [0,∞) → [0,∞] is called a Young function if it is convex, non constant in (0,∞), and vanishes
at 0. Any function fulfilling these properties has the form

A(t) =
∫ t

0
a(r)dr for t ≥ 0, (2.1)

for some non-decreasing, left-continuous function a : [0,∞) → [0,∞] which is neither identically 0 nor
infinity. The function

t ↦→ A(t)
t

is non-decreasing, (2.2)

and

A(t) ≤ a(t)t ≤ A(2t) for t ≥ 0. (2.3)

A Young function A is said to satisfy the ∆2-condition near infinity if it is finite-valued and there exist
constants C > 2 and t0 > 0 such that

A(2t) ≤ CA(t) for t ≥ t0. (2.4)

The Young conjugate Ã of A is defined by

Ã(t) = sup{st−A(s) : s ≥ 0} for t ≥ 0. (2.5)

It is known that ˜̃A = A.
An N -function A is a convex function from [0,∞) into [0,∞) which vanishes only at 0 and such that

lims→0+
A(s)

s = 0 and lims→∞
A(s)

s = ∞.
Let E be a measurable subset of Rn. The Orlicz space LA(E) built upon a Young function A is the Banach

function space of those real-valued measurable functions u on E for which the Luxemburg norm

∥u∥LA(E) = inf
{
λ > 0 :

∫
E

A

(
|u|
λ

)
dx ≤ 1

}
is finite. Since A is non-decreasing,∫

E

A(|u|)dx < ∞ ⇒ ∥u∥LA(E) ≤ 1. (2.6)

If A satisfies the ∆2-condition at infinity then

u ∈ LA(E) ⇔
∫

E

A(|u|)dx < ∞. (2.7)

Given an open set Ω ⊂ Rn and a Young function A, the Orlicz–Sobolev space W 1,A(Ω) is defined as

W 1,A(Ω) = {u ∈ LA(Ω) : u is weakly differentiable, and |∇u| ∈ LA(Ω)}.

The space W 1,A(Ω), equipped with the norm given by

∥u∥W 1,A(Ω) = ∥u∥LA(Ω) + ∥∇u∥LA(Ω,Rn)

for u ∈ W 1,A(Ω), is a Banach space.

2.3. Lorentz spaces

Given a measure space (X,µ) and 1 ≤ q < p < ∞, the distribution function of a measurable function u

on X is defined by

ω(α, u) = µ({x ∈ X : |u(x)| > α}), α ≥ 0.
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The nonincreasing rearrangement u∗ of u is defined by

u∗(t) = inf{α ≥ 0 : ω(α, u) ≤ t}.

The Lorentz space Lp,q(X) is defined as the class of all measurable functions on X for which the norm

∥u∥Lp,q(X) :=
(∫ µ(X)

0
(t1/pu∗(t))q dt

t

)1/q

is finite. For more on Lorentz spaces see, e.g. [39].

2.4. Approximate differentiability and geometric image

The density D(E,x) of a measurable set E ⊂ Rn at an x ∈ Rn is defined as

D(E,x) := lim
r↘0

Ln(E ∩B(x, r))
Ln(B(x, r)) .

The following notions are due to Federer [16] (see also [33, Def. 2.3] or [1, Def. 4.31]).

Definition 2.1. Let u : Ω → Rn be measurable function, and consider x0 ∈ Ω .

(a) We say that the approximate limit of u at x0 is y0 when

D
(
{x ∈ Ω : |u(x) − y0| ≥ δ},x0

)
= 0 for each δ > 0.

In this case, we write ap limx→x0 u(x) = y]0. We say that u is approximately continuous at x0 if u is
defined at x0 and ap limx→x0 u(x) = u(x0).

(b) We say that u is approximately differentiable at x0 if u is approximately continuous at x0 and there
exists F ∈ Rn×n such that

D

({
x ∈ Ω \ {x0} : |u(x) − u(x0) − F(x − x0)|

|x − x0|
≥ δ

}
,x0

)
= 0 for each δ > 0.

In this case, F is uniquely determined, called the approximate differential of u at x0, and denoted by
∇u(x0).

(c) We denote the set of approximate differentiability points of u by Ωd, or, when we want to emphasize
the dependence on u, by Ωu,d.

Given a measurable u : Ω → Rn that is approximately differentiable a.e., for any E ⊂ Rn and y ∈ Rn,
we denote by NE(y) the number of x ∈ Ωd ∩ E such that u(x) = y. We will use the following version of
Federer’s [16] area formula, the formulation of which is taken from [33, Prop. 2.6].

Proposition 2.2. Let u : Ω → Rn be measurable, approximately differentiable a.e. Then, for any measurable
set E ⊂ Ω and any measurable function φ : Rn → R,∫

E

φ(u(x)) |detDu(x)| dx =
∫
Rn
φ(y) NE(y) dy,

whenever either integral exists. Moreover, given ψ : E → R measurable, the function ψ̄ : u(Ωd ∩ E) → R
defined by

ψ̄(y) :=
∑

x∈Ωd∩E

u(x)=y

ψ(x)
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is measurable and satisfies∫
E

ψ(x)φ(u(x)) |detDu(x)| dx =
∫

u(Ωd∩E)
ψ̄(y)φ(y) dy,

whenever the integral of the left-hand side exists.

We recall the definition of a.e. invertibility.

Definition 2.3. A function u : Ω → Rn is said to be one-to-one a.e. in a subset E of Ω if there exists an
Ln-null subset N of E such that u|E\N is one-to-one.

Now we present the notion of the geometric image of a set (see [11,22,33]) in the context of Orlicz spaces.

Definition 2.4. Let u ∈ W 1,A(Ω ,Rn) and suppose that detDu(x) ̸= 0 for a.e. x ∈ Ω . Define Ω0 as the
set of x ∈ Ω for which the following are satisfied:

(a) u is approximately differentiable at x and det ∇u(x) ̸= 0; and
(b) there exist w ∈ C1(Rn,Rn) and a compact set K ⊂ Ω of density 1 at x such that u|K = w|K and

∇u|K = Dw|K .

In order to emphasize the dependence on u, the notation Ωu,0 will also be employed. For any measurable
set E of Ω , we define the geometric image of E under u as u(E ∩ Ω0), and denote it by imG(u, E).

The set Ω0 is of full measure in Ω . Indeed, the Calderón–Zygmund theorem shows that property (a))
is satisfied a.e., while standard arguments, essentially due to Federer [16, Thms. 3.1.8 and 3.1.16] (see also
[33, Prop. 2.4] and [11, Rk. 2.5]), show that property (b)) is also satisfied a.e. Note also that u is well defined
at every x ∈ Ω0, because of Definition 2.1 (b)).

