
A Delayed Promotion Policy for Parity GamesI

Massimo Benerecettia, Daniele Dell’Erbaa, Fabio Mogaverob

aUniversità degli Studi di Napoli Federico II, Napoli, Italy
bUniversity of Oxford, Oxford, UK

Abstract

Parity games are two-player infinite-duration games on graphs that play a crucial
role in various fields of theoretical computer science. Finding efficient algorithms to
solve these games in practice is widely acknowledged as a core problem in formal
verification, as it leads to efficient solutions of the model-checking and satisfiability
problems of expressive temporal logics, e.g., the modal µCALCULUS. Their solution
can be reduced to the problem of identifying sets of positions of the game, called
dominions, in each of which a player can force a win by remaining in the set forever.
Recently, a novel technique to compute dominions, called priority promotion, has been
proposed, which is based on the notions of quasi dominion, a relaxed form of dominion,
and dominion space. The underlying framework is general enough to accommodate
different instantiations of the solution procedure, whose correctness is ensured by the
nature of the space itself. In this paper we propose a new such instantiation, called
delayed promotion, that tries to reduce the possible exponential behaviors exhibited by
the original method in the worst case. The resulting procedure often outperforms both
the state-of-the-art solvers and the original priority promotion approach.

Keywords: Parity games; Infinite-duration games on graphs; Formal methods.

1. Introduction

The abstract concept of game has proved to be a fruitful metaphor in theoretical
computer science [2]. Several decision problems can, indeed, be encoded as path-
forming games on graphs, where a player willing to achieve a certain goal, usually the
verification of some property on the plays derived from the original problem, has to face
an opponent whose aim is to pursue the exact opposite task. One of the most prominent
instances of this connection is represented by the notion of parity game [3], a simple two-
player turn-based perfect-information game played on directed graphs, whose nodes are
labeled with natural numbers called priorities. The goal of the first (resp., second) player,
a.k.a., even (resp., odd) player, is to force a play π, whose maximal priority occurring
infinitely often along π is of even (resp., odd) parity. The importance of these games is
due to the numerous applications in the area of system specification, verification, and

IThis work is based on [1], which appeared in GandALF’16.

Preprint submitted to Elsevier July 9, 2018

synthesis, where it is used as algorithmic back-end of satisfiability and model-checking
procedures for temporal logics [4, 5, 6], logics for games [7, 8, 9, 10, 11, 12, 13, 14],
and as a core for several techniques employed in automata theory [15, 16, 17, 18]. In
particular, it has been proved to be linear-time interreducible with the model-checking
problem for the modal µCALCULUS [5] and it is closely related to other games of infinite
duration, such as mean payoff [19, 20], discounted payoff [21], simple stochastic [22],
energy [23] games, and prompt games [24, 25, 26, 27]. Besides the practical importance,
parity games are also interesting from a computational complexity point of view, since
their solution problem is one of the few inhabitants of the UPTIME ∩ COUPTIME
class [28]. That result improves the NPTIME ∩ CONPTIME membership [5], which
easily follows from the property of memoryless determinacy [16, 3]. Still open is the
question about the membership in PTIME.

The literature on the topic is reach of algorithms for solving parity games, which
can be mainly classified into two families. The first one contains the algorithms that,
by employing a divide et impera approach, recursively decompose the problem into
subproblems, whose solutions are then suitably assembled to obtain the desired result.
In this category fall, for example, Zielonka’s recursive algorithm [29] and its dominion
decomposition [30] and big step [31] improvements. The second family, instead, groups
together those algorithms that try to compute a winning strategy for the two players on
the entire game. The principal members of this category are represented by Jurdziński’s
progress measure algorithm [32] and the strategy improvement approaches [33, 8, 34].

A recent breakthrough [35] by Calude et al. proposes a succinct reduction from
parity to reachability games based on a clever encoding of the sequences of priorities
that a player finds along a play. This allows for a mere quasi-polynomial blow up in
the size of the underlying graph and sets the basis of the fixed-parameter tractability
w.r.t. the number of priorities. The approach has been then considerably refined in [36],
where these encodings are modeled as progress measures. A similar technique is also
used in [37]. Despite the theoretical relevance of this new idea, preliminary experiments
seem to suggest that the practical impact of the result does not match the theoretical
one, as all exponential algorithms outperform, often by orders of magnitude, the current
implementations of the quasi-polynomial ones, which do not scale beyond few hundred
vertexes. This evaluation is consistent with the fact that the new techniques essentially
amount to clever and succinct encodings embedded within a brute force search, which
makes matching quasi-polynomial worst cases quite easy to find.

Recently, a new divide et impera solution algorithm, called priority promotion (PP,
for short), has been proposed in [38] and further developed in [39], which is fully based
on the decomposition of the winning regions into dominions. The idea is to find a domin-
ion for some of the two players and then remove it from the game, thereby allowing for
a recursive solution. The important difference w.r.t. the other two approaches [30, 31]
based on the same notion is that these procedures only look for dominions of a certain
size in order to speed up classic Zielonka’s algorithm in the worst case. Consequently,
they strongly rely on this algorithm for their completeness. On the contrary, the PP
procedure autonomously computes dominions of any size, by suitably composing quasi
dominions, a weaker notion of dominion. Intuitively, a quasi dominion Q for player
α ∈ {0, 1} is a set of vertices from each of which player α can enforce a winning play
that never leaves the region, unless one of the following two conditions holds: (i) the

2

opponent α can escape from Q (i.e., there is an edge from a vertex of α exiting from Q)
or (ii) the only choice for player α itself is to exit from Q (i.e., no edge from a vertex
of α remains in Q). A crucial feature of quasi dominion is that they can be ordered by
assigning to each of them a measure corresponding to an under-approximation of the
best priority for α the opponent α can be forced to visit along any play exiting from
it. Indeed, under suitable and easy to check assumptions, a higher priority quasi α-
dominion Q and a lower priority one Q, can be merged into a single quasi α-dominion
of the higher priority, thus improving the approximation for Q. This merging operation
is called a priority promotion of Q to Q. A refinement of this approach, where the
attention is restricted to strongly connected quasi-dominions called tangles, has also
been recently proposed in [40].

The PP solution procedure has been shown to be very effective in practice and to
often significantly outperform all other solvers. Moreover, it also improves on the space
complexity of the best known algorithm with an exponential gain w.r.t. the number of
priorities and by a logarithmic factor w.r.t. the number of vertexes. Indeed, it only needs
O(n · log k) space against the O(k · n · log n) required by Jurdziński’s approach [32],
where n and k are, respectively, the numbers of vertexes and priorities of the game.
It also improves w.r.t. the recently introduced quasi-linear space algorithms [36, 37].
Unfortunately, the PP algorithm also exhibits exponential behaviors on a simple family
of games. This is due to the fact that, in general, promotions to higher priorities requires
resetting promotions previously performed at lower ones.

In this article, we continue the study of the priority promotion approaches trying to
find a remedy to this problem. We propose a new algorithm, called DP, built on top of a
slight variation of PP, called PP+. The PP+ algorithm simply avoids resetting previous
promotions to quasi dominions of the same parity. In this case, indeed, the relevant
properties of those quasi dominions are still preserved. This variation enables the new
DP promotion policy, that delays promotions that require a reset and only performs
those leading to the highest quasi dominions among the available ones. Experiments on
randomly generated games show that the new approach performs much better than PP
in practice, while still preserving the same space complexity.

2. Preliminaries

Let us briefly recall the notation and basic definitions concerning parity games. We
refer to [2, 29] for a comprehensive presentation of the subject.

Given a partial function f : A ⇀ B, by dom(f) ⊆ A and rng(f) ⊆ B we indicate
the domain and range of f, respectively. In addition,] denotes the completion operator
that, taken f and another partial function g : A ⇀ B, returns the partial function
f] g , (f \ dom(g)) ∪ g : A ⇀ B, which is equal to g on its domain and assumes the
same values of f on the remaining part of A.

A two-player turn-based arena is a tuple A =〈Ps,Ps,Mv〉, with Ps ∩ Ps = ∅
and Ps , Ps ∪ Ps, such that〈Ps,Mv〉 is a finite directed graph without sinks. Ps

(resp., Ps) is the set of positions of player 0 (resp., 1) and Mv ⊆ Ps×Ps is a left-total
relation describing all possible moves. A path in V ⊆ Ps is a finite or infinite sequence
π ∈ Pth(V) of positions in V compatible with the move relation, i.e., (πi, πi+1) ∈ Mv ,
for all i ∈ [0, |π| − 1[. For a finite path π, with lst(π) we denote the last position

3

of π. A positional strategy for player α ∈ {0, 1} on V ⊆ Ps is a partial function
σα ∈ Strα(V) ⊆ (V ∩ Psα) ⇀ V, mapping each α-position v ∈ dom(σα) to position
σα(v) compatible with the move relation, i.e., (v, σα(v)) ∈ Mv . With Strα(V) we
denote the set of all α-strategies on V. A play in V ⊆ Ps from a position v ∈ V w.r.t. a
pair of strategies (σ, σ) ∈ Str(V)×Str(V), called ((σ, σ), v)-play, is a path π ∈
Pth(V) such that π = v and, for all i ∈ [0, |π| − 1[, if πi ∈ Ps then πi+1 = σ(πi)
else πi+1 = σ(πi). The play function play : (Str(V) × Str(V)) × V → Pth(V)
returns, for each position v ∈ V and pair of strategies (σ, σ) ∈ Str(V)× Str(V),
the maximal ((σ, σ), v)-play play((σ, σ), v).

A parity game is a tuple a = 〈A,Pr, pr〉 ∈ P , where A is an arena, Pr ⊂ N is a
finite set of priorities, and pr : Ps→ Pr is a priority function assigning a priority to each
position. The priority function can be naturally extended to games and paths as follows:
pr(a) , maxv∈Ps pr(v); for a path π ∈ Pth, we set pr(π) , maxi∈[0,|π|[pr(πi), if π is
finite, and pr(π) , lim supi∈N pr(πi), otherwise. A set of positions V ⊆ Ps is an α-
dominion, with α ∈ {0, 1}, if there exists an α-strategy σα ∈ Strα(V) such that, for all
α-strategies σα ∈ Strα(V) and positions v ∈ V, the induced play π = play((σ, σ), v)
is infinite and pr(π) ≡2 α. In other words, σα only induces on V infinite plays whose
maximal priority visited infinitely often has parity α. By a\V we denote the maximal
subgame of a with set of positions Ps′ contained in Ps\V and move relation Mv ′ equal
to the restriction of Mv to Ps′.

The α-predecessor of V, in symbols preα(V) , {v ∈ Psα : Mv(v)∩V 6= ∅}∪{v ∈
Psα : Mv(v) ⊆ V}, collects the positions from which player α can force the game to
reach some position in V with a single move. The α-attractor atrα(V) generalities the
notion of α-predecessor preα(V) to an arbitrary number of moves, and corresponds to
the least fix-point of that operator. When V = atrα(V), we say that V is α-maximal.
Intuitively, V is α-maximal if player α cannot force any position outside V to enter the
set. For such a V, the set of positions of the subgame a \V is precisely Ps \V. Finally,
the set escα(V) , preα(Ps \V) ∩V, called the α-escape of V, contains the positions
in V from which α can leave V in one move. The dual notion of α-interior, defined
as intα(V) , (V ∩ Psα) \ escα(V), contains, instead, the α-positions from which α
cannot escape with a single move. Observe that all the operators and sets described
above actually depend on the specific game a they are applied to. In the rest of the
paper, we shall only add a as subscript of an operator, e.g., escαa(V), when the game is
not clear from the context.

3. The Priority Promotion Approach

The priority promotion approach proposed in [39] attacks the problem of solving a
parity game a by computing one of its dominions D, for some player α ∈ {0, 1}, at a
time. Indeed, once the α-attractor D? of D is removed from a, the smaller game a \D?

is obtained, whose positions are winning for one player iff they are winning for the
same player in the original game. This allows for decomposing the problem of solving
a parity game into iteratively finding its dominions [30].

