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Abstract— The paradigmatic formation control problem of
steering a multi-agent system towards a balanced circular
formation has been the subject of extensive studies in the
control engineering community. Indeed, this is due to the fact
that it shares several features with relevant applications such
as distributed environmental monitoring or fence-patrolling.
However, these applications may also present some relevant
differences from the ideal setting such as the curve on which
the formation must be achieved not being a circle, or the mea-
surements being neither ideal nor as a continuous information
flow. In this work, we attempt to fill this gap between theory
and applications by considering the problem of steering a multi-
agent system towards a balanced formation on a generic closed
curve and under very restrictive assumptions on the information
flow amongst the agents. We tackle this problem through an
estimation and control strategy that borrows tools from interval
analysis to guarantee the robustness that is required in the
considered scenario.

I. INTRODUCTION

Formation control problems are becoming more and more
relevant due to the increasing usage of unmanned vehicles
in performing cooperative tasks across different domains [1],
[2], surveillance, patrolling, and environmental monitoring
problems being the main motivating applications [3]–[5]. In
this context, the problem of ensuring a multi-agent system
achieves a balanced circular formation has risen as the
ideal testbed for different control strategies under diverse as-
sumptions on the communication protocol among the agents
[6]–[9]. Decentralized approaches have been developed to
achieve this control goal in the ideal case where each agent
has full knowledge of its relative position with respect to
its neighboring peers, and have proven flexible enough to
cope with different static and time-varying communication
topologies [9]–[11]. Later work have tackled the problem in
presence of distance-only measurements [12], [13].

In its most general formulation, the problem of achieving
a balanced circular formation consists of two tasks, that of
approaching the circle and that of balancing the formation.
Once the first task has been achieved, the agents can be seen
as simple phase oscillators. One of the main limitations of
this approach is that the curve along which the formation is
achieved is restricted to be the circle. While this geometry
is representative of the idea of controlling the formation
of an ensemble of agents along a closed curve, indeed
the main feature of surveillance and patrolling problems, it
also introduces a critical simplification: Euclidean distance
measurements correspond univocally to distances along the
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curve, thus facilitating the design of both the estimation
and control strategies. Indeed, removing this simplification
introduces uncertainty on the distance along the curve even
in the ideal case in which measurements are not affected by
noise, and are performed through sensors with an unlimited
range. In our recent work on this topic [13], [14] we
have tackled the formation control problem from a different
perspective, that is, relaxing the assumption that the infor-
mation exchanged under the communication protocol can be
uniquely associated to a relative position (or distance) along
the curve on which the formation must be achieved. Namely,
in [14] we have developed a distributed estimator that allows
a phase oscillator to estimate its relative position with respect
to its peers based on uncertain proximity measurements, that
is, intermittent distance measurements obtained through a
sensor with limited range. Then, in [13] we have leveraged
this estimator to achieve a balanced circular formation when
the range of the noisy sensors deployed is lower than
the relative distance among the agents at steady-state, this
implying a fully disconnected steady-state communication
topology.

In [15], we started to extend our approach to balance
formation along generic Jordan curves under the simplifying
assumption that i) the distance measurements were not
corrupted by noise, and ii) the steady-state topology were
connected. In this work, we remove these assumption and
develop a formation control strategy that is (i) decentralized,
(ii) flexible to cope with a restrictive communication proto-
col, and (iii) robust to measurement uncertainties introduced
by non-ideal sensors and by the geometry of the problem. As
a testbed, we consider the problem of achieving a balanced
formation along a generic closed curve when the agents
gather noisy measurements of their distance with respect
to the agents that lie within the range of their sensors.
We assume this range to be limited and such that, once a
balanced formation is achieved, the communication topology
becomes fully disconnected. Furthermore, we consider a
futher element of uncertainty that typically arises in appli-
cations: if the distance between two agents is close to the
sensor range, then a measure could or could not be available
depending on the realization of a Bernoulli random variable.
To tackle this problem, we design a symbiotic estimation
and control strategy that allows each agent to recover, in
distributed fashion, an interval estimate of its relative position
along the curve with respect to its peers and then tune it to the
desired value through a three level bang-bang controller. The
effectiveness of our strategy is demonstrated numerically.
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II. MATHEMATICAL PRELIMINARIES AND NOTATION

First, we define mod(z,m) := c as the remainder of z
modulo m, where c is the unique solution of

c = z − qm,
0 ≤ c < |m|, q ∈ Z.

