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Abstract—We study convergence in networks of piecewise-
smooth systems that commonly arise in applications to model
dynamical systems whose evolution is affected by macroscopic
events such as switches and impacts. Existing approaches were
typically oriented towards guaranteeing global bounded syn-
chronizability, local stability of the synchronization manifold, or
achieving synchronization by exerting a control action on each
node. Here we start by generalising existing results on QUAD
(quadratic) systems to the case of piecewise-smooth systems, ac-
counting for a large variety of nonlinear coupling laws. Then, we
propose that a discontinuous coupling can be used to guarantee
global synchronizability of a network of N piecewise-smooth
agents under mild assumptions on the individual dynamics. We
provide extensive numerical simulations to gain insights on larger
networks.

Index Terms—Switched systems, Network analysis and control.

I. INTRODUCTION

WHEN applications are considered, it is not uncommon
to find systems and devices that are described by

piecewise-smooth (PWS) or impulsive models, such as elec-
tronic switching circuits, mechanisms affected by dry friction,
firing neurons, and so on [1]–[3]. If two or more of these
systems are interconnected, a complex network [4]–[7] of PWS
agents needs to be studied. A challenging open problem is to
analyse the emergence of spontaneous synchronous behaviour
in this class of networks. For example, in [8], networks of
non-identical PWS systems with linear diffusive coupling are
studied, and a condition on the coupling gain is given such that
the synchronization error is asymptotically bounded. In [9], an
extension of the Master Stability Function (MSF) approach to
networks of PWS oscillators is presented, under some restric-
tive assumptions, obtaining a condition on the coupling gain
to ensure local stability of the synchronous solution. Similarly,
the MSF method is applied to dry friction oscillators in [10],
[11]. Furthermore, sufficient conditions were found in [12] for
controlling coupled PWS chaotic systems towards a desired
solution, provided that a discontinuous control action is added
to every node in the network. Other relevant references include
[13]–[18]. However, conditions cannot be found in the existing
literature that guarantee global asymptotic synchronization of a
network of PWS systems in the absence of an external control
acting on all of the nodes.

Main contributions. We begin by generalising existing
results on the global convergence of QUAD systems [19], [20]
adopting a mathematical framework suitable for PWS systems,

through the use of the Filippov formalism. Specifically, we
allow for a large variety of coupling laws, including linear dif-
fusion where the inner coupling matrix is not positive definite.
After that, we introduce a discontinuous coupling protocol to
guarantee synchronizability for a wider class of PWS systems,
finding critical values of the coupling gains analytically for the
case of two coupled agents of arbitrary dimension. For the case
of larger networks, we propose deployment of a discontinuous
action with a multiplex network structure [21]—i.e. a network
with different layers of coupling, each having its own topology.

The rest of the paper is outlined as follows. Section II
contains the problem statement; Section III the mathematical
preliminaries; in Section IV theoretical results are presented
concerning networks of PWS systems; then, Section V de-
scribes a multiplex control approach for networks of PWS
agents, while conclusions are drawn in Section VI.

II. NETWORK MODEL

We consider networks of N PWS systems [1] Ûxi = f(xi; t),
i = 1, . . . , N , where xi ∈ Rn is the state vector of the i-th
agent, t ∈ R+ is time, and the vector field f : Rn × R+ → Rn

can be discontinuous with respect to xi . When such systems
are coupled through an undirected unweighted graph G, they
form a complex PWS network of the form

Ûxi = f(xi; t) −
∑N

j=1
Li jg(xi, xj ; t), i = 1, . . . , N, (1)

where Li j is the element (i, j) of the symmetric Laplacian
matrix L ∈ RN×N [5], and g : Rn×Rn×R+ → Rn is a coupling
function. In addition, we define x ,

[
xT

1 · · · xT
N

]T ∈ RnN

to be the stack of the states of the nodes.

Definition 1 (Synchronization). Network (1) achieves (com-
plete) synchronization if

lim
t→+∞

xi(t) − xj(t)
 = 0, i, j = 1, . . . , N, i , j .

A network is said to be synchronizable in the set Ω ⊆ RnN

if synchronization is achieved for any initial condition x(t =
0) ∈ Ω; it is globally synchronizable if Ω = RnN . Finally, we
define the following: x̄ ,

∑N
i=1 xi/N ∈ Rn is the average of

the states of the nodes; ei , xi − x̄ ∈ Rn, with i = 1, . . . , N ,
are the synchronization errors; e ,

[
eT

1 · · · eT
N

]T ∈ RnN is
the stack of the errors; es ,

∑N
i=1 ‖ei ‖2 /N ∈ R is the global

synchronization error, used as a metric of synchronization in
the numerical examples for the sake of comparison with the
theoretical estimates.