In order to solve the dominion problem, the idea is to start from a much weaker
notion than that of dominion, called quasi dominion. Intuitively, a quasi α-dominion is

4

a set of positions on which player α has a strategy whose induced plays either remain
inside the set forever and are winning for α or can exit from it passing through a specific
set of escape positions.

Definition 3.1 (Quasi Dominion). Let a ∈ P be a game and α ∈ {0, 1} a player. A non-
empty set of positions Q ⊆ Ps is a quasi α-dominion in a if there exists an α-strategy
σα ∈ Strα(Q) such that, for all α-strategies σα ∈ Strα(Q), with intα(Q) ⊆ dom(σα),
and positions v ∈ Q, the induced play π = play((σ, σ), v) satisfies pr(π) ≡2 α, if π
is infinite, and lst(π) ∈ escα(Q), otherwise.

Observe that, if all the induced plays remain in the set Q forever, this is actually an
α-dominion and, therefore, a subset of the winning region Wnα of α. In this case, the
escape set of Q is empty, i.e., escα(Q) = ∅, and Q is said to be α-closed. In general,
however, a quasi α-dominion Q that is not an α-dominion, i.e., such that escα(Q) 6= ∅,
need not to be a subset of Wnα and it is called α-open. Indeed, in this case, some
induced play may not satisfy the winning condition for that player once exited from Q,
by visiting a cycle containing a position with maximal priority of parity α. The set of
pairs (Q, α) ∈ 2Ps × {0, 1}, where Q is a quasi α-dominion, is denoted by QD, and
is partitioned into the sets QD− and QD+ of open and closed quasi α-dominion pairs,
respectively.

Algorithm 1: Parity Game Solver.

signature solΓ : P→a(2Psa×2Psa)
function solΓ (a)

1 if Psa = ∅ then
2 return (∅, ∅)

else
3 (R, α)← searchΓ (a)
4 R? ← atrαa(R)
5 (W

′,W
′)← solΓ (a \ R?)

6 (Wα,Wα)← (Wα
′ ∪ R?,Wα

′)
7 return (W,W)

Algorithm 2: The Searcher.

signature searchΓ : P →a Rg+
a

function searchΓ (a)
1 return searchΓ (a)

(
>Γ (a)

)
signature searchD : SD → QD+

aD
function searchD(s)

1 (Q, α)← <D(s)

2 if (Q, α) ∈ QD+
aD then

3 return (Q, α)

else
4 return searchD(s ↓D(Q, α))

The priority promotion algorithm explores a partial order D, whose elements, called
states, record information about the open quasi dominions computed along the way.
Different partial orders can be associated to the same game. Therefore, we shall
implicitly assume a function Γ mapping every game a to a partial order D = Γ(a),
where aD , a. The initial state of the search is the top element of the order, where
the quasi dominions are initialized to the sets of positions with the same priority. At
each step, a new quasi dominion is extracted from the current state, by means of a
query operator <, and used to compute a successor state, by means of a successor
operator ↓, if the quasi dominion is open. If, on the other hand, it is closed, the search is
over. Algorithm 2 implements the dominion search procedure searchD. A compatibility
relation � connects the query and the successor operators. The relation holds between

5

states of the partial order and the quasi dominions that can be extracted by the query
operator. Such a relation defines the domain of the successor operator. The partial order
together with the query and successor operators and the compatibility relation form
what is called a dominion space.

Definition 3.2 (Dominion Space). A dominion space for a game a ∈ P is a tuple
D , 〈a,S,�,<, ↓〉, where (1) S , 〈S,>,≺〉 is a well-founded partial order w.r.t.
≺ ⊂ S× S with distinguished element > ∈ S, (2) � ⊆ S×QD− is the compatibility
relation, (3) < : S→ QD is the query operator mapping each element s ∈ S to a quasi
dominion pair (Q, α) , <(s) ∈ QD such that, if (Q, α) ∈ QD− then s�(Q, α), and
(4) ↓ : �→ S is the successor operator mapping each compatible pair (s, (Q, α)) ∈ �
to the element s? , s ↓(Q, α) ∈ S with s?≺s.

The notion of dominion space is quite general and can be instantiated in different
ways, by providing specific query and successor operators. In [39], indeed, it is shown
that the search procedure searchD is sound and complete on any dominion space D. In
addition, its time complexity is linear in the execution depth of the dominion space,
namely the length of the longest chain in the underlying partial order compatible with
the successor operator, while its space complexity is only logarithmic in the space size,
since only one state at the time needs to be maintained. A specific instantiation of
dominion space, called PP dominion space, is the one proposed and studied in [39].
Here we propose a different one, starting from a slight optimization, called PP+, of that
original version.

PP+ Dominion Space. In order to instantiate a dominion space, we need to define
a suitable query function to compute quasi dominions and a successor operator to
ensure progress in the search for a closed dominion. The priority promotion algorithm
proceeds as follows. The input game is processed in descending order of priority. At
each step, a subgame of the entire game, obtained by removing the quasi dominions
previously computed at higher priorities, is considered. At each priority of parity α, a
quasi α-dominion Q is extracted by the query operator from the current subgame. If
Q is closed in the entire game, the search stops and returns Q as result. Otherwise, a
successor state in the underlying partial order is computed by the successor operator,
depending on whether Q is open in the current subgame or not. In the first case, the
quasi α-dominion is removed from the current subgame and the search restarts on the
new subgame that can only contain positions with lower priorities. In the second case,
Q is merged together with some previously computed quasi α-dominion with higher
priority. Being a dominion space well-ordered, the search is guaranteed to eventually
terminate and return a closed quasi dominion. The procedure requires the solution of
two crucial problems: (a) extracting a quasi dominion from a subgame and (b) merging
together two quasi α-dominions to obtain a bigger, possibly closed, quasi α-dominion.

The solution of the first problem relies on the definition of a specific class of quasi
dominions, called regions. An α-region R of a game a is a special form of a quasi
α-dominion of a with the additional requirement that all the escape positions in escα(R)
have the maximal priority p , pr(a) ≡2 α in a. In this case, we say that the α-region
R has priority p. As a consequence, if the opponent α can escape from the α-region R,
he must visit a position with the highest priority in it, which is of parity α.

6

Definition 3.3 (Region). A quasi α-dominion R is an α-region in a if pr(a) ≡2 α and
all the positions in escα(R) have priority pr(a), i.e. escα(R) ⊆ pr−(pr(a)).

It is important to observe that, in any parity game, an α-region always exists, for
some α ∈ {0, 1}. In particular, the set of positions of maximal priority in the game
always forms an α-region, with α equal to the parity of that maximal priority. In
addition, the α-attractor of an α-region is always an α-maximal α-region. A closed
α-region in a game is clearly an α-dominion in that game. These observations give
us an easy and efficient way to extract a quasi dominion from every subgame: collect
the α-attractor of the positions with maximal priority p in the subgame, where p ≡2 α,
and assign p as priority of the resulting region R. This priority, called measure of R,
intuitively corresponds to an under-approximation of the best priority player α can force
the opponent α to visit along any play exiting from R.

Proposition 3.1 (Region Extension [39]). Let a ∈ P be a game and R ⊆ Ps an
α-region in a. Then, R? , atrα(R) is an α-maximal α-region in a.

A solution to the second problem, the merging operation, is obtained as follows.
Given an α-region R in some game a and an α-dominion D in a subgame of a that
does not contain R itself, the two sets are merged together, if the only moves exiting
from α-positions of D in the entire game lead to higher priority α-regions and R has the
lowest priority among them. The priority of R is called the best escape priority of D for
α. The correctness of this merging operation is established by the following proposition.

Proposition 3.2 (Region Merging [39]). Let a ∈ P be a game, R ⊆ Ps an α-region,
and D ⊆ Psa\R an α-dominion in the subgame a\R. Then, R? , R∪D is an α-region
in a. Moreover, if both R and D are α-maximal in a and a \R, respectively, then R? is
α-maximal in a as well.

The merging operation is implemented by promoting all the positions of α-dominion
D to the measure of R, thus improving the measure of D. For this reason, it is called
a priority promotion. In [39] it is shown that, after a promotion to some measure p,
the regions with measure lower than p might need to be destroyed, by resetting all the
contained positions to their original priority. This necessity derives from the fact that
the new promoted region may attract positions from lower ones, thereby potentially
invalidating their status as regions. Indeed, in some cases, the player that wins by
remaining in the region may even change from α to α. As a consequence, the reset
operation is, in general, unavoidable. The original priority promotion algorithm applies
the reset operation to all the lower priority regions. However, the following property
ensures that this can be limited to the regions belonging to the opponent player only.

Proposition 3.3 (Region Splitting). Let a? ∈ P be a game and R? ⊆ Psa? an α-
maximal α-region in a?. For any subgame a of a? and α-region R ⊆ Ps in a, if
R\ , R \ R? 6= ∅, then R\ is an α-region in a \ R?.

Proof. Let us first prove that escαa\R?

(
R]
)
⊆ escα(R). Assume, by contradiction, that

there exists a position v ∈ escαa\R?

(
R]
)

which does not belong to escα(R). Let us
consider the case where v is an α-position of R] first. Then, one of its moves leads to

7

R in a. If such move leads to R], then it does so also in the subgame a \ R?, and v
cannot belong to the escape set of R]. If, on the other hand, it leads to R?, then, due to
the maximality of R?, v must belong to R? as well, contradicting the assumption that
v ∈ escαa\R?

(
R]
)
. Assume now that v is a α-position. Then, all of its moves lead to

R in a. Clearly, all the moves from v that remain in the subgame a \R?, if any, must
lead to R]. Hence, v cannot be an escaping position of R] in a \ R? in this case either.
As a consequence, all the positions in escαa\R?

(
R]
)

have maximal priority in a and,
a fortiori, in a \ R? as well.

Let us now prove that R] is a quasi α-dominion. Let σ ∈ Strα(R) be the witness
α-strategy for R as in Definition 3.1. Hence, regardless of the α-strategy used by the
opponent, each play induced by σ, either is infinite, hence remains in R forever, and is
winning for α, or is finite and ends in some position of the escape set escα(R). Consider
now the restriction σ′ , σ�R] of σ to the α-positions of R]. Let π be a play induced by
σ′. If π remains in R] ⊆ R forever, then it is clearly winning for α, as that play is also
compatible with σ. If, on the other hand, it is finite, then it must end in some position
v ∈ R]. If v is a α-position, then it has a move leaving R] and, therefore, must belong
to the escape escαa\R?

(
R]
)
. Assume v is an α-position. If v is not in the domain of

σ′, then it is not in the domain of σ either. Hence, it must belong to escαa(R). Being
escαa\R?

(
R]
)
⊆ escαa(R) and v ∈ R], we can conclude that v ∈ escαa\R?

(
R]
)
. Finally,

assume, by contradiction, that v is in the domain of σ′. Then, σ′(v) = σ(v) ∈ R. Since
π ends in v, however, σ′(v) 6∈ R]. But then, v would be an α-position in R with a move
leading to R?, contradicting the α-maximality of R?. We can, thus, conclude that v
must belong to escαa\R?

(
R]
)
.

This proposition, together with the observation that α-regions that can be extracted
from the corresponding subgames cannot attract positions contained in any retained
α-region, allows for preserving all the lower α-regions computed so far.

c/4 e/2

j/4

a/6

i/0

d/3

b/5

g/1

h/1 f/2

Figure 1: Running example.

1 2 3 4 5 6

6 a↓ · · · · · · · · · · · · a, b, d, g, i, j↓

5 b, f, h↓ · · · · · · b, d, f, g, h↓ · · ·

4 c, j↓ c, e, j↓ · · · c, j↓ c, e, j↓ c, e↑6

3 d↓ d↓ d, g↑5

2 e↑4 e↑4

1 g↑3

0 i↑6

8

Table 1: PP+ simulation.