We present the notion of tangential approximate differentiability (cf. [16, Def. 3.2.16]).

Definition 2.5. Let S ⊂ Rn be a C1 differentiable manifold of dimension n−1, and let x0 ∈ S. Let Tx0S be
the linear tangent space of S at x0. A map u : S → Rn is said to be Hn−1 S-approximately differentiable
at x0 if there exists L ∈ Rn×n such that for all δ > 0,

lim
r↘0

1
rn−1 Hn−1

({
x ∈ S ∩B(x0, r) : |u(x) − u(x0) − L(x − x0)|

|x − x0|
≥ δ
})

= 0.

In this case, the linear map L|Tx0 S : Tx0S → Rn is uniquely determined, called the tangential approximate
derivative of u at x0, and is denoted by ∇u(x0).

2.5. Growth at infinity, continuity and Lusin’s condition

The focus of this paper is on functions A whose growth at infinity is at least such that∫ ∞( t

A(t)

) 1
n−2

dt < ∞. (2.8)

The condition is satisfied, in particular, when A(t) = tp for every p > n− 1 and when A(t) = tn−1 logα t for
every α > n− 2.

Orlicz spaces are intermediate between Lp spaces. In particular, Ln−1 contains LA for any A satisfying
(2.8) (see [36] or [29]).

As pointed out in [7, Rmk. 3.2], condition (2.8) is enough to ensure that maps defined on (n − 1)-
dimensional C1 manifolds and having W 1,A regularity necessarily have a continuous representative and
belong to the Lorentz space Ln−1,1.
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Proposition 2.6. Let S ⊂ Rn be a C1 differentiable manifold of dimension n − 1. If an N -function A

satisfies (2.8) and the ∆2-condition at infinity then every u ∈ W 1,A(S) has a continuous representative and
Du is of class Ln−1,1. Moreover, there exists a constant C, depending only on A, S, and n, such thatu− −

∫
S

udHn−1


L∞
≤ C∥Du∥LA(S).

Proof. Using local charts S may be assumed, without loss of generality, to be a bounded open subset of
Rn−1. The embedding into C(S) is proved in [9, Thm. 1b] under the assumption that∫ ∞ Ã(t)

t1+m′ dt < ∞, (2.9)

with m = n− 1. By [10, Lemma 2.3] applied to Ã and q = m′ (taking into account that ˜̃A = A), condition
(2.9) is equivalent to (2.8).

Define

φ(t) :=
(

t

A(t)

)n−1
n−2

.

Note that φ is non-increasing because of (2.2). Also,∫ ∞

0
φ

1
n−1 (t)dt =

∫ ∞

0

(
t

A(t)

) 1
n−2

dt

and ∫
|Du|>0

|Du(x)|φ
1

n−1 −1(|Du(x)|)dx =
∫

|Du|>0
A(|Du(x)|)dx < ∞.

From [26, Cor. 2.4] it follows that Du is of class Ln−1,1. □

The following convention will be used throughout the paper.

Convention 2.7. If u : Ω → Rn is measurable and u|∂U ∈ W 1,A(∂U,Rn) for some C1 open set U ⊂⊂ Ω

and some N -function A satisfying (2.8) and the ∆2-condition at infinity, then in expressions like u(∂U) or
u|∂U we shall be referring to the continuous representative of u|∂U in W 1,p(∂U,Rn), which exists thanks to
Proposition 2.6. Moreover, we will usually write u ∈ W 1,A(∂U,Rn) instead of u|∂U ∈ W 1,A(∂U,Rn).

Federer’s change of variables formula for surface integrals [16, Cor. 3.2.20] (see also [33, Prop. 2.7] and
[22, Prop. 2.9]), combined with Lusin’s property for Sobolev maps with gradients in Lorentz spaces proved
by Kahuanen, Koskela & Malý [26, Thm. C], will play an important role in the paper. We will adopt the
following formulation.

Proposition 2.8. Let A be an N -function satisfying (2.8) and the ∆2-condition at infinity. Suppose that U
is a C1 open subset of Ω , and u|∂U ∈ W 1,A(∂U,Rn). Assume, further, that ∇(u|∂U )(x) = ∇u(x)|Tx∂U for
Hn−1-a.e. x ∈ ∂U . Then, for any Hn−1-measurable subset E ⊂ ∂U ,

Hn−1(u(E)) =
∫

E

|(cof ∇u(x))ν(x)| dHn−1(x),

where ν(x) denotes the outward unit normal to ∂U at x.

Remark 2.9.

(a) By u(E) we refer to the image of E by the continuous representative of u|∂U in W 1,A(∂U,Rn), due to
Convention 2.7.
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(b) We are mostly interested in the facts that Hn−1(u(∂U)) < ∞ and that Hn−1(u(E)) = 0 for every
Hn−1-null set E ⊂ ∂U . In particular, Ln(u(∂U)) = 0, and u(∂U) = u(∂U ∩ Ω0) Hn−1-a.e. if ∂U ⊂ Ω0
Hn−1-a.e., where Ω0 is the set of Definition 2.4.

2.6. A class of good open sets

In the following definition, given a nonempty open set U ⊂⊂ Ω with a C2 boundary, we call d : Ω → R
the function given by

d(x) :=

⎧⎪⎨⎪⎩
dist(x, ∂U) if x ∈ U

0 if x ∈ ∂U

− dist(x, ∂U) if x ∈ Ω \ Ū

and

Ut := {x ∈ Ω : d(x) > t} , (2.10)

for each t ∈ R. We note (see, e.g., [14, Th. 16.25.2], [40, p. 112] or [33, p. 48]) that there exists δ > 0 such
that for all t ∈ (−δ, δ), the set Ut is open, compactly contained in Ω and has a C2 boundary.

Definition 2.10. Let A be an N -function satisfying (2.8) and the ∆2-condition at infinity. Let u ∈
W 1,A(Ω ,Rn). We define Uu as the family of nonempty open sets U ⊂⊂ Ω with a C2 boundary that satisfy
the following conditions:

(a) u|∂U ∈ W 1,A(∂U,Rn), and (cof ∇u)|∂U ∈ L1(∂U,Rn×n).
(b) ∂U ⊂ Ω0 Hn−1-a.e., where Ω0 is the set of Definition 2.4, and ∇(u|∂U )(x) = ∇u(x)|Tx∂U for Hn−1-a.e.

x ∈ ∂U .
(c) lim

ε↘0
−
∫ ε

0

⏐⏐⏐⏐∫
∂Ut

| cof ∇u| dHn−1 −
∫

∂U

| cof ∇u| dHn−1
⏐⏐⏐⏐dt = 0.