Notation. Bδ(z) is an open ball centred in z with radius
δ > 0; S(Rn) is a collection of subsets in Rn; µL(·) is the
Lebesgue measure of a set; co(·) is the convex closure of a
set; N indicates any set with null Lebesgue measure; ‖·‖ is
the Euclidean norm; |·| is the absolute value; sym(·) is the
symmetric part of a matrix; diag(a) is the diagonal matrix
having the elements of vector a on its diagonal; λi(·) is the i-th
eigenvalue of a matrix, with the eigenvalues being sorted in
an increasing fashion if they are all real (thus λmin(·) , λ1(·));
In is the n × n identity matrix; 0 is the null vector; the
expression A > 0 means that the matrix A is positive definite
(analogously for semi- and negative definiteness); ⊗ is the
Kronecker product.

III. MATHEMATICAL PRELIMINARIES

In this section we give a series of preliminary concepts that
will be later employed in Section IV. A condition that is widely
used in the field of complex networks to characterize agents’
internal dynamics is the so-called QUAD condition [8], [20].

Definition 2 (QUADness). A function f : Rn × R+ → Rn is
QUAD(P, Q) if, ∀ξ1, ξ2 ∈ Rn, t ∈ R+, ∃P,Q ∈ Rn×n such that

(ξ1 − ξ2)T P [f(ξ1; t) − f(ξ2; t)] ≤ (ξ1 − ξ2)T Q (ξ1 − ξ2) .
Assumption 1. The coupling function g : Rn×Rn×R+ → Rn

in (1) is such that, ∀ξ1, ξ2 ∈ Rn and ∀t ∈ R+, (i) g(ξ1, ξ1; t) =
0, (ii) it is antisymmetric with respect to its first two arguments,
i.e. g(ξ1, ξ2; t) = −g(ξ2, ξ1; t), and (iii)

(ξ2 − ξ1)T Pg(ξ1, ξ2; t) ≥ (ξ1 − ξ2)T cG (ξ1 − ξ2) ,
for some P,G = GT ∈ Rn×n, c ≥ 0.

Clearly, in the case of linear diffusive coupling, we have

g(xi, xj ; t) = cΓ(xj − xi), (2)

with Γ ∈ Rn×n and G = sym(PΓ). The next assumption, also
found in [12], is a relaxation of QUADness, fulfilled by a wider
range of piecewise-smooth dynamics.

Assumption 2. The function f : Rn ×R+ → Rn in (1) is such
that, ∀ξ1, ξ2 ∈ Rn and ∀t ∈ R+,

(ξ1 − ξ2)T P [f(ξ1; t) − f(ξ2; t)] ≤ (ξ1 − ξ2)T Q (ξ1 − ξ2)
+mT |ξ1 − ξ2 | ,

for some P,Q ∈ Rn×n, m ∈ Rn.

Next, in Definitions 3-6, we briefly recall the main concepts
introduced by Filippov to characterise solutions of PWS sys-
tems [2], [22]. In the rest of this section, let z ∈ Rn, t ∈ R+,
f : Rn×R+ → Rn be a not necessarily continuous vector field,
and V : Rn → R be a locally Lipschitz function, which is
differentiable everywhere but in a zero-measure set ΩV .

Definition 3 (Filippov set-valued function). The Filippov
set-valued function associated to f is F [f] : Rn×R+ → S(Rn),
and is given by

F [f](z; t) ,
⋂
δ>0

⋂
µL(N)=0

co {f(Bδ(z) \ N ; t)} .

Note that if f is continuous, then F [f] = f.

x
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x
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Fig. 1. (a) A QUAD function; (b) a non-QUAD function.

Definition 4 (Filippov solution). A Filippov solution is an
absolutely continuous curve z(t) : R+ → Rn satisfying, for
almost all t ∈ R+, the differential inclusion Ûz ∈ F [ f ](z; t).
Definition 5 (Generalised gradient). The generalised gradi-
ent of V is ∂V : Rn → S(Rn), and is given by

∂V(z) ,
{

lim
k→∞

∂

∂z
V(zk) : zk → z, zk < N ∪ΩV

}
.