Example 3.1. To exemplify the idea, Table 1 shows a simulation of the resulting
procedure on the parity game of Figure 1, where diamond shaped positions belong
to player 0 and square shaped ones to its opponent 1. Player 0 wins the entire game,
hence the 0-region containing all the positions is a 0-dominion in this case. Each cell
of the table contains a computed region. A downward arrow denotes a region that
is open in the subgame where it is computed, while an upward arrow means that the
region gets to be promoted to the priority in the subscript. The index of each row
corresponds to the measure of the region. Following the idea sketched above, the first
region obtained is the single-position 0-region {a} of measure 6, which is open because
of the two moves leading to d and e. The open 1-region {b, f, h} of measure 5 is, then,
formed by attracting both f and h to b, which is open in the subgame where {a} is
removed. Similarly, the 0-region {c, j} of measure 4 and the 1-region {d} of measure
3 are open, once removed {a, b, f, h} and {a, b, c, f, h}, respectively, from the game.
At priority 2, the 0-region {e} is closed in the corresponding subgame. However, it
is not closed in the whole game, because of the move leading to c, i.e., to the region
of measure 4. Proposition 3.2 can now be applied and a promotion of {e} to 4 is
performed, resulting in the new 0-region {c, e, j} that resets 1-region {d}. The search
resumes at the corresponding priority and, after computing the extension of such a
region via the attractor, we obtain that it is still open in the corresponding subgame.
Consequently, the 1-region {d} of measure 3 is recomputed and, then, priority 1 is
processed to build the 1-region {g}. The latter is closed in the associated subgame,
but not in the original game, because of a move leading to position d. Hence, another
promotion is performed, leading to the closed region of measure 3 at Column 3, which
in turn triggers a promotion to 5. When the promotion of 0-region {i} to priority 6 is
performed, however, 0-region {c, e, j} of measure 4 is not reset. This leads directly to
the configuration in Column 6, after the maximization of 0-region 6, which attracts b, d,
g, and j. Notice that, as prescribed by Proposition 3.3, the set {c, e}, highlighted by
the gray area, is still a 0-region. On the other hand, the set {f, h}, highlighted by the
dashed line and originally included in 1-region {b, d, f, g, h} of priority 5, needs to be
reset, since it is not a 1-region any more. It is, actually, an open 0-region instead. Now,
0-region 4 is closed in its subgame and it is promoted to 6. As result of this promotion,
we obtain the closed 0-region {a, b, c, d, e, g, i, j}, which is a dominion for player 0.

We can now provide the formal account of the PP+ dominion space. We shall denote
with Rg the set of region pairs in a and with Rg− and Rg+ the sets of open and closed
region pairs, respectively.

Similarly to the priority promotion algorithm, during the search for a dominion,
the computed regions, together with their current measure, are kept track of by means
of an auxiliary priority function r ∈ ∆ , Ps → Pr, called region function. Given
a priority p ∈ Pr, we denote by r(≥p) (resp., r(>p), r(<p), and r(≡2p)) the function
obtained by restricting the domain of r to the positions with measure greater than or
equal to p (resp., greater than, lower than, and congruent modulo 2 to p). Formally,
r(∼p) , r�{v ∈ Ps : r(v) ∼ p}, for∼∈ {≥, >,<,≡2}. By a≤pr , a\dom

(
r(>p)

)
, we

denote the largest subgame obtained by removing from a all the positions in the domain

9

of r(>p). The maximization of a priority function r ∈ ∆ is the unique priority function
m ∈ ∆ such that m−(q) = atrα

a≤q
m

(
r−(q) ∩ Psa≤q

m

)
, for all priorities q ∈ rng(r) with

α , q mod 2. In addition, we say that r is maximal above p ∈ Pr iff r(>p) = m(>p).
As opposed to the PP approach, where a promotion to p ≡2 α resets all the regions

lower than p, here we need to take into account the fact that the regions of the opponent
α are reset, while the ones of player α are retained. In particular, we need to ensure
that, as the search proceeds from p downward to any priority q < p, the maximization
of the regions contained at priorities higher than q can never make the region recorded
in r at q invalid. To this end, we consider only priority functions r that satisfy the
requirement that, at all priorities, they contain regions w.r.t. the subgames induced by
their maximizations m. Formally, r ∈ R ⊆ ∆ is a region function iff, for all priorities
q ∈ rng(m) with α , q mod 2, it holds that r−(q) ∩ Psa≤q

m
is an α-region in the

subgame a≤qm , where m is the maximization of r.
The status of the search of a dominion is encoded by the notion of state s of the

dominion space, which contains the current region function r and the current priority
p reached by the search in a. Initially, r coincides with the priority function pr of the
entire game a, while p is set to the maximal priority pr(a) available in the game. To
each of such states s , (r, p), we then associate the subgame at s defined as as , a≤pr ,
representing the portion of the original game that still has to be processed.

The following state space specifies the configurations in which the PP+ procedure
can reside and the relative order that the successor function must satisfy.

Definition 3.4 (State Space for PP+). A PP+ state space is a tuple S , 〈S,>,≺〉,
where:

1. S ⊆ R× Pr is the set of all pairs s , (r, p), called states, composed of a region
function r ∈ R and a priority p ∈ Pr such that (a) r is maximal above p and
(b) p ∈ rng(r);

2. > , (pr, pr(a));
3. two states s , (r, p), s , (r, p) ∈ S satisfy s≺s iff either (a) r(>q) =

r
(>q) and r− (q) ⊂ r− (q), for some priority q ∈ rng(r) with q ≥ p, or

(b) both r = r and p < p hold.

Condition 1 requires that every region r−(q) with measure q > p be α-maximal,
where α = q mod 2. This implies that r−(q) ⊆ Psa≤q

r
. Moreover, the current priority

p of the state must be one of the measures recorded in r. In addition, Condition 2
specifies the initial state, while Condition 3 defines the ordering relation among states,
which the successor operation has to comply with. It asserts that a state s is strictly
smaller than another state s if either there is a region recorded in s with some higher
measure q that strictly contains the corresponding one in s and all regions with measure
grater than q are equal in the two states, or state s is currently processing a lower
priority than the one of s.

A region pair (R, α) is compatible with a state s , (r, p) if it is an α-region in the
current subgame as. Moreover, if such a region is α-open in that game, it has to be
α-maximal and needs to necessarily contain the current region r−(p) of priority p in r.

10

Definition 3.5 (Compatibility Relation). An open quasi dominion pair (R, α) ∈ QD−

is compatible with a state s , (r, p) ∈ S, in symbols s�(R, α), iff (1) (R, α) ∈ Rgas

and (2) if R is α-open in as then R = atrαas
(r−(p)).

Algorithm 3: Query Function.

signature < : S→ 2Ps×{0, 1}
function <(s)

let (r, p) = s in
1 α← p mod 2
2 R← atrαas

(r−(p))

3 return (R, α)

Algorithm 3 provides the implementation of
the query function compatible with the priority-
promotion mechanism. Line 1 simply computes
the parity α of the priority to process in the state
s , (r, p). Line 2, instead, computes the attrac-
tor w.r.t. player α in subgame as of the region
contained in r at the current priority p. The re-
sulting set R is, according to Proposition 3.1, an
α-maximal α-region of as containing r−(p).

The promotion operation is based on the notion of best escape priority mentioned
above, namely the priority of the lowest α-region in r that has an incoming move coming
from the α-region, closed in the current subgame, that needs to be promoted. This
concept is formally defined as follows. Let I , Mv ∩ ((R∩Psα)× (dom(r)\R)) be the
interface relation between R and r, i.e., the set of α-moves exiting from R and reaching
some position within a region recorded in r. Then, bepα(R, r) is set to the minimal
measure of those regions that contain positions reachable by a move in I. Formally,
bepα(R, r) , min(rng(r�rng(I))). Such a value represents the best priority associated
with an α-region contained in r and reachable by α when escaping from R. Note that,
if R is a closed α-region in as, then bepα(R, r) is necessarily of parity α and greater
than the measure p of R. This property immediately follows from the maximality of
r above p. Indeed, no move of an α-position can lead to a α-maximal α-region. For
instance, for 0-region R = {e} with measure 2 in Column 1 of Figure 1, we have that
I = {(e, a), (e, c)} and r�rng(I) = {(a, 6), (c, 4)}. Hence, bep(R, r) = 4.

Algorithm 4: Successor Function.

signature ↓ : �→ ∆× Pr
function s ↓ (R, α)

let (r, p) = s in
1 if (R, α) ∈ Rg−as

then
2 r? ← r[R 7→ p]

3 p? ← max(rng
(
r?(<p)

)
)

else
4 p? ← bepα(R, r)

5 r? ← pr] r(≥p
?)∨(≡2p

?)[R 7→ p?]

6 return (r?, p?)

Algorithm 4 reports the pseudo-
code of the successor function, which
differs from the one proposed in [39]
only in Line 5, where Proposition 3.3
is applied. Given the current state s
and a compatible region pair (R, α)
open in the whole game as inputs,
it produces a successor state s? ,
(r?, p?) in the dominion space. It first
checks whether R is open also in the
subgame as (Line 1). If this is the
case, it assigns the measure p to re-
gion R and stores it in the new region
function r? (Line 2). The new current
priority p? is, then, computed as the highest priority lower than p in r? (Line 3). If, on
the other hand, R is closed in as, a promotion, merging R with some other α-region
contained in r, is required. The next priority p? is set to the bep of R for player α in the
entire game a w.r.t. r (Line 4). Region R is, then, promoted to priority p? and all and
only the regions of the opponent α with lower measure than p? in the region function r

11

are reset by means of the completion operator defined in Section 2 (Line 5).
The following theorem asserts that the PP+ state space, together with the same

query function of PP and the successor function of Algorithm 4 is a dominion space.

Theorem 3.1 (PP+ Dominion Space). For a game a, the PP+ structure D ,〈a,S,�,
<, ↓〉, where S is given in Definition 3.4, � is the relation of Definition 3.5, and < and ↓
are the functions computed by Algorithms 3 and 4 is a dominion space.

The PP+ procedure does reduce, w.r.t. PP, the number of reset needed to solve a
game and the exponential worst-case game presented in [39] does not work any more.
However, a worst-case, which is a slight modification of the one for PP, does exist for
this procedure as well.

0

8 79 6

1 2 3 4

Figure 2: The aPP+
 game.

Consider the game aPP+
h containing h chains of

length 2 that converge into a single position of priority
0 with a self loop. The i-th chain has a head of priority
2(h+ 1)− i and a body composed of a single position
with priority i and a self loop. An instance of this game
with h = 4 is depicted in Figure 2. The labels of the
positions correspond to the associated priorities. Intu-
itively, the execution depth of the PP+ dominion space
for this game is exponential, since the consecutive pro-
motion operations performed on each chain can simulate the increments of a partial
form of binary counter, some of whose configurations are missing. As a result, the
number of configurations of the counter follows a Fibonacci-like sequence of the form
F (h) = F (h−1)+F (h−2)+1, with F (0) = 1 and F (1) = 2. It is interesting to note
that this is the same recurrence equation of the number of minimal AVL trees of hight h.
The search procedure on aPP+

 starts by building the following four open regions: the
1-region {9}, the 0-region {8}, the 1-region {7}, and 0-region {6}. This state represents
the configuration of the counter, where all four digits are set to 0. The closed 0-region
{4} is then found and promoted to 6. Now, the counter is set to 0001. After that, the
closed 1-region {3} is computed that is promoted to 7. Due to the promotion to 7,
the positions in the 0-region with priority 6 are reset to their original priority, as they
belong to the opponent player. This releases the chain with head 6, which corresponds
to the reset of the least significant digit of the counter caused by the increment of the
second one, i.e., the counter displays 0010. The search resumes at priority 6 and the
0-regions {6} and {4} are computed once again. A second promotion of {4} to 6 is
performed, resulting in the counter assuming value 0011. When the closed 0-region {2}
is promoted to 8, however, only the 1-region {7, 3} is reset, leading to configuration
0101 of the counter. Hence, configuration 0100 is skipped. Similarly, when, the counter
reaches configuration 0111 and 1-region {1} is promoted to 9, the 0-regions {8, 2} and
{6, 4} are reset, leaving 1-region {7, 3} intact. This leads directly to configuration 1010
of the counter, skipping configurations 1000 and 1001.