(d) For every g ∈ C1(Rn,Rn) with (adjDu)(g ◦ u) ∈ L1
loc(Ω ,Rn),

lim
ε↘0

−
∫ ε

0

⏐⏐⏐⏐∫
∂Ut

g(u(x)) · (cof ∇u(x) νt(x)) dHn−1(x) −
∫

∂U

g(u(x)) · (cof ∇u(x) ν(x)) dHn−1(x)
⏐⏐⏐⏐dt = 0,

where νt denotes the unit outward normal to Ut for each t ∈ (0, ε), and ν the unit outward normal
to U .

The following result can be proved as in [33, Lemma 2.9]. It is a consequence of Fubini’s theorem and the
compact embedding of W 1,A into the space of continuous functions (see [9, Corollary 1], which is proved for
strongly Lipschitz domains and can be used in our setting, via local charts, since the manifolds ∂Ut have no
boundary).

Lemma 2.11. Let A be an N -function satisfying (2.8) and the ∆2-condition at infinity. For each j ∈ N
let uj ,u ∈ W 1,A(Ω ,Rn) satisfy uj ⇀ u in W 1,A(Ω ,Rn) as j → ∞. Let U ⊂⊂ Ω be an open set with a C2

boundary. Then there exists δ > 0 such that for a.e. t ∈ (−δ, δ),

uj ,u ∈ W 1,A(∂Ut,Rn) for all j ∈ N

and, for a subsequence (depending on t),

uj → u uniformly on ∂Ut as j → ∞.
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2.7. Degree for Orlicz–Sobolev maps

We assume that the reader has some familiarity with the topological degree for continuous functions (see,
e.g., [13,17]). Let U be a bounded open set of Rn and let ϕ : ∂U → Rn be continuous. By Tietze’s theorem,
it admits a continuous extension ϕ̃ : Ū → Rn. We define the degree deg(ϕ, U, ·) : Rn \ ϕ(∂U) → Z of ϕ on
U as the degree deg(ϕ̃, U, ·) : Rn \ ϕ(∂U) → Z of ϕ̃ on U . This definition is consistent since the degree only
depends on the boundary values (see, e.g., [13, Th. 3.1 (d6)]).

The following formula for the distributional derivative of the degree will be widely used (see, e.g.,
[34, Prop. 2.1] or [33, Prop. 2.1]).

Proposition 2.12. Let A be an N -function satisfying (2.8) and the ∆2-condition at infinity. Let U ⊂ Rn

be a C1 open set. Suppose that u is the continuous representative of a function in W 1,A(∂U,Rn). Then, for
all g ∈ C1(Rn,Rn),∫

∂U

g(u(x)) · (cof Du(x) ν(x)) dHn−1(x) =
∫
Rn

div g(y) deg(u, U,y) dy,

where ν is the unit outward normal to U .

Proof. As mentioned in [33, Prop. 2.1, Rmk. 2], for the formula to be valid is enough to know that
u ∈ W 1,n−1(∂U,Rn), that u has a continuous representative and that Ln(u(∂U)) = 0. That W 1,A(∂U,Rn) ⊂
W 1,n−1(∂U,Rn) follows from the fact that LA(∂U) ⊂ Ln−1(∂U). Functions in W 1,A(∂U,Rn) satisfy the
remaining two conditions thanks again to Proposition 2.6 and Remark 2.9. (b). □

The concept of topological image was introduced by Šverák [40] (see also [33]).

Definition 2.13. Let A be an N -function satisfying (2.8) and let U ⊂⊂ Rn be a nonempty open set with
a C1 boundary. If u ∈ W 1,A(∂U,Rn), we define imT(u, U), the topological image of U under u, as the set
of y ∈ Rn \ u(∂U) such that deg(u, U,y) ̸= 0.

Due to the continuity of deg(u, U,y) with respect to y, the set imT(u, U) is open and ∂ imT(u, U) ⊂
u(∂U). In addition, as deg(u, U, ·) is zero in the unbounded component of Rn \ u(∂U) (see, e.g.,
[13, Sect. 5.1]), it follows that imT(u, U) is bounded.

2.8. Distributional determinant

We present the definition of distributional determinant (see [2] or [32]). With ⟨·, ·⟩ we indicate the duality
product between a distribution and a smooth function.

Definition 2.14. Let u ∈ W 1,1(Ω ,Rn) satisfy (adjDu) u ∈ L1
loc(Ω ,Rn). The distributional determinant

of u is the distribution DetDu defined as

⟨DetDu, ϕ⟩ := − 1
n

∫
Ω

u(x) · (cof Du(x))Dϕ(x) dx, ϕ ∈ C∞
c (Ω).

2.9. Surface energy

The following concepts were defined in [20]:
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Definition 2.15. Let u : Ω → Rn be measurable and approximately differentiable a.e. Suppose that
det ∇u ∈ L1

loc(Ω) and cof ∇u ∈ L1
loc(Ω ,Rn×n). For every f ∈ C1

c (Ω × Rn,Rn), define

E(u, f) :=
∫
Ω

[cof ∇u(x) ·Df(x,u(x)) + det ∇u(x) div f(x,u(x))] dx (2.11)

and

E(u) := sup
{

E(u, f) : f ∈ C1
c (Ω × Rn,Rn), ∥f∥∞ ≤ 1

}
.

In Eq. (2.11), Df(x,y) denotes the derivative of f(·,y) evaluated at x, while div f(x,y) is the divergence
of f(x, ·) evaluated at y.

It was proved in [21,22] that if u is one-to-one a.e., det ∇u > 0 a.e. and E(u) < ∞ then

E(u) = Hn−1(ΓV (u)) + 2Hn−1(ΓI(u)),

where ΓV (u) and ΓI(u) are (n− 1)-rectifiable sets, defined as follows:

• A point y0 belongs to ΓV (u) if the approximate limit of u−1(y) as y approaches y0 from one side of
ΓV (u) lies in the interior of Ω , and either there are almost no points of imG(u,Ω) on the other side of
ΓV (u) or the approximate limit of u−1(y) coming from the other side lies on the boundary of Ω .

• A point y0 belongs to ΓI(u) if the approximate limits of u−1(y) coming from the two sides of ΓI(u)
exist, are different, and both lie in the interior of Ω .

The motivation there was the modelling of fracture, context in which ΓV (u) ∪ ΓI(u) corresponds to the
surface created by the deformation, as seen in the deformed configuration. In that case E(u) gives the area
of this created surface.