Definition 6 (Set-valued Lie derivative). The set-valued Lie
derivative LF[f] : Rn → S(R) of V with respect to F [f] is

LF[f]V(z) ,
{
` ∈ R : ∃a ∈ F [f](z; t) ⇒ vTa = ` ∀v ∈ ∂V(z)} .
IV. CONVERGENCE ANALYSIS

Firstly, in Theorems 1 and 2, we provide criteria to assess
global synchronizability, applicable to the case that the internal
agent dynamics f is a QUAD function. A certain number of
discontinuous functions fall into this category, e.g. Coulomb
friction, some of relay functions, continuous but not differen-
tiable functions like the characteristics of nonlinear resistors,
scalar systems where the discontinuity causes a decrease in
the value of the scalar field as the state increases (see Figure
1), and more. Secondly, when the individual discontinuous
dynamics fails to satisfy the QUAD condition, we exploit
Assumption 2 to investigate convergence in the case of two
coupled n-dimensional nodes.

A. Nonsmooth QUAD systems

Next, we extend results in [8], [19], [20] and give conditions
for the global complete synchronization of PWS agents whose
dynamics is QUAD, accounting for a generic nonlinear cou-
pling function. Namely, considering Assumption 1, Theorem
1 can be used when G > 0 (resp. Γ > 0 if (2) holds), whereas
Theorem 2 is to be employed when no assumptions on the
definiteness of G (resp. Γ) can be made. Note that

Ûei , φi(x1, . . . , xN ; t) = Ûxi−Û̄x = f(xi; t)−
∑N

j=1
Li jg(xi, xj ; t)

− 1
N

∑N

i=1

[
f(xi; t) −

∑N

j=1
Li jg(xi, xj ; t)

]
. (3)

Theorem 1. Consider (1) and assume that there exist
P,Q,G ∈ Rn×n, c ≥ 0, with P,G > 0, such that
• f is QUAD(P, Q);
• g verifies Assumption 1 with P and G.

Then, the network is globally synchronizable if

c > c∗ ,
‖Q‖

λ2(L)λmin(G) . (4)

Proof. Consider the candidate set-valued Lyapunov function
V(ē) , 1

2
∑N

i=1 eT
i Pei . The fact that f is not continuous



causes V to not be differentiable. However, employing Fil-
ippov formalism we can state that ÛV(x) ∈ V, where V ,
1
2
∑N

i=1 LF[φi ]
(
eT
i Pei

)
.1 Hence, if v < 0, ∀v ∈ V, then V → 0

and the network is globally synchronizable. Note that, in (3),
the facts that L is symmetric and g is antisymmetric (w.r.t. xi
and xj) imply that

∑N
i=1

∑N
j=1

[
Li jg(xi, xj ; t)] = 0. Then, from

Definition 6 and (3) we can write

V =
∑N

i=1
eT
i P

[
F [f(xi; t)] − F

[∑N

i=1

f(xi; t)
N

] ]
−

∑N

i=1

∑N

j=1
Li jeT

i PF [
g(xi, xj ; t)] .

As
∑N

i=1 ei = 0, we have
∑N

i=1 eT
i PF [∑N

i=1 f(xi; t)/N ]
= 0 and∑N

i=1 eT
i PF [f(x̄; t)] = 0. Thus, we can rewrite

V =
∑N

i=1
eT
i P [F [f(xi; t)] − F [f(x̄; t)]]

−
∑N

i=1

∑N

j=1
Li jeT

i PF [
g(xi, xj ; t)] .

Focusing on a generic element v ∈ V and exploiting
the hypotheses on f and g, we get2 v ≤ ∑N

i=1 eT
i Qei −

c
∑N

i=1
∑N

j=1 Li jeT
i Gej . This inequality can be rewritten in

terms of the stack of the errors e as

v ≤ eT (IN ⊗ Q − cL ⊗ G) e ≤ eT (‖Q‖IN ⊗ In − cL ⊗ G) e
= ‖e‖2 ‖Q‖ − eT (cL ⊗ G) e. (5)

Since
∑N

i=1 ei = 0 ⇔ ∑N−1
i=0 (e)(i−1)n+h = 0 ∀h = 1, . . . , n,

we can apply Corollary 13.4.2 in [23] and get3 v ≤
‖e‖2 [‖Q‖ − cλ2(L)λmin(G)] . Therefore, if c > c∗, ÛV(e) <
−α ‖e‖2 with α > 0, and the network is globally synchro-
nizable. �

Theorem 2. Consider (1) and assume that there exist
P,Q,G ∈ Rn×n, c ≥ 0, with P,G > 0, Q = Q− +Q′, Q− < 0,
Q′ = (Q′)T, such that
• f is QUAD(P, Q);
• g verifies Assumption 1 with P and G;
• Q′ and G are simultaneously diagonalisable;
• λh(G) > 0 if λh(Q′) > 0, with h = 1, . . . , n.