An estimate of the depth of the PP+ dominion space on the game aPP+
h is given by

the following theorem.

Theorem 3.2 (Execution-Depth Lower Bound). For all h ∈ N, there exists a PP+
dominion space DPP+

h with k = 2h+ 1 positions and priorities, whose execution depth
is Fib(2(h+ 4))/Fib(h+ 4)− (h+ 6) = Θ

(
((1 +

√
5)/2)k/2

)
.

12

Proof. The game aPP+
h encodes a partial binary counter, where each one of the h chains,

composed of two positions connected to position 0, represents a digit. The promotion
operation of region i to region 2(h + 1) − i corresponds to the increment of the i-th
digit. As a consequence, the number of promotions for the PP+ algorithm is equal to
the number of configurations of the counter, except for the initial one. To count them
all on game aPP+

h , consider the recursive function P(h) having base case P(0) = 1 and
inductive cases P(h) = 1 + P(h− 1) + G(h− 1), where the function G is described
below. To be precise, this function computes a value that is exactly one more than
the number of promotions. The correctness of the base case is trivial. Indeed, when
h is equal to 0, there are no chains and, so, no promotions. We can now focus on the
inductive case h > 0. Before reaching the promotion of region {1} to region {2h+ 1},
i.e., to set the most-significant digit, all others digits must be set. To do this, the amount
of necessary promotions is equal to those required by the game with h− 1 chains, i.e.,
P(h− 1). At this point, an additional promotion is counted when region {1} is merged
to region {2h+ 1}. As shown in the execution of the game depicted in Figure 2, this
promotion resets the digits with index i < h such that i 6≡2 h. Therefore, G(h − 1)
counts exactly the promotions needed to set to 1 the digits reset after this promotion.

We now prove that the function G can be expressed by means of the following
recursive definition: G(0) = 0 and G(h) = dh/2e+

∑dh/2e−1
i=0 G(2i+ 1− h mod 2).

When h = 0, we have that G(h) = 0, since no chain is present. For the inductive
case, when h > 0, if h is odd, the least significant digit is not set. Therefore, the
algorithm performs a promotion to set it. After this digit is set, G(0) = 0 promotions
are required, since no lower chain is present. Then, the algorithm reaches the third
least significant digit, since the second one is already set. In order to set it, another
promotion is required. Once the third digit is set, the second one gets reset. So, to
set all digits, G(2) promotions are then required. After this, the algorithm will reach
the fifth significant digit and proceeds similarly until the (h− 1)-th digit is processed.
Summing up, (h+ 1)/2 +

∑(h−1)/2
i=0 G(2i) promotions are required in total. Similarly,

when h is even, we obtain that G(h) = (h/2) +
∑(h/2)−1
i=0 G(2i + 1). Consequently

G(h) = dh/2e+
∑dh/2e−1
i=0 G(2i+ 1− h mod 2), regardless of the parity of h.

Finally, it can be proved by induction that G(h) = Fib(h+2)−1, and, consequently,
P(h) = Fib(h+3)−1. The proof of these claim requires the application of the equalities
Fib(2h) =

∑h−1
i=0 Fib(2i + 1), and Fib(2h + 1) − 1 =

∑h
i=1 Fib(2i). Observe that

the above definition of P is equivalent to the sequence for the number of configuration
claimed for ah, i.e. P(h) = P(h − 1) + P(h − 2) + 1, since it is easy to see that
G(h− 1) = P(h− 2).

A similar reasoning can be exploited to count the number of queries executed by the
the PP+ algorithm on game aPP+

h . To do this, we use the function Q, having base case
Q(0) = 1 and inductive case Q(h) = 3 + Q(h− 1) + H(h− 1), where H(h) is defined
in the following. The base case is trivial. When h is equal to 0, there are no chains and,
so, the only region that can be returned by the query function is {0}. Let us now focus
on the inductive case h > 0. The algorithm requires one query to create region {2h+1},
corresponding to the head of the h-th chain. Before reaching the construction of region
{1}, all remaining digits have to be set to 1. To do this, the amount of necessary queries
is equal to Q(h− 1), where the query of region {0} actually correspond to the query

13

of region {1}. At this point, one query is needed to promote the body {1} to the head
{2h + 1} of the h-th chain. This promotion resets the digits with index i < h such
that i 6≡2 h. Therefore, H(h− 1) queries are needed to set to 1 the digits reset after it.
Finally, one query is required to create region {0}.

We now prove that the function H can be expressed by the following recursive
definition: H(0) = 0 and H(h) = h + 2dh/2e +

∑dh/2e−1
i=0 H(2i + 1 − h mod 2).

Indeed, H(h) = 0, when h = 0, since no chain is present. For the inductive case, when
h > 0, the function requires h queries to create the regions corresponding to the heads
of the chains before reaching the first region to promote. Also, it requires two queries
for each of the dh/2e promotions that reset the chains of lower significance.

By induction, it can be proved that H(h) = Luc(h + 3) − 4, and, consequently,
Q(h) = Luc(h+ 4)− h− 6, where Luc(h) is the h-th Lucas number with base cases
Luc(0) = 2 and Luc(1) = 1. The proof of these claim requires the application of the
equalities Luc(2h+ 1) + 1 =

∑h
i=0 Luc(2i), and Luc(2h)− 2 =

∑h−1
i=0 Luc(2i+ 1).

In conclusion, since it is known that Luc(h) = Fib(2h)/Fib(h), the function Q(h)
can be expressed as Fib(2(h+ 4)/Fib(h+ 4)− (h+ 6), whose asymptotic behavior is
a Θ
(
((1 +

√
5)/2)k/2

)
, as claimed in the theorem.

4. Delayed Promotion Policy

At the beginning of the previous section, we have observed that the time complexity
of the dominion search procedure searchD linearly depends on the execution depth of
the underlying dominion space D. This, in turn, depends on the number of promotions
performed by the associated successor function and is tightly connected with the reset
mechanism applied to the regions with measure lower than the one of the target region of
the promotion. In fact, it can be proved that, when no resets are performed, the number of
possible promotions is bounded by a polynomial in the number of priorities and positions
of the game under analysis. Consequently, the exponential behaviors exhibited by the
PP algorithm and its enhanced version PP+ are strictly connected with the particular
reset mechanism employed to ensure the soundness of the promotion approach. The
correctness of the PP+ method shows that the reset can be restricted to only the regions
of opposite parity w.r.t. the one of the promotion and, as we shall show in the next section,
this enhancement is also relatively effective in practice. However, we have already
noticed that this improvement does not suffice to avoid some pathological cases and no
general finer criteria is available to avoid the reset of the opponent regions. Therefore,
to further reduce such resets, in this section we propose a finer promotion policy that
tries to reduce the application of the reset mechanism. The new solution procedure is
based on delaying the promotions of regions, called locked promotions, that require
the reset of previously performed promotions of the opponent parity, until a complete
knowledge of the current search phase is reached. Once only locked promotions are left,
the search phase terminates by choosing the highest measure p? among those associated
with the locked promotions and, then, performing all the postponed ones of the same
parity as p? altogether. In order to distinguish between locked and unlocked promotions,
the corresponding target priorities of the performed ones, called instant promotions, are
recorded in a supplementary set P. Moreover, to keep track of the locked promotions,

14

a supplementary partial priority function r̃ is used. In more detail, the new procedure
evolves exactly as the PP+ algorithm, as long as open regions are discovered. When a
closed one with measure p is provided by the query function, two cases may arise. If
the corresponding promotion is not locked, the destination priority q is recorded in the
set P and the instant promotion is performed similarly to the case of PP+. Otherwise,
the promotion is not performed. Instead, it is recorded in the supplementary function r̃,
by assigning to R in r̃ the target priority q of that promotion and in r its current measure
p. Then, the positions in R are removed from the subgame and the search proceeds
at the highest remaining priority, as in the case R was open in the subgame. In case
the region R covers the entire subgame, all priorities available in the original game
have been processed and, therefore, there is no further subgame to analyse. At this
point, the delayed promotion to the highest priority p? recorded in r̃ is selected and
all promotions of the same parity are applied at once. This is done by first moving
all regions from r̃ into r and then removing from the resulting function the regions of
opposite parity w.r.t. p?, exactly as done by PP+. The search, then, resumes at priority
p?. Intuitively, a promotion is considered as locked if its target priority is either (a)
greater than some priority in P of opposite parity, which would be otherwise reset, or
(b) lower than the target of some previously delayed promotion recorded in r̃, but greater
than the corresponding priority set in r.

1 2 3 4

6 a↓ · · · · · · a, b, d, g, i, j↓

5 b, f, h↓ · · · · · ·

4 c, j↓ c, e, j↓ · · · c, e↑6

3 d↓ d↓ d, g 6 ↑5

2 e↑4

1 g↑3

0 i↑6

Table 2: DP simulation.

The latter condition is required to ensure
that the union of a region in r together
with the corresponding recorded region in r̃
is still a region. Observe that the whole
approach is crucially based on the fact
that when a promotion is performed all
the regions having lower measure but the
same parity are preserved. If this were
not the case, we would have no criteria
to determine which promotions need to be
locked and which, instead, can be freely
performed.

Example 4.1. This idea is summarized by Table 2, which contains the execution of
the new algorithm on the example in Figure 1. The computation proceeds as for PP+,
until the promotion of the 1-region {g} shown in Column 2, occurs. This is an instant
promotion to 3, since the only other promotion already computed and recorded in P
has value 4. Hence, it can be performed and saved in P as well. Starting from priority
3 in Column 3, the closed 1-region {d, g} could be promoted to 5. However, since its
target is greater than 4 ∈ P, it is delayed and recorded in r̃, where it is assigned priority
5. At priority 0, a delayed promotion of 0-region {i} to priority 6 is encountered
and registered, since it would overtake priority 3 ∈ P. Now, the resulting subgame
is empty. Since the highest delayed promotion is the one to priority 6 and no other
promotion of the same parity was delayed, 0-region {i} is promoted and both the
auxiliary priority function r̃ and the set of performed promotions P are emptied. The
previously computed 0-region {c, e, j} has the same parity and, therefore, it is not reset,
while the positions in both 1-regions {b, f, h} and {d, g} are reset to their original

15

priorities. After maximization of the newly created 0-region {a, i}, positions b, d, g,
and j get attracted as well. This leads to the first cell of Column 4, where 0-region
{a, b, d, g, i, j} is open. The next priority to process is 4, where 0-region {c, e}, the
previous 0-region {c, e, j} purged of position j, is now closed in the corresponding
subgame and gets promoted to 6. This results in a 0-region closed in the entire game,
hence, a dominion for player 0 has been found. Note that postponing the promotion of
1-region {d, g} allowed a reduction in the number of operations. Indeed, the redundant
maximization of 1-region {b, f, h} is avoided.

It is worth noting that this procedure only requires a linear number of promotions,
precisely

⌊
h+1
2

⌋
, on the lower bound game aPP+

h for PP+. This is due to the fact that all
resets are performed on regions that are not destination of any promotion.