Also, we define rem(z,m) = mod(z − m/2,m) − m/2.
Note that −m/2 ≤ rem(z,m) < m/2 and rem(−z,m) =
−rem(z,m), for all z 6= km, k ∈ Z.

Next, we introduce some operations and notation on
intervals ( [16]):
• given an interval J ⊂ R, we denote its infimum J , its

supremum J̄ , and its width w(J) := J̄ − J ;
• the Minkowski sum between two intervals X,Y ∈ R

is {x + y | x ∈ X, y ∈ Y }. Note that the result is
an interval Z such that Z = min{X,Y } and Z̄ =
min{X̄, Ȳ }.

• given ι intervals X1, . . . , Xι, the infimum and the supre-
mum of the interval hull H = hullλ {Xλ} are given by
H = inf

λ
{Xλ} and H̄ = sup

λ
{X̄λ}, respectively.

Finally, given a planar curve χ : [cm, cM ]→ R2, we denote
by χ[c1,c2] its restriction to the interval [c1, c2], with c1 ≥ cm
and c2 ≤ cM .

III. AGENT DYNAMICS AND CONTROL GOAL

We consider an ensemble of N discrete-time integra-
tors moving along a C0 Jordan curve γ : [0, l] → R2

parametrized by arclength, that is, for all a ∈ [0, l],
arclengthγ[0,a] = a. Note that γ maps positions along a one-
dimensional curve in points on a two-dimensional Euclidean
space. We express the dynamics of the generic i-th agent as

pi(k + 1) = pi(k) + s+ ui(k), (1)

where pi(k)− pi(0) is the distance traveled along the curve
γ by the i-th agent up to time k. Hence, s + ui(k) is the
distance traveled by agent i in the sampling time, with s
being an intrinsic parameter of the multi-agent system, and
ui(k) the deployed distributed control action. Without loss
of generality, we assume that each agent’s initial condition
is encompassed in the interval [0, l), and relabel the agents
so that pi(0) > pi−1(0), for all i = 2, . . . , N . To track the
evolution of the difference between the distances traveled
by the agents along the curve, we introduce the variables
pij(k) := pi(k)− pj(k), the dynamics of which are

pij(k + 1) = pij(k) + uij(k), (2)

where uij(k) := ui(k) − uj(k). As pij(k) ∈ R, we define
the agents’ relative position on the curve γ as

xij(k) := rem(pij(k), l) ∈ (−l/2, l/2] . (3)

While the agents considered in this work travel along a one-
dimensional closed curve, we assume they are able to gather
noisy measurements of their euclidean distance

mij(k) := ‖γ(mod(pj(k), l))− γ(mod(pi(k), l))‖2 . (4)

only if they lie sufficiently close to each other. Specifically,
the measurement equation is given by

yij(k) = β (mij(k)) (mij(k) + vij(k)) , (5)

where vij(k) is the measurement noise, and β(mij(k))
is a Bernoulli random variable with parameter q(mij(k))
describing the probability of gathering a measurement at a
given distance mij(k). Namely,

q(mij(k)) =


1, if mij(k) ∈ [0, r],

0 < q̄ < 1, if mij(k) ∈ (r, r̄] ,

0, otherwise,
(6)

for all i, j = 1, . . . , N , i 6= j. Therefore, the absence
of a measurement at time k is represented by the output
variable yij(k) being 0. The output equation (5) models
the case in which a noisy proximity measurement of the
Euclidean distance mij(k) is surely available to two agents
i and j only if they are sufficiently close, that is, if mij(k)
is encompassed in the closed interval [0, r]. Otherwise, we
consider the realistic case in which, when mij(k) is close to
the nominal sensor range r, a measurement could or could
not be available to the agents, respectively with probability
q ∈ [0, 1] and 1 − q. Finally, we assume that when the
agents are too far from each other, that is, mij(k) > r̄,
no measurement of their mutual distance is available.

Having introduced all the necessary notation, we are now
ready to define the desired formation for our multi-agent
system.

Definition 1: We say that the multi-agent system (1)
achieves a ε-balanced formation along the closed curve γ
of length l if, for all i = 2, . . . , N ,

lim sup
k→+∞

|xij(k)− b| ≤ ε, (7)

for all (i, j) ∈ {(2, 1), (3, 2), . . . , (1, N)}, with b := l/N .
Note that this extends the standard definition in [13] to the
case of a generic Jordan curve.