Then, the network is globally synchronizable if

c ≥ c∗ ,


1
λ2(L) max

h=1,...,n

λh(Q′)
λh(G) , if ∃h : λh(Q′) > 0

0, otherwise
. (6)

Proof. The first part of the proof is identical to that of Theorem
1 until (5), then we can write

v ≤ eT (IN ⊗ Q − cL ⊗ G) e
= eT (IN ⊗ Q−) e + eT (IN ⊗ Q′) e − cvG,

(7)

where vG , eT (L ⊗ G) e. Now, given that Q′ and G are
simultaneously diagonalisable, there exists an invertible matrix

1The sum rule [2] was used to apply the set-valued Lie derivative operator
separately to each addend in V .

2Recalling that L = LT, and using (i), (ii), (iii) in Assumption 1, we get
−∑N

i=1
∑N

j=1 Li j eT
i Pg(xi, x j ; t) = −

∑N
i=1

∑N
j>i Li j (xi − x j )TPg(xi, x j ; t) ≤

−c∑N
i=1

∑N
j>i Li j (xi − x j )TG(x j − xi ) = −c

∑N
i=1

∑N
j=1 Li j eT

i Ge j .
3If (2) holds, with Γ being an M-matrix [24], then a diagonal matrix M

exists (that is P) such that sym(MΓ) = sym(G) = G > 0.

T ∈ Rn×n such that Q′ = T−1∆Q′T and G = T−1∆GT,
where ∆Q′ and ∆G are diagonal matrices containing the real
eigenvalues of Q′ and G, respectively (note that Q = (Q′)T
and G = GT imply that TT = T−1). Let us also define the
transformed synchronization errors yi , Tei ∈ Rn and their
stack y , (IN ⊗ T) e ∈ RnN . Therefore, we can rewrite vG as

vG = eT (L ⊗ G) e = eT
[
L ⊗

(
T−1∆GT

)]
e

= eT
[(

L ⊗ T−1
)
(IN ⊗ (∆GT))

]
e

= eT
[(

L ⊗ T−1
)
(IN ⊗ ∆G) (IN ⊗ T)

]
e

= eT
[(

IN ⊗ TT
) (

IN ⊗ TT
)−1 (

L ⊗ T−1
)
(IN ⊗ ∆G)

]
y

= yT
[(

IN ⊗ TT
)−1 (

L ⊗ T−1
)
(IN ⊗ ∆G)

]
y

= yT
[(

L ⊗
(
TT−1

))
(IN ⊗ ∆G)

]
y = yT (L ⊗ ∆G) y.

Applying the same steps to eT (IN ⊗ Q′) e, we rewrite (7)
as v ≤ eT (IN ⊗ Q−) e + yT (

IN ⊗ ∆Q′ − cL ⊗ ∆G
)
y. Now,

let us define y∗,h ,
[
y1,h y2,h · · · yN,h

]T ∈ RN , with
h = 1, . . . , n, as the vector of all the h-th components of the N
transformed synchronization errors yi . Since ∆Q′ and ∆G are
diagonal matrices, it is possible to write

v ≤ eT (IN ⊗ Q−) e +
∑n

h=1
yT
∗,h [λh(Q′)IN − cλh(G)L] y∗,h,

and, using again Corollary 13.4.2 in [23], we have

v ≤ eT (IN ⊗ Q−) e +
∑n

h=1

y∗,h2 [λh(Q′) − cλh(G)λ2(L)] .

In order to have v ≤ eT (IN ⊗ Q−) e < 0, and thus prove
synchronizability, it is required that λh(Q′)−cλh(G)λ2(L) ≤ 0,
h = 1, . . . , n. Note that if λh(Q′) ≤ 0, then λh(G) can be null.
Differently, if λh(Q′) > 0, then it is required that λh(G) > 0.
The value of c∗ stems trivially from the last consideration. �

As a handy simplification of Theorem 2, we give the
following corollary.