DP Dominion Space. As it should be clear from the above informal description, the
delayed promotion mechanism is essentially a refinement of the one employed in PP+.
Indeed, the two approaches share all the requirements on the corresponding components
of a state, on the orderings, and on compatibility relations. However, DP introduces
in the state two supplementary elements, a partial priority function r̃, which collects
the delayed promotions that were not performed on the region function r, and a set of
priorities P, which collects the targets of the instant promotions performed. Hence,
in order to formally define the corresponding dominion space, we need to provide
suitable constraints connecting them with the other components of the search space.
The role of function r̃ is to record the delayed promotions obtained by moving the
corresponding positions from their priority p in r to the new measure q in r̃. Therefore,
as dictated by Proposition 3.2, the union of r−1(q) and r̃−1(q) must always be a region
in the subgame a≤qr . In addition, r̃−1(q) can only contain positions whose measure
in r is of the same parity as q and recorded in r at some lower priority greater than
the current one p. Formally, we say that a partial function r̃ ∈ ∆⇀ , Ps ⇀ Pr is
aligned with a region function r w.r.t. p if, for all priorities q ∈ rng(̃r), it holds that
(a) r̃−(q) ⊆ dom

(
r(>p)∧(<q)∧(≡2q)

)
and (b) r−1(q) ∪ r̃−1(q) is an α-region in a≤qr

with α ≡2 q. The state space for DP is, therefore, defined as follows.

Definition 4.1 (State Space for DP). A DP state space is a tuple S ,〈S,>,≺〉, where:

1. S ⊆ SPP+ × ∆⇀ × 2Pr is the set of all triples s , ((r, p), r̃,P), called states,
composed by a PP+ state (r, p) ∈ SPP+, a partial priority function r̃ ∈ ∆⇀

aligned with r w.r.t. p, and a set of priorities P ⊆ Pr.
2. > , (>PP+,∅, ∅);
3. s≺s iff ŝ≺PP+ŝ, for any two states s , (ŝ, ,), s , (ŝ, ,) ∈ S.

The second property we need to enforce is expressed in the compatibility relation
connecting the query and successor functions for DP and regards the closed region pairs
that are locked w.r.t. the current state. As stated above, a promotion is considered locked
if its target priority is either (a) greater than some priority in P of opposite parity or (b)
lower than the target of some previously delayed promotion recorded in r̃, but greater
than the corresponding priority set in r. Condition (a) is the one characterizing the
delayed promotion approach, as it reduces the number of resets of previously promoted

16

regions. The two conditions are expressed by the following two formulas, respectively,
where q is the target priority of the blocked promotion.

φa(q,P) , ∃l ∈ P . l 6≡2 q ∧ l < q

φb(q, r, r̃) , ∃v ∈ dom(̃r) . r(v) < q ≤ r̃(v)

Hence, an α-region R is called α-locked w.r.t. a state s , ((r, p), r̃,P) if the predicate
φLck(q, s) , φa(q,P) ∨ φb(q, r, r̃) is satisfied, where q = bepα(R, r] r̃) is the best
escape priority of the region R for player α w.r.t. the combined region function r] r̃.
In addition to the compatibility constraints for PP+, the compatibility relation for DP
requires that any α-locked region, possibly returned by the query function, be maximal
and contains the region r−(p) associated to the priority p of the current state.

Definition 4.2 (Compatibility Relation for DP). An open quasi dominion pair (R, α) ∈
QD− is compatible with a state s , ((r, p), ,) ∈ S, in symbols s�(R, α), iff
(1) (R, α) ∈ Rgas

and (2) if R is α-open in as or it is α-locked w.r.t. s then R =
atrαas

(r−(p)).

Algorithm 5 implements the successor function for DP. The pseudo-code on the
right-hand side consists of three macros used by the algorithm, namely #Assignment,
#InstantPromotion, and #DelayedPromotion. The first macro #Assignment(ξ)
performs the insertion of a new region R into the region function r. In presence of a
blocked promotion, i.e., when the parameter ξ is set to f, the region is also recorded in r̃
at the target priority of the promotion. The macro #InstantPromotion corresponds
to the DP version of the standard promotion operation of PP+. The only difference is
that it must also take care of updating the supplementary elements r̃ and P. The macro
#DelayedPromotion, instead, is responsible for the delayed promotion operation
specific to DP.

Algorithm 5: Successor Function.

signature ↓ : �→ (∆×Pr)×∆⇀×2Pr

function s ↓ (R, α)
let ((r, p), r̃,P) = s in

1 if (R, α) ∈ Rg−as
then

2-5 #Assignment(t)

else
6 q ← bepα(R, r] r̃)
7 if φLck(q, s) then
8 r̂← r̃[R 7→ q]
9 if R 6= Psas

then
10-13 #Assignment(f)

else
14-17 #DelayedPromotion

else
18-21 #InstantPromotion

22 return ((r?, p?), r̃?,P?)

Assignment & Promotion Macros.

macro #Assignment(ξ)
1 r? ← r[R 7→ p]

2 p? ← max(rng
(
r?(<p)

)
)

3 r̃? ← #if ξ #then r̃ #else r̂
4 P? ← P

macro #DelayedPromotion
1 p? ← max(rng(̂r))

2 r? ← pr] (r] r̂)(≥p
?)∨(≡2p

?)

3 r̃? ← ∅
4 P? ← ∅

macro #InstantPromotion
1 p? ← q

2 r? ← pr] r(≥p
?)∨(≡2p

?)[R 7→ p?]

3 r̃? ← r̃(>p
?)

4 P? ← P ∩ rng(r?) ∪ {p?}

17

If the current region R is open in the subgame as, the main algorithm proceeds,
similarly to Algorithm 4, at assigning to it the current priority p in r. This is done by
calling macro #Assignment with parameter t. Otherwise, the region is closed and a
promotion should be performed at priority q, corresponding to the bep of that region
w.r.t. the composed region function r] r̃. In this case, the algorithm first checks whether
such promotion is locked w.r.t. s at Line 7. If this is not the case, then the promotion is
performed as in PP+, by executing #InstantPromotion, and the target is kept track
of in the set P. If, instead, the promotion to q is locked, but some portion of the game
still has to be processed, the region is assigned its measure p in r and the promotion to q
is delayed and stored in r̃. This is done by executing #Assignment with parameter
f. Finally, in case the entire game has been processed, the delayed promotion to the
highest priority recorded in r̃ is selected and applied. The macro #DelayedPromotion
is executed, thus merging r with r̃. Function r̃ and set P are, then, erased, in order to
begin a new round of the search. Observe that, when a promotion is performed, whether
instant or delayed, we always preserve the underlying regions of the same parity, as
done by the PP+ algorithm. This is a crucial step in order to avoid the pathological
exponential worst case for the original PP procedure.

The soundness of the solution procedure relies on the following theorem.

Theorem 4.1 (DP Dominion Space). For a game a, the DP structure D ,〈a,S,�,<,
↓〉, where S is given in Definition 4.1, � is the relation of Definition 4.2, and < and ↓
are the functions computed by Algorithms 3 and 5, where in the former the assumption

“let (r, p) = s” is replaced by “let ((r, p), ,) = s” is a dominion space.

It is immediate to observe that the following mapping h : ((r, p), ,) ∈ SDP 7→
(r, p) ∈ SPP+, which takes DP states to PP+ states by simply forgetting the additional
elements r̃ and P, is a homomorphism. This, together with a trivial calculation of the
number of possible states, leads to the following theorem.

Theorem 4.2 (DP Size & Depth Upper Bounds). The size of the DP dominion space
Da for a game a ∈ P with n ∈ N+ positions and k ∈ [1, n] priorities is bounded by
2kk2n. Moreover, its depth is not greater then the one of the PP+ dominion space DPP+

a
for the same game.

Unfortunately, also this improved promotion policy happens to suffer from exponen-
tial behaviors. However, the exponential lower-bound family we found has a much more
complex structure than the one previously described for PP+. In particular, it requires
multiple positions with the same priority in order to fool the delayed promotion criterion
and force the algorithm to behave exactly as PP+. There seems to be no obvious way to
enforce a similar behavior on games having a single position for each priority. Since it
is well known that any parity game can be transformed into an equivalent one with as
many priorities as positions [41], the DP approach can still be considered as a candidate
to a polynomial-time solution of the problem.

In this family, the game aDP
h of index h ≥ 1, where h denotes the number

of chains it contains, is defined as follows. For all indexes i ∈ [1, h] and j ∈
[i− 1, h− (i mod 2)] ∪ {h + i − 1 + (h mod 2)}, there is a position (i, j), which

18

we shortly denote by ji. Position ji is connected to the i-th chain, belongs to player
i mod 2, i.e., ji ∈ Ps(i mod 2), and has priority j, i.e., pr(ji) = j. For any chain
i ∈]1, h], the head position (h+ i− 1 + (h mod 2))i has a unique move to the head
(h+i−2+(h mod 2))i−1 of the lower chain i−1. Moreover, the head (h+(h mod 2))1
of the first chain is connected to the tails (h−1)i of all the chains of odd index, i.e., with
i ≡2 1. The lower position (i− 1)i in each chain has a self-move plus one move to the
head (h+ i− 1 + (h mod 2))i. Finally, each position ji, with j ∈ [i, h− (i mod 2)],
has a unique move to a lower position (j − 1)i in the same chain. Figure 3 depicts the
instance of aDP

h with h = 4.

41 01 11 21 31

52 12 22 32 42

63 23 33

74 34 44

Figure 3: The aDP
 game.

Similarly to the execution depth of the
PP+ dominion space of the game in Fig-
ure 2, the execution depth of the DP do-
minion space for this game is exponential
in h. Indeed, the promotion operations
performed on each chain, merging its sec-
ond position to its head, can simulate
the increments of a partial binary counter
with h digits. The number of configura-
tions of this counter for the DP algorithm
can be proved to be P(h) + dn/2e − 2,
where P is the function counting the num-
ber of configurations for the PP+ shown
in the proof of Theorem 3.2.

The search procedure on aDP
 starts

by building the following seven open re-
gions: the 1-region {74}, the 0-region
{63}, the 1-region {52}, the 0-region {41, 42, 44}, the 1-region {31, 32, 33, 34}, the
0-region {21, 22, 23}, and the 1-region {11, 12, }. This state represents the configuration
of the counter, where all four digits are set to 0. The closed 0-region {01} is then found
and promoted to 4. Now, the counter is set to 0001. After that, the 1-region {32, 33, 34}
is built again followed by the 0-region {22, 23}. Next, the closed 1-region {12} is
computed, and is promoted to 5. Due to the reset criterion, the positions in the 0-region
with priority 4 are reset to their original priority, as they belong to the opponent player
w.r.t. to the promoted region. This releases the chain with head 4, which corresponds
to the reset of the least significant digit of the counter caused by the increment of the
second one, i.e., the counter displays 0010. The search resumes at priority 5 and the
0-region {41, 44}, the 1-region {31, 33, 34}, the 0-region {21, 23}, the 1-region {11},
and the 0-region {01} are computed once again. A second promotion of {01} to 4 is
performed, resulting in the counter assuming value 0011. When the closed 0-region
{23} is promoted to 6, however, only the 1-region {52, 12, 22, 32, 42} is reset, leading
to configuration 0101. Hence, configuration 0100 is skipped. Similarly, when, the
counter reaches configuration 0111 and 1-region {34} is promoted to 7, the 0-regions
{41, 01, 11, 21, 31} and {63, 23, 33} are reset, leaving 1-region {52, 12, 22, 32, 42} in-
tact. This leads directly to configuration 1010 of the counter, skipping configurations
1000 and 1001.

Observe that for each configuration, but the initial one, a promotion is required. So

19

the number of promotions to reach the all-1 configuration is Fib(h+ 3)− 1. Once the
last configuration is reached, the region of the least significant digit is promoted to the
region corresponding to the third significant digit, which is, in turn, promoted to the
fifth significant digit and so on, until a region containing all positions of the game, but
those of the most significant digit, if h is even, is obtained. Such region is a dominion
and the algorithm terminates. The number of these additional promotions is exactly
dn/2e − 2. Hence, the total number is Fib(h+ 3)− 1 + dn/2e − 2. The observation
above allows us to provide an estimation of the depth of the DP dominion space.

Theorem 4.3 (Execution-Depth Lower Bound). For all h ∈ N, there exists a DP
dominion spaceDDP

h with n = 2h+ (h2−h mod 2)/2 positions and k = 2h priorities,

whose execution depth is at least Fib(h+ 3)− 3 + dn/2e = Θ
(

((1 +
√

5)/2)
√
n
)

.