2.10. Weak monotonicity

The following definition of weak monotonicity was introduced by Manfredi [31] (see, e.g., [42] for earlier
related definitions; the subscript + stands for positive part).

Definition 2.16. A function u ∈ W 1,1
loc (Ω) is called weakly monotone if, for every open set Ω ′ ⊂⊂ Ω , and

every m,M ∈ R, such that m ≤ M and

(u−M)+ − (m− u)+ ∈ W 1,1
0 (Ω ′),

one has that

m ≤ u ≤ M a.e. in Ω ′.

The definition asks for a weak version of the minimum and maximum principle to be satisfied for every
open Ω ′ ⊂⊂ Ω . We shall work with maps where that minimum and maximum principles are satisfied only
for open sets in Uu; in particular, given any x in Ω we will only be able to assume that they hold for a.e.
r ∈ (0,dist(x, ∂Ω)) and not for every such radius. This possibility was taken into account in the notion of
weak pseudomonotonicity of Hajlasz & Malý [19] (which, in fact, is more general than what we need: we will
only consider the case K = 1).

Definition 2.17. A map u ∈ W 1,1(Ω) is said to be weakly K-pseudomonotone, K ≥ 1, if for every x ∈ Ω

and a.e. 0 < r < dist(x, ∂Ω),

ess osc
B(x,r)

u ≤ K ess osc
S(x,r)

u,

where the oscillation on the left is essential with respect to the Lebesgue measure and the oscillation on the
right is essential with respect to the (n− 1)-dimensional Hausdorff measure.
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3. H1-Continuity of pseudomonotone Orlicz–Sobolev maps

In the paper [7] the authors develop continuity properties of weakly monotone Orlicz–Sobolev functions.
In our analysis, we improve their estimate concerning the Hausdorff dimension of points where the function is
not continuous. Also, since in the following sections this estimate will be needed for maps whose restrictions
to balls B(x, r) we will only be able to prove that satisfy the weak minimum and maximum principles for
a.e. r (instead of for every r), we show that their arguments remain valid under this milder monotonicity
condition. We take the chance for a slight generalization and obtain the oscillation estimates assuming only
that the maps are pseudomonotone.

Given a continuous, increasing function h : [0,∞) → [0,∞) such that h(0) = 0, the h-Hausdorff measure
Hh(·)(E) of a set E ⊂ Rn is defined as

Hh(·)(E) = lim
δ↘0

inf
{ ∞∑

j=1
h(diam(Kj)) : E ⊂

∞⋃
j=1

Kj , diam(Kj) ≤ δ
}
. (3.1)

Lemma 3.1. Let A be an N -function satisfying (2.8) and the ∆2-condition at infinity. Set

h(r) :=
∫ r

0
tn−1An−1

(
1
t

)
dt, (3.2)

where An−1 is the Young function given by

An−1(t) :=
(
t

n−1
n−2

∫ ∞

t

Ã(r)

r1+ n−1
n−2

dr
)̃
. (3.3)

For every f ∈ L1(Ω)

Hh(·)({x0 ∈ Ω : lim sup
r↘0

∫
Ω

|f |dx
h(r) > 0}) = 0. (3.4)

Proof. We will follow [15, Thm. 2.4.3.3]. Let us show first that

E := {x0 ∈ Ω : lim sup
r↘0

∫
B(x0,r) |f |dx

h(r) > 0}

does not contain any Lebesgue–Hausdorff point of f . Indeed,

∀r ∈ (0, 1) : h(r) ≥ An−1(1)r (3.5)

because t → tn−1An−1
( 1

t

)
is decreasing [7, Thm. 3.1, Eq. (4.18)]. Hence, if x0 is a Lebesgue point of f

then

lim sup
r↘0

∫
B(x0,r) |f |dx

h(r) ≤ lim sup
r↘0

−
∫

B(x0,r)
|f |dx · Crn

An−1(1)r = 0.

As a consequence, for all σ > 0 we can find an open set U ⊂ Ω such that U ⊂ E and
∫

U
|f(x)|dx < σ,

using the absolute continuity of the density |f(x)|. Fix ε > 0, and define

Eε : = {x0 ∈ Ω : lim sup
r→0

∫
B(x0,r) |f(x)|dx

h(r) > ε}. (3.6)

We will prove that Hh(·)(Eϵ) = 0. By Vitali’s covering theorem, for any δ > 0 there exist disjoint balls
(Bi)i∈N such that Eε ⊂

⋃
i∈N 5Bi, Bi ⊂ U , ri = diam(Bi) < δ,

∫
Bi

|f |dx > εh(ri). Using that An−1 is
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increasing and the definition of h(r) it is straightforward to show that h(5r) ≤ 5nh(r),∀r > 0. We then
proceed in the estimate:

Hh(·)(Eε) ≤
∞∑

i=1
h(5ri) ≤ 5n

∞∑
i=1

∫
Bi

|f |dx
ε

<
5nσ

ε
. (3.7)

The conclusion follows by letting δ → 0 and then σ → 0. Since Hh(·)(Eϵ) = 0,∀ϵ > 0, we conclude that
Hh(·)(E) = 0. □

We remark that the weak minimum and maximum principle holds a.e. (see Prop. 5.5 in [5]). We would
like to apply the estimate as in [25, Lemma 7.4.1] in order to obtain the following Orlicz version of Gehring
oscillation estimate ([25, Lemma 7.4.2]):

If a and b are Lebesgue points of f and B(x0, r) ⊂⊂ Ω is any ball containing a and b,

then, for a.e. t ∈ (r, dist(x0, ∂Ω)), tn−1An−1

( |f(a) − f(b)|
CKt

)
≤
∫

St(x0)
A(|∇f |)dHn−1.

(3.8)

Proposition 3.2. Let A be a Young function that fulfils condition (2.8) for n ≥ 3. Let An−1 be the function
defined in (3.3). If f ∈ W 1,A

loc (Ω) and is K-pseudomonotone then (3.8) holds.