Corollary 1. Consider (1) with linear diffusive coupling (2)
and assume that there exists Q ∈ Rn×n, with Q = Q− + Q′,
Q− < 0, Q′ = diag

( [
q1 · · · qn

] )
, such that

• f is QUAD(In, Q);
• Γ = diag

( [
γ1 · · · γn

] )
, with γh ≥ 0 ∀h = 1, . . . , n, but

γh > 0 if qh > 0.
Then, the network is globally synchronizable if

c ≥ c∗ ,


1
λ2(L) max

h=1,...,n

qh
γh
, if ∃h : qh > 0

0, otherwise
. (8)

Proof. The proof is a direct consequence of Theorem 2. �

Examples

As an application of Theorem 1, consider the classic relay
system f(xi) =

[ −1 −1
2 3

]
xi −

[
0

2sign(xi,1+xi,2)
]
. Such system can

either reach an equilibrium point in the set Ω = {xi : xi,1 =
−xi,2, xi,2 ∈ [−2, 2]} or diverge, and is QUAD with P = In
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Fig. 2. State dynamics and global synchronization error es for coupled relay
systems. Top panels: c = 0.05; bottom panels: c = 0.25.
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Fig. 3. State dynamics and global synchronization error es for coupled
oscillating systems. Top panels: c = 0.02; bottom panels: c = 0.28.

and Q = 3.06In. We coupled N = 50 of these relays through
an Erdös-Rényi random graph with probability p = 0.5 [25],
resulting in a topology with λ2(L) = 14.80; in addition, we
considered a linear diffusive coupling (2) with Γ = In. The
critical value of the coupling gain computed using Theorem 1
is c∗ = ‖Q‖ /λ2(L) = 0.21. Figure 2 shows the absence and
the emergence of synchronization in the cases c = 0.05 < c∗

and c = 0.25 > c∗.
Then, to illustrate Theorem 2 and Corollary 1, consider

the following PWS oscillator as a representative example:

f(xi; t) =
[ −xi,1+2xi,2sin(t)

f2(xi,2)
]
, where f2(xi,2) =

{ −xi,2−2, xi,2≤−1
xi,2, −1<xi,2<1
−xi,2+2, xi,2≥1

.

This is a cascaded system, as Ûxi,2 depends only on xi,2.
Moreover the state variable xi,2 has two stable equilibria in −2
and +2; xi,1 displays a sinusoidal behaviour, whose amplitude
and phase are dependant on xi,2. Notice that f is continuous
but not differentiable, and QUAD with P = In and Q =

[ −1 2
0 1

]
;

then we take Q− =
[ −1 2

0 −3
]

and Q′ =
[ 0 0

0 4
]
. As in the

previous example, we deploy a random network with N = 50
nodes, and again λ2(L) = 14.80, but this time Γ =

[ 0 0
0 1

]
(note that Γ ≯ 0). Applying Theorem 2 with T = In we get
c∗ = λ2(Q′)/[λ2(L)λ2(Γ)] = 4/[14.80 · 1] = 0.27. Figure 3
shows the results of two simulations, with c = 0.02 < c∗, and
c = 0.28 > c∗; only the latter case displays synchronization.

B. Extension to non-QUAD systems
When f is not QUAD, but satisfies the milder Assumption

2 instead, a discontinuous coupling action can be added to
a standard linear diffusive coupling in order to enable global
synchronizability. Here, we study the following pair of coupled
agents as a paradigm to understand emerging properties in
larger networks:

Ûxi = f(xi; t) + cΓ(xj − xi) + cdΓdsign(xj − xi), (9)

i, j = 1, 2, i , j. In particular, in Theorems 3 and 4 we give
conditions for global synchronizability; the former theorem is
meant to be used when Γ > 0, whereas the latter can be utilised
when no assumptions on the definiteness of Γ can be made.

Theorem 3. Consider (9) and assume that there exist P,Q ∈
Rn×n, m ∈ Rn, with P > 0, m , 0, such that
• f verifies Assumption 2;
• sym(PΓ) > 0;
• PΓd = diag(γd), with γd =

[
γd,1 · · · γd,n

]T ∈ Rn, and
γd,h ≥ 0 ∀h = 1, . . . , n, but γd,h > 0 if mh > 0.