Note that in a game aDP
h , the number of positions is quadratic in the number of

priorities, hence, k = O(
√
n). This appears to be a crucial element in order to force

the DP algorithm to behave as PP+. Indeed, it is essential for every region of priority
p ∈ [1, k − 1] to be open until all the lower ones with priorities p′ < p are promoted
to the corresponding measure h+ p′ + (h mod 2). The only way to do this seems to
require p+ 1 positions with the same parity p.

5. Experimental Evaluation

The technique proposed in the paper has been implemented in PGSOLVER [42],
a tool that collects implementations of several parity game solvers proposed in the
literature. The tool provides benchmarking tools that can be used to evaluate the
performance of the solvers on both concrete and synthetic benchmarks. The concrete
ones include three classes of games, namely Towers-of-Hanoi, Elevator-Verification
and Language-Inclusion, which encode standard verification problems. The synthetic
ones, instead, provide both worst-case exponential families for the solvers included
in the tool and random games generators. The solvers considered in the experiments
include the original PP algorithm 1, the two versions PP+ and DP presented in this
paper, the Recursive algorithm Rec [29], the two Dominion Decomposition algorithms
DomDec [30] and BigStp [31], and the Strategy Improvement algorithm StrImp [33].

We also experimented with Small Progress Measure [32] and with the two quasi-
polynomial solvers recently proposed in [36] and [37]. These last three solvers, however,
were unable to solve any of the benchmarks considered within the time limit and have
been left out from the following experimental evaluation.

Table 3 reports the results of the solvers on the benchmark families available in
PGSOLVER. We only report on the biggest instances we could deal with, given the
available computational resources 2. The parameter Positions gives the number of

1The version of PP used in the experiments is actually an improved implementation of the one described
in [38].

2All the experiments were carried out on a 64-bit 3.1GHz INTEL® quad-core machine, with i5-2400
processor and 8GB of RAM, running UBUNTU 12.04 with LINUX kernel version 3.2.0. PGSOLVER was
compiled with OCaml version 2.12.1.

20

Benchmark Positions DomDec BigStp StrImp Rec PP PP+ DP

Hanoi 6.3 · 106 21.4 21.4 ‡ 17.4 7.0 7.0 7.4
Elevator 7.7 · 106 † ‡ ‡ ‡ 19.8 19.7 20.4
Lang. Incl. 5 · 106 † ‡ ‡ 145.5 16.5 16.5 16.5

Ladder 4 · 106 † ‡ ‡ 35.0 7.9 7.9 8.1
Str. Imp. 4.5 · 106 81.0 82.8 † 71.0 57.0 57.1 57.3
Clique 8 · 103 † ‡ † † 10.8 10.9 10.8
MC. Lad. 7.5 · 106 † ‡ ‡ 4.3 4.4 4.3 4.5
Rec. Lad. 5 · 104 † ‡ ‡ ‡ 62.8 63.0 64.9
Jurdziński 4 · 104 † † 188.2 † 69.6 69.7 71.8
WC. Rec. 3 · 104 † † 9.4 † 10.2 10.2 18.2

Table 3: Execution times in seconds on several benchmark families.
Time out (†) is set to 600 seconds and memory out (‡) to 7.5Gb.

0 5 10 15 20
0

10

20

30

Number of nodes /103

Ti
m

e
(s

ec
)

PP
PP+
DP
Rec

StrImp

Figure 4: Solution times on random games from [39].

positions in the games and the best performance are emphasized in bold.3 The first
three rows consider the concrete verification problems mentioned above. On the Tower-
of-Hanoi problem all the solvers perform reasonably well, except for StrImp due its
high memory requirements. The Elevator-Verification problem proved to be very
demanding in terms of memory for all the solvers, except for the priority-promotion
based algorithms and DomDec, which, however, could not solve it within the time limit
of 10 minutes. Our solvers perform extremely well on both this benchmark and on
Language Inclusion, which could be solved only by Rec among the other solvers.

On the worst case benchmarks, they all perform quite well on Ladder, Strategy

3The instances were generated by issuing the following PGSOLVER commands: towersofhanoi
13, elevatorgame 8, langincl 500 100, cliquegame 8000, laddergame 4000000,
stratimprgen -pg friedmannsubexp 1000, modelcheckerladder 2500000,
recursiveladder 10000, and jurdzinskigame 100 100.

21

102 103 104 105 106
102

103

104

105

106

PP

P
P

+

2×

Figure 5: Number of promotions: comparison between PP and PP+ on random games
with 50000 positions.

Improvement, Jurdziński, Recursive Ladder, and even on Clique, which proved to be
considerably difficult for all the other solvers. The Modelchecker game was essentially
a tie with Rec. The only family on which they were slightly outperformed by the
Strategy Improvement algorithm is the new worst case family WC-Rec, which was
introduced as a robust worst-case for various solvers in [43]. On these benchmarks
the new algorithms exhibit the most consistent behavior overall. Indeed, on all those
families the priority-promotion based algorithms perform no promotions, regardless of
the input parameters, except for the Elevator-Verification problem, where they require
only two promotions. This constant bound on the number of promotions implies that,
for those games, the three solvers, PP, PP+, and DP only require time linear in the
size of the game and the number of priorities, which explains the similarity of their
performance. It is worth noting that, when few promotions are involved, DP is likely
to suffer from some overhead w.r.t. both PP and PP+. When, on the other hand, the
number of promotions increases, the overhead is often compensated by the reduction of
the number of promotions required to solve the game, as witnessed by the experiments
on random games described below.

Figure 4 compares the running times of the new algorithms, PP+ and DP, against
the original PP and the solvers Rec and StrImp on randomly generated games. The
other two solvers DomDec and BigStep perform quite poorly on those games, hitting
the time-out already for very small instances. This first pool of benchmarks contains
the same games used in the experimental evaluation presented in [39]. It contains 2000
random games of size ranging from 1000 to 20000 positions and 2 outgoing moves per
position. Interestingly, random games with very few moves prove to be much more
challenging for the priority promotion based approaches than those with a higher number
of moves per position, and often require a much higher number of promotions.

Since the behavior of the solvers is typically highly variable, even on games of

22

102 103 104 105 106
102

103

104

105

106

PP

D
P

2×
4×
8×
16×

Figure 6: Number of promotions: comparison between PP and DP on random games with
50000 positions.

the same size and priorities, to summaries the results we took the average running
time on clusters of games. Therefore, each point in the graph shows the average time
over a cluster of 100 different games of the same size: for each size value n, we
chose the numbers k = n · i/10 of priorities, with i ∈ [1, 10], and 10 random games
were generated for each pair n and k. We set a time-out to 180 seconds (3 minutes).
Solver PP+ performs slightly better than PP, while DP shows a much more convincing
improvement on the average time.

Similar experiments were also conducted on random games with a higher number
of moves per position and up to 1000000 positions. The resulting games turn out to be
very easy to solve by all the priority promotion based approaches, requiring few seconds
only. The reason seems to be that the higher number of moves significantly increases
the dimension of the computed regions and, consequently, also the chances to find a
closed one. Indeed, the number of promotions required by PP+ and DP on all those
games is typically zero, and the whole solution time is due exclusively to a very limited
number of attractors needed to compute the few regions contained in the games. The
only other solver that can easily solve these games is Rec, whose performance is only
slightly worse than that of the priority-promotion-based approaches.

Since the exponential behaviors of the priority-promotion-based algorithms are
tightly connected with the number of promotions needed to solve a game and the main
aim is to reduce such a number, we devised specific benchmarks towards analyzing the
behavior of the algorithms w.r.t. this measure. The second pool of benchmarks contains
740 games, each with 50000 positions, 2 moves per positions and priorities varying
from 8000 to 12000. These games are much harder than the previous ones and have
been selected among random games, whose solution requires PP more than 500 and up
to 700000 promotions to be solved. On these games we measured both the number of
promotions performed and the solution times.

23

101 102 103 104
101

102

103

104

PP

D
P

2×
4×
8×
16×

Figure 7: Solution time: comparison between PP and DP on random games with 50000
positions.

Figure 5 reports the experimental results comparing the number of promotions
performed by PP and PP+ on these games and provides experimental support to the
expectation that PP+ almost always requires less effort than PP, even though the benefits
appear quite limited. This essentially confirms the results reported in Figure 4.

On the other hand, Figure 6, comparing DP and PP, reveals that DP does reduce
the number promotions considerably. The benefits of the new promotion policy appear
to be substantial as, in many cases, PP requires between two to eight times as many
promotions as DP to solve a game. Notice that the scale in the figures is logarithmic
and the diagonal lines are labeled with the corresponding multiplication factor. The
figure also shows that, in very few cases, PP does require less promotions than DP.
This is due to the fact that the two algorithms typically follow different solution paths
within the dominion space and that delaying promotions may defer the discovery of
a closed dominion. Nonetheless, the DP policy does pay off significantly on the vast
majority of the benchmarks. Finally, Figure 7 shows how the reduction on the number
of promotions translates into solution times. The results, once again reported on a
logarithmic scale, confirm that, despite the additional overhead in the computation of
DP that sometimes outweighs the gain in terms of promotions shown in Figure 6, DP
outperforms PP on most of the benchmarks. Recently, the new tool OINK [44] has been
presented. The tool, written in C++, provides efficient implementations of several parity
games algorithms. Experiments performed with OINK on the same benchmarks used
here essentially confirm the results obtained with PGSOLVER reported above.

6. Discussion

Devising efficient algorithms that can solve parity games well in practice is a crucial
endeavor towards enabling formal verification techniques, such as model checking
of expressive temporal logics and automatic synthesis, in practical contexts. To this

24

end, a promising new solution technique, called priority promotion, was proposed
in [38]. While the technique seems very effective in practice, the approach still admits
exponential behaviors. This is due to the fact that, to ensure correctness, it needs
to forget previously computed partial results after each promotion. In this work we
presented a new promotion policy that delays promotions as much as possible, in the
attempt to reduce the need to partially reset the state of the search. Not only the new
technique, like the original one, solves in polynomial time all the exponential worst
cases known for other solvers, but requires polynomial time for the worst cases of the
priority promotion approach as well.

Even though a family of games requiring exponential time does exist, the exponential
behavior seems to rely heavily on the fact the positions are in a quadratic relationship
with the priorities and it does not seem obvious how to lift it to the cases where those two
parameters are linearly dependent. Therefore, the actual complexity of the algorithm
remains an open problem.

Experiments on benchmarks families and randomly generated games also show
that the new technique often outperforms the original priority promotion technique,
as well as the state-of-the-art solvers known in the literature, including the two recent
quasi-polynomial algorithms proposed in [36] and [37].

Appendix A. Proof of Theorem 3.1

In this appendix we report the proof of Theorem 3.1 stated in Section 3, providing
soundness and completenessof the PP+ search procedure.

Theorem 3.1 (PP+ Dominion Space). For a game a, the PP+ structure D ,〈a,S,�,
<, ↓〉, where S is given in Definition 3.4, � is the relation of Definition 3.5, and < and ↓
are the functions computed by Algorithms 3 and 4 is a dominion space.

To prove Theorem 3.1, we have to show that the three components S, <, and ↓ of
the structure D satisfy the properties required by Definition 3.2 of dominion space. We
do this through the Lemmas Appendix A.1, Appendix A.2, and Appendix A.3.

Lemma Appendix A.1 (State Space). The PP+ state space S =〈S,>,≺〉 for a game
a∈P is a well-founded partial order w.r.t. ≺ with designated element >∈S.

Proof. Since S is a finite set, to show that ≺ is a well-founded partial order on S, it is
enough to prove that it is simply a strict partial order on the same set, i.e., an irreflexive
and transitive relation.

For the irreflexive property, by Item 3 of Definition 3.4, it is immediate to see that
s 6≺s, for all states s , (r, p) ∈ S, since neither there exists a priority q ∈ rng(r) such
that r−(q) ⊂ r−(q) nor p < p.