Proof. The proof simplifies the one presented in [7, Thm. 3.1].
Let a and b be Lebesgue points of f in Br(x0). Since

|f(a) − f(b)| =

⏐⏐⏐⏐⏐ limρ→0
−
∫

B(0,ρ)
(f(a + z) − f(b + z))dz

⏐⏐⏐⏐⏐ ≤ lim sup
ρ→0

−
∫

B(0,ρ)
|f(a + z) − f(b + z)|dz; (3.9)

for almost every τ ∈ (r,R)

ess osc
B(x0,τ)

f ≤ K ess osc
S(x0,τ)

f ; (3.10)

and for every ρ < min{r − |a − x0|, r − |b − x0|} and a.e. τ ∈ (r,R)

|f(a + z) − f(b + z)| ≤ ess osc
B(x0,τ)

f for a.e. z ∈ B(0, ρ); (3.11)

it follows that

|f(a) − f(b)| ≤ K ess osc
Sτ (x0)

f for a.e. τ ∈ (r,R). (3.12)

At this point, for a.e. τ > 0 the Poincaré–Sobolev inequality, [8, Thm. 4.1], on the (n−1)-dimensional sphere
for functions in W 1,A(Bτ ) holds:

ess osc
Sτ

f ≤ CτA−1
n−1

(
τ1−n

∫
Sτ

A(|∇f |)dHn−1
)
. (3.13)

The proof is finished by combining (3.12) with the Poincaré–Sobolev inequality. □

One part of the proof of [7, Thm. 3.1] consists in obtaining the estimate (3.14) and the a.e. differentiability
of Orlicz maps from the Gehring oscillation estimate (3.8) (stated in [7] as Eq. (4.15)). In order to make this
connection more explicit we state it as a separate proposition.



Please cite this article as: D. Henao and B. Stroffolini, Orlicz–Sobolev nematic elastomers, Nonlinear Analysis (2019),
https://doi.org/10.1016/j.na.2019.04.012.

D. Henao and B. Stroffolini / Nonlinear Analysis xxx (xxxx) xxx 13

Proposition 3.3. If f ∈ W 1,A
loc (Ω) and satisfies (3.8) then f ∈ L∞

loc(Ω) and there exists a constant c = c(n)
such that

ess osc
Br

f ≤ cKrA−1
n−1

(
−
∫

B2r

A(|∇f |)dx
)

(3.14)

whenever B2r ⊂⊂ Ω . Moreover, there exists a representative of f that is differentiable a.e.

Remark 3.4. As explained in [7, Rmk. 3.2], another way of seeing that weakly monotone maps with∫
A(|∇f |)dx < ∞ for some A satisfying (2.9) are a.e. differentiable is by recalling that maps with this

integrability have gradients in the Lorentz space Ln−1,1 (thanks to [26], see Proposition 2.6) and that weakly
monotone maps with ∇f ∈ Ln−1,1 were proved to be a.e. differentiable in [35, Thm. 1.2].

Proposition 3.5. Let A be an N -function satisfying (2.8) and the ∆2-condition at infinity. For every
K-pseudomonotone map u in W 1,A(Ω)

Hh(·)({x0 ∈ Ω : lim sup
r↘0

ess osc
B(x0,r)

u > 0}) = 0. (3.15)

Proof. Using (3.8) as in the proof of [7, Thm. 3.3] it can be seen that given any x0 ∈ Ω , and any r > 0
such that B(x0, r) ⊂⊂ Ω

tn−1An−1

(ess oscB(x0,r) u

CKt

)
≤
∫

S(x0,t)
A(|Du|)dHn−1 (3.16)

for a.e. t ∈ (r, dist(x0, ∂Ω)). Using (3.16) instead of the classical oscillation estimate for weakly monotone
Sobolev maps, we proceed as in [33, Thm. 7.4]. Set

E := {x0 ∈ Ω : lim sup
r↘0

ess osc
B(x0,r)

u > 0} (3.17)

and let x0 ∈ E. Then there exists λ > 0 such that for a.e. t < dist(x0, ∂Ω)∫
S(x0,t)

A(|Du|)dx ≥ tn−1An−1

(
λ

CKt

)
. (3.18)

By [7, Prop. 4.3], An−1 satisfies the ∆2 condition at infinity. Hence,

An−1

(
λ

CKt

)
≥ (C ′)−(1+log2(CK/λ))An−1

(
1
t

)
∀t < λ

CKt0
,

for some fixed positive t0 and C ′. Integrating over the interval [0, r]:

lim sup
r↘0

∫
B(x0,r) A(|Du|)

h(r) dx ≥ (C ′)−(1+log2(CK/λ)), (3.19)

with h defined as in (3.2). The result then follows by applying Lemma 3.1 to f(x) := A(|Du(x)|). □

Remark 3.6. It follows from (3.5) that

H1(E) ≤ 2
An−1(1)Hh(·)(E) (3.20)

for every Borel set E ⊂ Rn. This will allow us to define, in Section 4, a precise representative of u that is
continuous outside an H1-null set. This improves the result that u is Hh(·)-continuous with h(s) = s log−γ( 1

s ),
for all γ > n− 2 −α, in [7, Example 5.1(iii)]. More generally, neither Proposition 3.5 nor the H1-continuity
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is a consequence of [7, Thm. 3.6]. Indeed, in order to obtain the H1-continuity from [7, Thm. 3.6] we would
need that∫

0
h(s)d

(
−1

snσ( 1
s )An−1( 1

s )

)
ds < ∞ (3.21)

for h(s) = s and some continuous function σ : [0,∞) → [0,∞) such that
∫∞ dt

tσ(t) = ∞, but it can be shown
that for any such σ the integral in (3.21) is not convergent near 0.

4. Orientation-preserving functions creating no new surface

Our analysis is set up in the following functional class, for a given N -function A satisfying (2.8) and the
∆2-condition at infinity.

Definition 4.1. We define A as the set of u ∈ W 1,A(Ω ,Rn) such that detDu ∈ L1
loc(Ω), detDu > 0 a.e.

and E(u) = 0.

Intuitively, the maps that satisfy detDu > 0 a.e. and E(u) = 0 are those for which ∂u(Ω) = u(∂Ω)
(recall the interpretation of E(u) as the area of the surface created by u, mentioned after Definition 2.15). It
can be seen, using the density of the linear combinations of functions of separated variables, that E(u) = 0
if and only if

Div
(
(adjDu)g ◦ u

)
= ((div g) ◦ u) detDu ∀g ∈ C∞

c (Rn,Rn).

This is a regularity requirement. The identity is satisfied by C2 maps u, thanks to Piola’s identity. It is
closely related to the well-known equation DetDu = detDu, satisfied by all W 1,n maps. In fact, for maps
in W 1,p with p > n − 1 it was proved in [5, Corollary 4.7] that detDu > 0 a.e. and E(u) = 0 if and only
if detDu(x) ̸= 0 for a.e. x ∈ Ω , DetDu = detDu, and deg(u, B, ·) ≥ 0 for every ball B belonging to Uu.
The condition deg(u, B, ·) ≥ 0 for all B is known in topology to be the right way to express that u preserves
orientation. Along these lines it was proved in [22, Thm. 7.2] that without the regularity requirement that
E(u) = 0 the condition detDu > 0 a.e. is insufficient to ensure the preservation of orientation and the
positivity of the Brouwer degree, even if DetDu = detDu.