Then, (9) is globally synchronizable if

c > c∗ ,
‖Q‖

2λmin [sym(PΓ)], cd ≥ c∗d ,
1
2

max
h=1,...,n

mh

γd,h
. (10)

Proof. Consider the candidate common Lyapunov function
V(e) = 1

2 eTPe, where e , x1 − x2. Then

ÛV = eTPÛe = eTP [f(x1; t) − f(x2; t)]
+ eTP [2cΓ(x2 − x1) + 2cdΓdsign(x2 − x1)]
= eTP[f(x1; t) − f(x2; t)] + eTP [−2cΓe − 2cdΓdsign(e)] .

Using Assumption 2 and the fact that PΓd = diag(γd), we have
ÛV ≤ eTQe +mT |e| − 2ceTPΓe − 2cdγ

T
d |e|

= eT(Q − 2cPΓ)e + (m − 2cdγd)T |e|
≤ ‖e‖2 [‖Q‖ − 2cλmin(sym(PΓ))]
+

∑n

h=1

[(mh − 2cdγd,h)|eh |
]
.

Therefore, it is immediate to verify that if c > c∗ and c ≥ c∗d,
then ÛV(e) < −α ‖e‖2, with α > 0, and the pair of agents is
globally synchronizable. �

Theorem 4. Consider (9) and assume that there exist P,Q ∈
Rn×n, m ∈ Rn, with P > 0, Q = Q−+Q′, Q− < 0, Q′ = (Q′)T,
m , 0, such that
• f verifies Assumption 2;
• Q′ and G , PΓ are simultaneously diagonalisable;
• λh(G) > 0 if λh(Q′) > 0, for h = 1, . . . , n.
• PΓd = diag(γd), with γd =

[
γd,1 · · · γd,n

]T ∈ Rn, and
γd,h ≥ 0 ∀h = 1, . . . , n, but γd,h > 0 if mh > 0.

Then, (9) is globally synchronizable if

c > c∗ ,


1
2

max
h=1,...,n

λh(Q′)
λh(G) , if ∃h : λh(Q′) > 0

0, otherwise
,

cd ≥ c∗d ,
1
2

max
h=1,...,n

mh

γd,h
.

(11)

Proof. The proof is obtained simply by combining those of
Theorems 2 and 3, and thus omitted for brevity. �



0 100 200 300 400

t

-2

0

2
x i,

1

0 100 200 300 400

t

0

1

2

e s

0 200 400

t

-2

0

2

x i,
1

0 100 200 300 400

t

0

0.1

0.2

e s

Fig. 4. State dynamics (blue is x1,1, orange is x2,1) and global synchronization
error es for coupled Sprott circuits; Top panels: c = 0.002c∗, cd = 0.002c∗d ;
bottom panels: c = 1.002c∗, cd = 1.002c∗d .

Example

To illustrate Theorem 3, we consider a network of two
chaotic Sprott circuits [26], whose dynamics is described by

f(xi) =
[ 0 1 0

0 0 1
−1 −1 −0.5

]
xi +

[
0
0

sign(xi,1)

]
, (12)

coupled through the matrices Γ = Γd = In. In this sce-
nario, P = In, ‖Q‖ = 1.70, λmin (sym(PΓ)) = 1, and
m =

[
2 0 0

]T; hence, c∗ = 0.85 and c∗d = 1; as initial
condition we selected x1(0) =

[
0.8 0.2 0.2

]T, x2(0) =[
0.5 0.1 0.1

]T. Figure 4 depicts the results of two simu-
lations: in the former c = 0.002c∗ and cd = 0.002c∗d, whereas
in the latter c = 1.002c∗ and cd = 1.002c∗d. Synchronization is
achieved only in the second case, where c > c∗ and cd > c∗d.