For the transitive property, instead, consider three states s,(r, p), s,(r, p), s,
(r, p) ∈ S for which s≺s and s≺s hold. Due to Items 3.a and 3.b of the same
definition, four cases may arise.

• Item 3.a for both s≺s and s≺s: there exist two priorities q ∈ rng(r) and
q ∈ rng(r) with q ≥ p such that r(>q) = r

(>q), r(>q) = r
(>q),

25

r− (q) ⊂ r− (q), and r− (q) ⊂ r− (q). Let q , max{q, q} ≥ p. If
q = q = q then r

(>q) = r
(>q) = r

(>q) and r− (q) ⊂ r− (q) ⊂ r− (q).
If q = q > q then r

(>q) = r
(>q) = (r

(>q))(>q) = (r
(>q))(>q) =

r
(>q) and r− (q) = r− (q) ⊂ r− (q). Finally, if q = q > q then r

(>q) =

(r
(>q))(>q) = (r

(>q))(>q) = r
(>q) = r

(>q) and r− (q) ⊂ r− (q) =

r− (q). Moreover, q ∈ rng
(
r

(>q)
)

= rng
(
r

(>q)
)
⊆ rng(r). Summing up, it

holds that s≺s.

• Item 3.a for s≺s and Item 3.b for s≺s: there exists a priority q ∈ rng(r)
with q ≥ p such that r(>q) = r

(>q) and r− (q) ⊂ r− (q); moreover, r = r.
Thus, r(>q) = r

(>q) = r
(>q) and r− (q) = r− (q) ⊂ r− (q). Consequently,

s≺s.

• Item 3.a for s≺s and Item 3.b for s≺s: there exists a priority q ∈ rng(r)
with q ≥ p such that r(>q) = r

(>q) and r− (q) ⊂ r− (q); moreover, r = r
and p < p. Thus, r(>q) = r

(>q) = r
(>q), r− (q) ⊂ r− (q) = r− (q),

q ∈ rng(r), and q > p. Consequently, s≺s.

• Item 3.b for both s≺s and s≺s: r = r, r = r, p < p, and p < p.
Hence, r = r and p < p, which implies that s≺s also in this case.

To conclude the proof, we have to show that > , (pr, pr(a)) belongs to S. Indeed,
Item 1.b follows from the fact that p = pr(a) = max(rng(pr)) ∈ rng(pr) = rng(r).
Obviously, Item 1.a also holds, since r is vacuously maximal above p. Finally, pra is
a region function as, for all priorities q ∈ rng(m) with α , q mod 2, where m is the
maximisation of pr, it holds that pr−(q) ∩ Psa≤q

m
is an α-region in the subgame a≤qm .

Indeed, the set pr−(q) ∩ Psa≤q
m

can only contain positions of priority q, which is the
maximal one in the corresponding subgame a≤qm . Therefore, player α has an obvious
strategy that forces every infinite play inside this set to be winning for it.

Lemma Appendix A.2 (Query Function). The function < is a query function, i.e., for
all states s ∈ S, it holds that (1) <(s) ∈ QD and (2) if <(s) ∈ QD− then s�<(s).

Proof. Let s , (r, p) ∈ S be a state and (R, α) , <(s) the pair consisting of the set
of positions R ⊆ Ps and the player α ∈ {0, 1} returned by the function < on input s.
Due to Line 1 of Algorithm 3, it follows that α ≡2 p. By Item 1 of Definition 3.4, we
have that p ∈ rng(r), so r−(p) 6= ∅, and r−(p) ⊆ Psas

. Thus, by definition of region
function, it holds that r−(p) is an α-region in as. Now, by Line 2 of Algorithm 3
and Proposition 3.1, we obtain that R = atrαas

(r−(p)) ⊆ Psas is an α-region in as,
i.e., (R, α) ∈ Rgas

, and, so a quasi dominion in a, i.e., (R, α) ∈ QD. In addition,
s� (R, α), since all requirements of Definition 3.5 are satisfied.

Lemma Appendix A.3 (Successor Function). The function ↓ is a successor function,
i.e., for all states s ∈ S and quasi dominion pairs (R, α) ∈ QD− with s� (R, α), it
holds that (1) s ↓ (R, α) ∈ S and (2) s ↓ (R, α)≺s.

26

Proof. Let s , (r, p) ∈ S be a state, (R, α) ∈ QD− an open quasi dominion pair in
a compatible with s, and s? = (r?, p?) , s ↓ (R, α) the result obtained by computing
the function ↓ on s and (R, α). Due to Item 1.a of Definition 3.4, we have that (1) r is
maximal above p. Moreover, by Item 1 of Definition 3.5, it holds that R ⊆ Psas

, which
implies (2) dom

(
r(>p)

)
∩ R = ∅.

On the one hand, suppose that R is α-open in as, i.e., (R, α) ∈ Rg−as
. By Lines 1-3

of Algorithm 4, we have that (3) r? = r[R 7→ p] and (4) p? = max(rng
(
r?(<p)

)
). In

addition, by Item 2 of Definition 3.5, it holds that (5) R = atrαas
(r−(p)). Now, by

Point (4), it immediately follows that (6) p? ∈ rng(r?), (7) p? < p, and (8) there is no
priority q ∈ rng(r?) such that p? < q < p. Also, by Points (2), (3) and (5), we have
that (9) r?(>p) = r(>p), (10) r?−1(p) = R, and (11) r?(<p) = r(<p)�(Ps \ R). Thus,
by Points (1), (5), (8), (9), and (10), it holds that (12) r? is maximal above p?. Finally,
to prove that (13) r? is a region function, we need to show that r?−(q) ∩ Psa≤q

m?
is a

β-region in the subgame a≤qm? , for all priorities q ∈ rng(m?) with β , q mod 2, where
m? is the maximisation of r?. To this aim, we observe that, by definition of state space, r
is a region function, so, the above property is surely satisfied by r w.r.t. its maximisation
m.

• If q > p, by Points (1) and (9), we have that r?−(q) = r−1(q) ⊆ Psa≤q
m

= Psa≤q

m?
.

Therefore, the thesis immediately follows, since r−(q) is a β-region in the
subgame a≤qm , where β , q mod 2.

• If q = p, first observe that as = a≤qm = a≤qm? . By Points (2), (5), and (10), we
have that r?−(q) ∩ Psa≤q

m?
= R. So, the property is ensured by the fact that R is

an α-region in as.

• For the last case q < p, notice that Psa≤q
m
∩ R = ∅. Therefore, by Point (11),

r−(q) ∩ Psa≤q
m

= r?−(q) ∩ Psa≤q

m?
. Hence, the thesis follows, since r−(q) ∩

Psa≤q
m

is a β-region in the subgame a≤qm , where β , q mod 2.

Summing up, Points (13), (12), and (6) ensure that (r?, p?) ∈ S. At this point, it remains
just to show that (r?, p?)≺(r, p). By Point (5), two cases may arise. If r−(p) ⊂ R,
due to Points (9) and (10), the thesis follows from Item 3.a of Definition 3.4, where the
priority q is set to p. On the contrary, if R = r−(p), by Point (3), we have that r? = r.
Therefore, due to Point (7), the thesis is derived from Item 3.b of the same definition.

On the other hand, suppose that R is α-closed in as, i.e., (R, α) 6∈ Rg−as
. By

Lines 1, 4, and 5 of Algorithm 4, we have that (14) p? = bepα(R, r) and (15) r? =
pr] r(≥p

?)∨(≡2p
?)[R 7→ p?]. By Points (2) and (14), the definition of bep, and the

fact that R is closed, it is not hard to see that (16) p? > p. Now, by Points (15)
and (2), it follows that (17) r?(>p

?) = r(>p
?), (18) r?−1(p?) = r−1(p?) ∪ R, (19)

r?(<p
?)∧(6≡2p

?) ⊆ pr(<p
?)∧(6≡2p

?). Hence, by Points (1), (16), and (17), it holds that
(20) r? is maximal above p?. Moreover, by Point (18), we have that (21) p? ∈ rng(r?).
Finally, we have to prove that (22) r? is a region function, i.e., r?−(q) ∩ Psa≤q

m?
is a

β-region in the subgame a≤qm? , for all priorities q ∈ rng(m?) with β , q mod 2, where
m? is the maximisation of r?.

27

• If q > p?, by Points (1), (16) and (17), we have that r?−(q) = r−1(q) ⊆
Psa≤q

m
= Psa≤q

m?
. Therefore, the thesis immediately follows, since r−(q) is a

β-region in the subgame a≤qm , where β , q mod 2.

• If q = p?, by Points (1), (2), (16) and (18), we have that r?−(q) ⊆ Psa≤q
m

.
Now, by Point (1) and the fact that r is a region function, it follows that r−1(q)

is an α-region in a≤qm = a≤qm? . Moreover, due to Point (14), R is an α-dominion
in a≤qm \ r−1(q). Therefore, due to Proposition 3.2, it holds that r?−(q) is an
α-region in a≤qm? .

• If q < p? and q 6≡2 p
?, by Point (19), we immediately have that r?−(q)∩Psa≤q

m?

is a α-region in a≤qm? , since it only contains positions of priority q, which is the
maximal one in the subgame a≤qm? .

• If q < p? and q ≡2 p
?, it can be easily shown that r?−(q) ∩ Psa≤q

m?
= (r−(q) ∩

Psa≤q
m
\ R?) ∪ P, for some α-maximal α-region R? in as and some set of

positions P ⊆ pr−1(q) of priority q. Now, by applying Proposition 3.3, we have
that r−(q) ∩ Psa≤q

m
is an α-region in a≤qm . Therefore, also r?−(q) ∩ Psa≤q

m?
is

an α-region in a≤qm? , since it only contains further positions of maximal priority q
in the corresponding subgame.

Summing up, Points (20), (21), and (22) ensure that (r?, p?) ∈ S. At this point, as for
the previous case, it remains to show that (r?, p?)≺(r, p). This fact easily follows from
Item 3.a of Definition 3.4, where the priority q is set to p?, since, by Points (2) and (18),
we have that r−(p?) ∩ R = ∅, so r−(p?) ⊂ r−(p?) ∪ R = r?−(p?).

Appendix B. Proof of Theorem 4.1

In this appendix we report the proof of Theorem 4.1 stated in Section 4, providing
soundness and completenessof the DP search procedure.

Theorem 4.1 (DP Dominion Space). For a game a, the DP structure D ,〈a,S,�,<,
↓〉, where S is given in Definition 4.1, � is the relation of Definition 4.2, and < and ↓
are the functions computed by Algorithms 3 and 5, where in the former the assumption

“let (r, p) = s” is replaced by “let ((r, p), ,) = s” is a dominion space.

To prove Theorem 4.1, we have to show that the three components S, <, and ↓ of
the structure D satisfy the properties required by Definition 3.2 of dominion space. We
do this through the Lemmas Appendix B.1, Appendix B.2, and Appendix B.3.

Lemma Appendix B.1 (State Space). The DP state space S = 〈S,>,≺〉 for a game
a∈P is a well-founded partial order w.r.t. ≺ with designated element >∈S.

Proof. Due to Definition 4.1 and Lemma Appendix A.1, to prove that S satisfies
the required properties, we have only to observe that the distinguished element > ,
(>PP+,∅, ∅) is a state. This immediately follows from the fact that >PP+ = (pr, pr(a))
is a PP+ state and the empty supplementary function ∅ is trivially aligned with pr w.r.t.
pr(a).

28

Lemma Appendix B.2 (Query Function). The function < is a query function, i.e., for
all states s ∈ S, it holds that (1) <(s) ∈ QD and (2) if <(s) ∈ QD− then s�<(s).

Proof. Due to Definition 4.2 and Lemma Appendix A.2, the thesis directly follows once
observed that R = atrαas

(r−(p)) independently from the fact that it is α-open in as or
α-locked w.r.t. s.