4.1. Fine properties

Recall the notation N from Section 2.4.

Proposition 4.2. Every u ∈ A satisfies:

(a) u ∈ L∞
loc(Ω ,Rn).

(b) DetDu = detDu.
(c) For all U ∈ Uu,

deg(u, U, ·) = NU a.e. and imT(u, U) = imG(u, U) a.e. (4.1)

(d) For every U1, U2 ∈ Uu with U1 ⊂⊂ U2,

deg(u, U1, ·) ≤ deg(u, U2, ·) a.e. and in Rn \ u(∂U1 ∪ ∂U2), and imT(u, U1) ⊂ imT(u, U2).
(4.2)

(e) The components of u are weakly 1-pseudomonotone.
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Proof. The equalities in (4.1), that Du ∈ L∞
loc(Ω ,Rn) and that DetDu = detDu can be proved exactly

as in [5, Thm. 4.1]. The monotonicity of the degree follows with the same proof of [5, Prop. 4.3.(d)], taking
into account that deg(u, U, ·) ≥ 0 in Rn \ u(∂U) by virtue of (4.1). Finally, the weak 1-pseudomonotonicity
can be established exactly as in [5, Prop. 5.5]. □

Remark 4.3. The statement in [5, p. 773] that the conditions that DetDu = detDu and detDu > 0
a.e. are enough to ensure that the components of u are weakly monotone is incorrect. The construction in
[22, Thm. 7.2] constitutes a counterexample. We were not able to determine whether the stronger condition
that E(u) = 0 renders the conclusion true.

It is well known (see, e.g., [24, Ch. 2]) that the weak monotonicity implies regularity properties. In
particular, for W 1,p-maps with p > n − 1, a representative of u is continuous Hn−p-a.e. (if p ≤ n)
and differentiable a.e. In our case, we get that u is continuous Hh(·)-a.e., where h is defined in (3.2).
However, we will not deal with the representative normally used in the theory of monotone maps (see,
e.g., [19,24,31,40,41]) but rather with the one defined in [33, Th. 7.4], which we explain in the following
paragraphs.

Definition 4.4. Let u ∈ A. We define the topological image of a point x ∈ Ω by u as

imT(u,x) :=
⋂
r>0

B(x,r)∈Uu

imT(u, B(x, r)),

and NC := {x ∈ Ω : H0(imT(u,x)) > 1}.

As explained in [5, Rmk. 5.7.(c)], neither the topological image of a point nor the set NC depends on the
particular representative of u (if u1,u2 ∈ A and u1 = u2 a.e. then imT(u1,x) = imT(u2,x) for every x ∈ Ω

and the set NC defined through u1 coincides with the one defined through u2).

Proposition 4.5. For every u ∈ A the following are satisfied:

(a) H1(NC) = 0.
(b) For every x0 ∈ Ω \NC the function r ↦→ −

∫
B(x0,r)

u(x) dx converges, as r ↘ 0, to some u∗(x0) ∈ Rn.

(c) The map û defined everywhere in Ω by

û(x) :=
{

u∗(x) if x ∈ Ω \NC,
any element of imT(u,x) if x ∈ NC

(4.3)

is such that û(x) = u(x) for every x ∈ Ω0 and û(x) ∈ imT(u,x) for every x ∈ Ω . Moreover, it is
continuous at every point of x ∈ Ω \ NC, differentiable a.e., and such that Ln(û(N)) = 0 for every
N ⊂ Ω with Ln(N) = 0.

Proof. Let u ∈ A. Denote by P the set of points x0 ∈ Ω where the following property fails: there exists
u∗(x0) ∈ Rn such that

lim
r↘0

−
∫

B(x0,r)
|u(x) − u∗(x0)|n(n−1) dx = 0.

Since A ⊂ W 1,n−1(Ω ,Rn), P has zero (n− 1)-capacity (see [15,43] or, e.g., [33, Prop. 2.8]). Define

ũ(x) :=
{

u∗(x) if x ∈ Ω \ (P ∪NC),
any element of imT(u,x) if x ∈ P ∪NC

(use is being made of the axiom of choice).
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Let us prove that u∗(x0) ∈ imT(u,x0) for every x0 ∈ Ω \ (P ∪ NC). Suppose, for a contradiction, that
u∗(x0) ∈ Rn \ imT(u∗, B(x0, r)) for some r > 0 such that B(x0, r) ∈ Uu∗ . Since deg(u∗, B(x0, r),y) = 0 for
every y in the open set Rn \ imT(u∗, B(x0, r)), the set of points x ∈ Ω for which deg(u∗, B(x0, r),u(x)) = 0
would have density 1 at x0. However, this is incompatible with (4.1).

Proceeding as in Part (b) of the proof of [33, Thm. 7.4], it can be seen that ũ is continuous at every point
of x ∈ Ω \NC (using (4.2) instead of [33, Lemma 7.3(i)]). One of the consequences of this continuity is that
P is contained in NC, and, hence, ũ(x) = û(x) for every x ∈ Ω .

That û satisfies Lusin’s property can be proved as in [33, Th. 10.1] (with a slightly shorter proof since
DetDu = detDu).

That NC is an H1-null set will be proved at the end. At this point, let us show how to obtain the a.e.
differentiability of û under the assumption that Ln(NC) = 0. Let x1 ∈ Ω \ NC be a Lebesgue point for
A(|Du|) and let x2 ∈ Ω \ NC satisfy B(x1, 2(|x2 − x1| + ρ)) ⊂ Ω for some ρ > 0. Let An−1 be the Young
function given by

An−1(t) :=
(
t

n−1
n−2

∫ ∞

t

Ã(r)

r1+ n−1
n−2

dr
)̃
. (4.4)

Using (3.14) (with radius |x2 − x1| + ρ) we find that for every r ∈ (0, ρ) and a.e. z ∈ B(0, 1)

|u(x2 + rz) − u(x1 + rz)| ≤ C(|x1 − x2| + ρ)A−1
n−1

(
−
∫

B(x1,2(|x1−x2|+ρ))
A(|Du|)dx

)
.

Since û is continuous outside NC,

|û(x2) − û(x1)| =

⏐⏐⏐⏐⏐ limr↘0

(
−
∫

B(x2,r)
udx − −

∫
B(x1,r)

udx
)⏐⏐⏐⏐⏐

≤ lim inf
r↘0

−
∫

B(0,1)
|u(x2 + rz) − u(x1 + rz)|dz

≤ C(|x1 − x2| + ρ)A−1
n−1

(
−
∫

B(x1,2(|x1−x2|+ρ))
A(|Du|)dx

)
.