V. MULTIPLEX NETWORKS OF N GENERIC PWS SYSTEMS

A. A switched multiplex approach

When N ≥ 3 agents are present in the network and the
QUAD assumption is not fulfilled by the vector field f, we
propose to extend (9) using a multiplex network approach,
inspired by the strategy used in [21], to enforce consensuability
in networks of smooth systems. Specifically, we consider
networks in which the coupling between nodes consists of two
layers: (i) a diffusive coupling layer with topology described by
the matrix L, and (ii) a discontinuous coupling layer, possibly
characterized by a different topology, encoded by the Laplacian
Ld. Namely, the overall network dynamics becomes

Ûxi = f(xi; t)−c
N∑
j=1

Li jΓ(xj−xi)−cd

N∑
j=1

Ld
i jΓdsign(xj−xi), (13)

with i = 1, . . . , N , and Ld
i j being the element (i, j) of the

symmetric Laplacian matrix Ld associated to the graph Gd
relative to the discontinuous coupling. A complete proof of
convergence of this multiplex approach is beyond the scope of
this paper and will be presented elsewhere. Next, we proceed
with an exhaustive numerical analysis to illustrate how the
choice of the structure of the coupling layers can affect the
stability and synchronizability of the network.

B. Numerical study

To provide a proof of the enhanced synchronizability pro-
vided by the discontinuous coupling in (13), we consider a net-
work of N = 10 identical Sprott circuits (12). In the network,
Γ = Γd = In, and the nodes are diffusively coupled via a graph
with Laplacian matrix L, associated to a 3-nearest neighbours
topology. Differently, Ld is associated to 3 possible topologies,
as portrayed in Figure 5, which displays the steady state value
of the global synchronization error es (defined in Section II)
for each different combination of the coupling layer structures.
Initial conditions were selected randomly (with a uniform
distribution), in the range of chaoticity of the Sprott circuit. We
notice that the stability region depends on the relative choice of
the structures of the two coupling layers. Obviously, the worst
case is when the structure of the discontinuous layer is the
sparsest (see Figure 5c). Surprisingly, to enhance stability it is
sufficient to add a few long range links to the discontinuous
coupling layer (see Figure 5b); the largest stability region being
observed when the discontinuous coupling layer shares the
same links as the underlying diffusive one.

C. A further example

To further illustrate the beneficial effect of the discontinuous
layer, we consider a network of N = 10 PWS bistable systems,
used to model energy harvesters [27] or simplified climatic
models [28], and described by f(xi) =

[ 0 1
−1 −1

]
xi +

[
0

sign(xi,1)
]
.

The system has two coexisting stable equilibria in
[
1 0

]T and[−1 0
]T. The agents are coupled over a path graph, with L =

Ld and Γ = Γd = In. We consider the particularly challenging
case where five nodes are started at one of the equilibria, while
the other five are at the other. In this case, as shown in Figure 6,
the diffusive coupling layer alone is unable to synchronize the
network for any value of c, when the discontinuous coupling
layer is disconnected (cd = 0). Synchronization in this case is
only achieved when both coupling layers are present.

VI. CONCLUSION

We have discussed the problem of complete spontaneous
synchronizability in networks of piecewise-smooth systems.
Specifically, we started by providing sufficient conditions for
ensembles of QUAD PWS systems, applicable to problems
with a large variety of coupling laws, including linear diffusive
coupling with indefinite inner coupling matrix. Next, we found
that, for two coupled agents, when their dynamics is not
QUAD, a discontinuous coupling (added to a linear diffusive
coupling) can be used to enforce synchronizability. Motivated
by this finding, we then extended the study numerically to
larger networks of N nodes, allowing for a multiplex structure,
which means the presence of different topologies for different
coupling actions. Targeted and extensive numerical analyses
illustrated the effectiveness of the multiplex approach: the
discontinuous layer, even when associated to a sparse topology,
makes complete synchronization feasible also when a linear
coupling protocol alone cannot.



(a)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045
c

0

0.005

0.01

0.015

0.02

0.025

0.03
c d

L, Ld: 3-nearest neighbours

0.2

0.4

0.6

0.8

1

e s

(b)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

c

0

0.005

0.01

0.015

0.02

0.025

0.03

c d

L: 3-nearest neighbours,  L
d
: ring+

0.2

0.4

0.6

0.8

1

e s

(c)

0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

c

0

0.005

0.01

0.015

0.02

0.025

0.03

c d

L: 3-nearest neighbours,  Ld: ring

0.2

0.4

0.6

0.8

1

e s

Fig. 5. Characterization of synchronizability in a network of Sprott
circuits. Five random initial conditions were used, with xi (0) ∈
[[0, 1] [0, 0.5] [0, 0.5]]T, and, for each combination of c and cd, es is taken
as the average of the five simulations. The diffusive layer is always associated
to a 3-nearest neighbours; differently, the discontinuous coupling layer varies
in each figure.
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Fig. 6. Characterization of synchronizability in a network of bistable systems.
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