Lemma Appendix B.3 (Successor Function). The function ↓ is a successor function,
i.e., for all states s ∈ S and quasi dominion pairs (R, α) ∈ QD− with s� (R, α), it
holds that (1) s ↓ (R, α) ∈ S and (2) s ↓ (R, α)≺s.

Proof. Let s , ((r, p), r̃,P) ∈ S be a state, (R, α) ∈ QD− an open quasi dominion
pair in a compatible with s, and s? = ((r?, p?), r̃?,P?) , s ↓ (R, α) the result obtained
by computing the function ↓ on s and (R, α).

It is quite easy to see that (r?, p?) ∈ SPP+ and (r?, p?)≺PP+(r, p). Indeed, in case one
of the two macros #Assignment(ξ) with ξ ∈ {f, t} and #InstantPromotion of
Algorithm 5 is executed, one can derive the thesis by applying exactly the same reasoning
used in the proof of Lemma Appendix A.3, since the instructions concerning the two
components r? and p? are those used in Algorithm 4. If the #DelayedPromotion
macro is considered, instead, due to Item 1 of Definition 4.1, r̃ is aligned with r w.r.t. p,
so, the set of positions r−1(q)∪ r̃−1(q) is a β-region in a≤qr , for all q ∈ rng(̃r) with β ≡2

q ≡2 p
?. Hence, by applying the same reasoning used for the #InstantPromotion

macro, the thesis follows in this case as well.
To conclude the proof, we need to show that r̃? is aligned with r? w.r.t. p?. Again,

we do this by means of a case analysis on the four possible macros.

• #Assignment(f). Lines 2 and 3 of the macro ensure that p? < p and r̃? = r̃.
Hence, the property follows from the fact that r̃ is aligned with r w.r.t. p.

• #Assignment(t). By Lines 2 and 3, p? < p and r̃? = r̃[R 7→ q]. Since r̃
is aligned with r w.r.t. p, we have that r̃−1(z) ⊆ dom

(
r(>p)∧(<z)∧(≡2z)

)
, and

r−(z) ∪ r̃−(z) is an α-region in a≤zr , for all priorities z ∈ rng(̃r). Now, if
z 6= q , bepα(R, r] r̃), we have r̃?−(z) = r̃−1(z). So, the required properties
on r̃?−(z) are immediately satisfied. If z = q, instead, the α-region R is
added to both r and r̃ with measures p and z, respectively. Hence, r̃?−(z) ⊆
dom

(
r?(>p

?)∧(<z)∧≡z)
)

is verified, since p ≡2 z. Finally, we need to show
that r?−(z) ∪ r̃?−(z) is an α-region in a≤zr? . This follows from Proposition 3.2
applied to r−(z) ∪ r̃−(z) and R, since R is an α-dominion in the subgame
a≤zr? \ (r−(z) ∪ r̃−(z)), due to the fact that r̃−1(z) ⊆ dom

(
r(>p)∧(<z)∧(≡2z)

)
.

• #DelayedPromotion. The property is trivially satisfied, since r̃? = ∅.

• #InstantPromotion. Since r̃?(≤p
?) = ∅ and r̃?(>p

?) = r̃(>p
?), the property

follows from the fact that r̃ is aligned with r w.r.t. p.

29

References

[1] M. Benerecetti, D. Dell’Erba, F. Mogavero, A Delayed Promotion Policy for Parity
Games., in: Games, Automata, Logics, and Formal Verification16, EPTCS 226,
2016, pp. 30–45.

[2] K. Apt, E. Grädel, Lectures in Game Theory for Computer Scientists., Cambridge
University Press, 2011.

[3] A. Mostowski, Games with Forbidden Positions., Tech. rep., University of Gdańsk,
Gdańsk, Poland (1991).

[4] E. Emerson, C. Jutla, The Complexity of Tree Automata and Logics of Programs
(Extended Abstract)., in: Foundation of Computer Science’88, IEEE Computer
Society, 1988, pp. 328–337.

[5] E. Emerson, C. Jutla, A. Sistla, On Model Checking for the muCalculus and its
Fragments., in: Computer Aided Verification’93, LNCS 697, Springer, 1993, pp.
385–396.

[6] O. Kupferman, M. Vardi, P. Wolper, An Automata Theoretic Approach to
Branching-Time Model Checking., Journal of the ACM 47 (2) (2000) 312–360.

[7] R. Alur, T. Henzinger, O. Kupferman, Alternating-Time Temporal Logic., Journal
of the ACM 49 (5) (2002) 672–713.

[8] S. Schewe, An Optimal Strategy Improvement Algorithm for Solving Parity and
Payoff Games., in: Computer Science Logic’08, LNCS 5213, Springer, 2008, pp.
369–384.

[9] F. Mogavero, A. Murano, M. Vardi, Relentful Strategic Reasoning in Alternating-
Time Temporal Logic., in: Logic for Programming Artificial Intelligence and
Reasoning’10, LNAI 6355, Springer, 2010, pp. 371–387.

[10] F. Mogavero, A. Murano, G. Perelli, M. Vardi, What Makes ATL* Decidable? A
Decidable Fragment of Strategy Logic., in: Concurrency Theory’12, LNCS 7454,
Springer, 2012, pp. 193–208.

[11] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning About Strategies: On the
Model-Checking Problem., Transactions On Computational Logic 15 (4) (2014)
34:1–42.

[12] F. Mogavero, A. Murano, G. Perelli, M. Vardi, Reasoning About Strategies: On
the Satisfiability Problem., Logical Methods in Computer Science 13 (1:9) (2017)
1–37.

[13] M. Benerecetti, F. Mogavero, A. Murano, Substructure Temporal Logic., in: Logic
in Computer Science’13, IEEE Computer Society, 2013, pp. 368–377.

[14] M. Benerecetti, F. Mogavero, A. Murano, Reasoning About Substructures and
Games., Transactions On Computational Logic 16 (3) (2015) 25:1–46.

30

[15] A. Mostowski, Regular Expressions for Infinite Trees and a Standard Form of
Automata., in: Symposium on Computation Theory’84, LNCS 208, Springer,
1984, pp. 157–168.

[16] E. Emerson, C. Jutla, Tree Automata, muCalculus, and Determinacy., in: Founda-
tion of Computer Science’91, IEEE Computer Society, 1991, pp. 368–377.

[17] O. Kupferman, M. Vardi, Weak Alternating Automata and Tree Automata Empti-
ness., in: Symposium on Theory of Computing’98, Association for Computing
Machinery, 1998, pp. 224–233.

[18] E. Grädel, W. Thomas, T. Wilke, Automata, Logics, and Infinite Games: A Guide
to Current Research., LNCS 2500, Springer, 2002.

[19] A. Ehrenfeucht, J. Mycielski, Positional Strategies for Mean Payoff Games.,
International Journal of Game Theory 8 (2).

[20] V. Gurvich, A. Karzanov, L. Khachivan, Cyclic Games and an Algorithm to Find
Minimax Cycle Means in Directed Graphs., USSR Computational Mathematics
and Mathematical Physics 28 (5) (1990) 85–91.

[21] U. Zwick, M. Paterson, The Complexity of Mean Payoff Games on Graphs.,
Theoretical Computer Science 158 (1-2) (1996) 343–359.

[22] A. Condon, The Complexity of Stochastic Games., Information and Computation
96 (2) (1992) 203–224.

[23] K. Chatterjee, L. Doyen, T. Henzinger, J.-F. Raskin, Generalized Mean-Payoff
and Energy Games., in: Foundations of Software Technology and Theoretical
Computer Science’10, LIPIcs 8, Leibniz-Zentrum fuer Informatik, 2010, pp. 505–
516.

[24] F. Horn, W. Thomas, N. Wallmeier, Optimal Strategy Synthesis in Request-
Response Games., in: Automated Technology for Verification and Analysis’08,
LNCS 5311, Springer, 2008, pp. 361–373.

[25] K. Chatterjee, T. Henzinger, F. Horn, Finitary Winning in omega-Regular Games.,
Transactions On Computational Logic 11 (1) (2010) 1:1–26.

[26] N. Fijalkow, M. Zimmermann, Cost-Parity and Cost-Streett Games., Logical
Methods in Computer Science 10 (2) (2014) 1–29.

[27] F. Mogavero, A. Murano, L. Sorrentino, On Promptness in Parity Games., Funda-
menta Informaticae 139 (3) (2015) 277–305.

[28] M. Jurdziński, Deciding the Winner in Parity Games is in UP∩ co-UP., Information
Processing Letters 68 (3) (1998) 119–124.

[29] W. Zielonka, Infinite Games on Finitely Coloured Graphs with Applications to
Automata on Infinite Trees., Theoretical Computer Science 200 (1-2) (1998)
135–183.

31

[30] M. Jurdziński, M. Paterson, U. Zwick, A Deterministic Subexponential Algorithm
for Solving Parity Games., SIAM Journal on Computing 38 (4) (2008) 1519–1532.

[31] S. Schewe, Solving Parity Games in Big Steps., in: Foundations of Software
Technology and Theoretical Computer Science’07, LNCS 4855, Springer, 2007,
pp. 449–460.

[32] M. Jurdziński, Small Progress Measures for Solving Parity Games., in: Symposium
on Theoretical Aspects of Computer Science’00, LNCS 1770, Springer, 2000, pp.
290–301.

[33] J. Vöge, M. Jurdziński, A Discrete Strategy Improvement Algorithm for Solving
Parity Games., in: Computer Aided Verification’00, LNCS 1855, Springer, 2000,
pp. 202–215.

[34] S. Schewe, A. Trivedi, T. Varghese, Symmetric Strategy Improvement., in: Inter-
national Colloquium on Automata, Languages, and Programming’15, LNCS 9135,
Springer, 2015, pp. 388–400.

[35] C. Calude, S. Jain, B. Khoussainov, W. Li, F. Stephan, Deciding Parity Games in
Quasipolynomial Time., in: Symposium on Theory of Computing’17, Association
for Computing Machinery, 2017, accepted for publication.

[36] J. Fearnley, S. Jain, S. Schewe, F. Stephan, D. Wojtczak, An Ordered Approach
to Solving Parity Games in Quasi Polynomial Time and Quasi Linear Space.,
in: SPIN Symposium on Model Checking of Software’2017, Association for
Computing Machinery, 2017, accepted for publication.

[37] M. Jurdziński, R. Lazic, Succinct Progress Measures for Solving Parity Games.,
in: Logic in Computer Science’17, Association for Computing Machinery, 2017,
accepted for publication.

[38] M. Benerecetti, D. Dell’Erba, F. Mogavero, Solving Parity Games via Priority
Promotion., in: Computer Aided Verification’16, LNCS 9780 (Part II), Springer,
2016, pp. 270–290.

[39] M. Benerecetti, D. Dell’Erba, F. Mogavero, Solving Parity Games via Priority
Promotion., Formal Methods in System Design. To appear.

[40] T. van Dijk, Attracting Tangles to Solve Parity Games., in: Computer Aided
Verification’18, 2018, accepted for publication at CAV 2018, Oxford, UK, July
14-17 2018.

[41] C. Stirling, Modal and Temporal Properties of Processes., Texts in Computer
Science., Springer, 2001.

[42] O. Friedmann, M. Lange, Solving Parity Games in Practice., in: Automated
Technology for Verification and Analysis’09, LNCS 5799, Springer, 2009, pp.
182–196.

32

[43] M. Benerecetti, D. Dell’Erba, F. Mogavero, Robust Exponential Worst Cases for
Divide-et-Impera Algorithms for Parity Games., in: Games, Automata, Logics,
and Formal Verification17, EPTCS 256, 2017, pp. 121–135.

[44] T. van Dijk, Oink: an Implementation and Evaluation of Modern Parity Game
Solvers. (2018) 291–308.

33

	Introduction
	Preliminaries
	The Priority Promotion Approach
	Delayed Promotion Policy
	Experimental Evaluation
	Discussion
	Proof of Theorem 3.1
	Proof of Theorem 4.1