Letting ρ ↘ 0 we find that

lim sup
x2→x1
x2 /∈NC

|û(x2) − û(x1)|
|x2 − x1|

< ∞. (4.5)

From this point onwards the a.e. differentiability can be obtained exactly as in the proof of [5, Prop. 5.9].
We now show how to adapt Part (c) of the proof of [33, Thm. 7.4] in order to obtain that H1(NC) = 0.

Set

E :=
n⋃

i=1
{x0 ∈ Ω : lim inf

r↘0
ess osc

B(x0,r)
ui > 0},

where ui denotes the ith component of û. By (3.20) and Proposition 3.5, it suffices to show that NC ⊂ E.
With this aim observe that for every x0 in NC there exists λ > 0 such that diam imT(û, B(x0, r)) > λ

whenever B(x0, r) ∈ Uû, because imT(u,x) is contained in imT(û, B(x0, r)). By Definition 2.10 and
Convention 2.7, the restriction û|∂B(x0,r) may be assumed to be continuous. Since imT(û, B(x0, r)) is a
compact set whose boundary is contained in û(∂B(x0, r)), there exist x1 and x2 on ∂B(x0, r) such that
|û(x2) − û(x1)| > λ. By Definition 2.10, almost every point of ∂B(x0, r) belongs to Ω0. Since û|∂B(x0,r) is
continuous, without loss of generality we may assume that x1 and x2 belong to Ω0. By Definitions 2.1 and
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2.4, points in Ω0 are points of approximate continuity for û. As a consequence, there exist measurable sets
A1, A2 ⊂ B(x0, r) of density 1

2 with respect to x1 and x2, respectively, such that

∀x′
1 ∈ A1 ∀x′

2 ∈ A2 : |û(x′
2) − û(x′

1)| > λ.

Consequently,
n∑

i=1
ess osc

B(x0,r)
ui > λ.

Since this is true for every r such that B(x0, r) ∈ Uû, we conclude that x0 ∈ E, completing the proof. □

4.2. Openness and properness

We begin by noting that equality (4.1) implies an openness property for u: for every U ∈ Uu,

imT(u, U) = imG(u, U) a.e. (4.6)

Definition 4.6. Let u ∈ A, where A is that of Definition 4.1. Define

UN
u := {U ∈ Uu : ∂U ∩NC = ∅}

and

imT(u,Ω) :=
⋃

U∈UN
u

imT(u, U).

We will see in Section 5 that imT(u,Ω) plays the role of the deformed configuration. By the continuity
of the degree, imT(u, U) is open, and hence, so is imT(u,Ω). Also, it does not depend on the particular
representative of u (the proof of [5, Lemma 5.18.(b)] remains valid in our setting).

Proposition 4.7. Let u ∈ A.

(a) For every non-empty open set U ⊂⊂ Ω with a C2 boundary there exists δ > 0 such that Ut ∈ UN
u for a.e.

t ∈ (−δ, δ), where Ut is defined as in (2.10). Moreover, for each compact K ⊂ Ω there exists U ′ ∈ UN
u

such that K ⊂ U ′.
(b) For each U ∈ UN

u and each compact K ⊂ imT(u, U) there exists δ > 0 such that

K ⊂
⋂

t∈(0,δ)
Ut∈UN

u

imT(u, Ut).

Proof. Part (a): Since, by Proposition 4.5, the set NC is H1-null, for each x ∈ Ω there exists an
L1-null set N ⊂ (0,∞) such that NC ∩ ∂B(x, r) = ∅ for all r ∈ (0,dist(x, ∂Ω)) \ N . Combining this with
[33, Prop. 2.8] and [21, Lemma 2 and Def. 11] (or [22, Lemma 2.16]) we obtain that there are enough sets
in UN

u whose boundaries do not intersect NC, as claimed.

Part (b): By Convention 2.7 and Proposition 4.5 we have that imT(u, U) = imT(û, U) for every U ∈
UN

u . Using this and the continuity of û at every point of ∂U the result follows with the same proof of
[5, Lemma 5.18.(a)]. □
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4.3. Local invertibility

Definition 4.8. Let u ∈ A. We denote by U in
u the class of U ∈ Uu such that u is one-to-one a.e. in U (see

Definition 2.3), and by UN,in
u the set UN

u ∩ U in
u . Define

Ωin :=
⋃

U in
u .

The set Ωin consists of the sets of points around which u is locally a.e. invertible: x ∈ Ωin if and only if
there exists r > 0 such that u is one-to-one a.e. in B(x, r). It does not depend on the particular representative
of u (as explained after Def. 4.4 in [5]).

The local invertibility theorem of Fonseca & Gangbo [18] for W 1,p maps with p > n was generalized,
under the assumption E(u) = 0, to all p > n − 1. Here it is shown to hold also in the Orlicz–Sobolev case
under the growth condition (2.8).

Proposition 4.9. For every u ∈ A the set Ωin is of full measure in Ω .

Proof. It can be proved that every x0 ∈ Ω where û is differentiable and detDû(x0) > 0 belongs to Ωin,
with the same arguments as in [5, Proposition 4.5.(d)]. □

Equality (4.6) makes it possible to define the local inverse having for domain an open set.

Definition 4.10. Let u ∈ A and U ∈ U in
u . The inverse (u|U )−1 : imT(u, U) → Rn is defined a.e. as

(u|U )−1(y) = x, for each y ∈ imG(u, U), and where x ∈ U ∩ Ω0 satisfies u(x) = y.

A careful inspection of the proofs shows that [23, Th. 3.3] remains valid in the class A or Orlicz–Sobolev
maps with positive Jacobian, zero surface energy and an integrability above W 1,n−1. (Use is made in [23] of
the stronger invertibility condition INV of Müller & Spector; this condition holds for every U ∈ U in

u thanks
to (4.6).)

Proposition 4.11. Let u ∈ A and U ∈ U in
u . Then

(u|U )−1 ∈ W 1,1(imT(u, U),Rn) and D(u|U )−1 =
(
Du ◦ (u|U )−1)−1 a.e.

Proposition 4.12. For each j ∈ N, let uj ,u ∈ A satisfy uj ⇀ u in W 1,A(Ω ,Rn) as j → ∞. The following
assertions hold:

(a) For any U ∈ UN
u and any compact set K ⊂ imT(u, U) there exists a subsequence for which K ⊂

imT(uj ,Ω) for all j ∈ N.
(b) For a subsequence, there exists a disjoint family

{Bk}k∈N ⊂ UN,in
u ∩

⋂
j∈N

UN,in
uj

such that Ω =
⋃

k∈NBk a.e. and, for each k ∈ N,

uj → u uniformly on ∂Bk, as j → ∞. (4.7)

(c) Let B ∈ U in
u ∩

⋂
j∈N U in

uj
and take an open set V ⊂⊂ imT(u, B) such that V ⊂ imT(uj , B) for all j ∈ N.

Then

(1) (uj |B)−1 ∗
⇀ (u|B)−1 in BV (V,Rn) as j → ∞;
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(2) for any minor M , we have M(D(uj |B)−1), M(D(u|B)−1) ∈ L1(V ) for all j ∈ N and

M
(
D(uj |B)−1) ∗

⇀M
(
D(u|B)−1) in M(V ) as j → ∞.

If, in addition, the sequence {detD(uj |B)−1}j∈N is equiintegrable in V , then the convergence in (1) holds
in the weak topology of W 1,1(V,Rn), and the convergence in (2) holds in the weak topology of L1(V ).

(d) For a subsequence we have that χimT(uj ,Ω) → χimT(u,Ω) a.e. and in L1(Rn) as j → ∞.

Proof. Part (a): Let U and K be a set in UN
u and a compact subset of imT(u, U). By Proposition 4.7 there

exists δ > 0 such that for a.e. t ∈ (0, δ)

Ut ∈
⋂
j∈N

UN
uj

∧ K ⊂ imT(u, Ut).

By the embedding of Proposition 2.6, the weak continuity of minors of [3, Thm. 4.11], and [22, Lemma 8.2],
for a.e. such t there exists a subsequence for which

(cof Duj)νt ⇀ (cof Du)ν in L1(∂Ut,Rn),

where νt is the unit exterior normal to Ut. That K ⊂ imT(uj , Ut) ⊂ imT(uj ,Ω) then follows by Lemma 2.11
and the homotopy-invariance of the degree (as in [5, Lemma 3.6]).

Part (b): The same proof of [5, Thm. 6.3(b)] remains valid. It is necessary to take into account that if a
map is differentiable at a given point then the condition of regular approximate differentiability, used in [5],
is automatically satisfied. Also, the proof uses [5, Prop. 2.6 and Lemma 2.24], which have to be replaced by
Proposition 4.5 and Lemma 2.11 (their Orlicz counterparts).

Parts (c) and (d): The proof of [5, Thm. 6.3(c)] remains valid upon replacing Proposition 5.3, Equation (5.1),
Lemma 2.24, and Lemma 5.18(a) in [5] with Proposition 4.11, Eq. (4.6), Lemma 2.11, and Proposition 4.7
of this paper. □

5. Functionals defined in the deformed configuration

Let W : Rn×n → [0,∞) be a polyconvex function. Assume that

W (F) ≥ cA(|F|) + h(det F), F ∈ Rn×n, (5.1)

for a constant c > 0 and a Borel function h : (0,∞) → [0,∞) such that

lim
t↘0

h(t) = lim
t→∞

h(t)
t

= ∞. (5.2)

Theorem 5.1. Let Ω be a Lipschitz domain of Rn, Γ an (n−1)-rectifiable subset of ∂Ω with Hn−1(Γ ) > 0,
and u0 : Γ → Rn. Define B as the set of (u,n) where u ∈ A, u|Γ = u0 and n ∈ W 1,2(imT(u,Ω),Sn−1). Let
W : Rn×n

+ → [0,∞) be a polyconvex function such that Eqs. (5.1) and (5.2) hold for a constant c > 0 and a
Borel function h : (0,∞) → [0,∞). Define Wmec as in (1.2). If B ̸= ∅ and

I(u,n) =
∫
Ω

Wmec(Du(x),n(u(x)))dx +
∫

imT(u,Ω)
|Dn(y)|2dy (5.3)

is not identically infinity in B, then I attains its minimum in B.

Proof. The only substantial difference with the proof of [5, Thm. 8.2] is the need of using Proposition 4.12
and equality (4.6) instead of [5, Thm. 6.3 and equality (5.1)] in the proofs of [5, Props. 7.1 and 7.8]. □
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The other main conclusions in [5] are the lower semicontinuity for Div-quasiconvex integrals (under the
constraint of incompressibility) of Proposition 7.6; the lower semicontinuity for the model for plasticity
of [12,18]; the existence of minimizers in Theorem 8.6 for the Landau–de Gennes model for nematic
elastomers of [6]; and Theorem 8.9 for the magnetostriction model of [28] where minimizers (u,m) are sought
for ∫

Ω

W (Du(x),m(u(x)))dx +
∫

imT(u,Ω)
|Dm(y)|2dy + 1

2

∫
Rn

|Dum(y)|2dy,

being um the unique weak solution to Maxwell’s equation

div(−Dum + χimT(u,Ω)m) = 0 in Rn.

All of these results (not only the existence of minimizers for (1.1), stated in Theorem 5.1) can be proved
under the milder coercivity condition (2.8) considered in this paper, using the results of Sections 3 and 4.
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[14] J. Dieudonné, Treatise on Analysis. Vol. III, Academic Press, New York, 1972.
[15] L.C. Evans, R.F. Gariepy, Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, FL, 1992.
[16] H. Federer, Geometric Measure Theory, Springer, New York, 1969.
[17] I. Fonseca, W. Gangbo, Degree Theory in Analysis and Applications, Oxford University Press, New York, 1995.
[18] I. Fonseca, W. Gangbo, Local invertibility of Sobolev functions, SIAM J. Math. Anal. 26 (1995) 280–304.

http://refhub.elsevier.com/S0362-546X(19)30140-3/sb1
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb1
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb1
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb2
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb2
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb2
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb3
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb3
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb3
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb4
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb4
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb4
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb5
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb5
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb5
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb6
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb6
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb6
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
https://doi.org/10.1515/acv-2017-0065
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb8
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb8
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb8
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb9
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb9
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb9
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb10
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb11
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb11
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb11
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb12
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb12
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb12
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb13
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb14
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb15
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb16
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb17
http://refhub.elsevier.com/S0362-546X(19)30140-3/sb18


Please cite this article as: D. Henao and B. Stroffolini, Orlicz–Sobolev nematic elastomers, Nonlinear Analysis (2019),
https://doi.org/10.1016/j.na.2019.04.012.

D. Henao and B. Stroffolini / Nonlinear Analysis xxx (xxxx) xxx 21
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[42] S.K. Vodop’yanov, V.M. Gol’dštein, Quasiconformal mappings and spaces of functions with first generalized derivatives,
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