Our goal is to design a decentralized control action uij(k)
that allows the multi-agent system (1) to achieve a ε-balanced
formation along a closed curve γ. Such a goal is made
challenging by the fact that, to leverage a feedback control
law, each agent must first estimate the position of its peers.
The estimation is non-trivial as
(a) the measurements are intermittent, and their collection

is related to the distance among the agents in non-
deterministic fashion, see equations (5) and (6);

(b) when a measurement is gathered, it is affected by
(bounded) noise;

(c) the relation between the measured quantity, the Eu-
clidean distance mij(k), and the agents’ relative po-
sition on the curve is non injective. This is due both to
the radius of curvature of γ not being constant, and to
the intrinsic ambiguity of distance measurements, which
do not carry information on orientation. We emphasize
that, even in the absence of measurement noise, any



Fig. 1. An example of two pairs of agents (i, j) and (h, z) such that
mij = mhz while xij 6= xzh. The closed curve γ, the black solid line,
is a square while the euclidean distances mij and mzh are the blue solid
segments.

measurement yij(k) would be compatible with a multi-
interval set of relative positions on the curve γ.

To complete our problem statement, we now formally state
the main assumptions underlying our work .

Assumption 1: Agents have no information on their abso-
lute position on the curve γ.

Assumption 2: The amplitude of the measurement noise
in eq. (6) is bounded, that is, |vij(k)| ≤ ϕ.

Assumption 3: There do not exist two scalars 0 ≤ s1 ≤ s2
such that |s1 − s2| ≥ b and ||γ(s1)− γ(s2)||2 ≤ r̄.
It is worth underlining that Assumption 3 implies that the
desired formation is fully disconnected, in the sense that
at steady state no distance measurement is available to the
agents.

IV. ESTIMATION AND CONTROL STRATEGY

We design a decentralized strategy to achieve a balanced
formation on the curve γ which prescribes that each agent i
combines the information provided by the output equation (5)
with knowledge of the dynamics and of the control law of its
peers to (i) identify its closest follower i−1, and (ii) derive an
estimate x̂i,i−1(k) of the relative position xi,i−1(k), which is
then fed back to a three level bang-bang feedback controller.

To explain how the agents exploit the information provided
by each measurement yij(k), let us point out that, taken
altogether, Assumptions 1 and 2 imply that each agent can
associate to each value of yij(k) a multi-interval set of values
of xij(k). This is due to several factors. Firstly, from eq. (6)
and Assumption 2, whenever a measurement is available (i.e.
β = 1) we can derive that

mij(k) ∈ [max{yij(k)− ϕ, 0}, min{yij(k) + ϕ, r̄}]. (8)

Secondly, as γ(·) maps points on a generic one-dimensional
curve to points in R2, and as the euclidean distance does
not carry information on orientation, there could be multiple
values of xij(k) compatible with the same value of mij(k),
as shown in the simple example of Fig. 1.

Indeed, from eq. (6), we also know that if a measurement
is not available (i.e. β = 0), then

mij(k) ∈ (r, l/2], (9)

which in turn translates into an interval knowledge on
xij(k). Summing up, regardless of whether a measurement is
collected or not (regardless of the value of β), the knowledge
of the measurement equations always allows agent i to
compute a multi-interval to which xij(k) belongs. We denote
by Υij(k) = {∪lΥij

l (k)} such multi-interval. Combining
Υij(k) with knowledge of the dynamics and of an interval es-
timate of the control input of its peers, each agent i produces
a multi-interval interval estimate Γij(k|k) = {∪lΓijl (k|k)}
of xij(k). The equations governing the dynamics of this
estimate are

Γij(k|k − 1) = rem(Γij(k − 1|k − 1) + ûij(k − 1), l, )

Γij(k|k) = Γij(k|k) ∩Υij(k), (10)
Γij(0|0) = Υij(0).

Notice that, as agent i cannot access the input of node j, the
estimation strategy only relies on an estimate ûij(k) of the
relative input uij(k). The estimation of ûij(k) is facilitated
by an appropriate choice of the control law ui, i = 1, . . . , n.
Specifically, we select a three-level control law that activates
once an agent has identified univocally its closest follower.
Therefore, before giving our control law, we have to give the
following definition, where Hij(k|k) denotes the hull of the
multi-interval Γij(k|k).

Definition 2: Agent i 6= 1 identifies its closest follower
at time ki if ki is the smallest integer ensuring there exists
k ≤ ki such that

Hi,i−1(k|k) > 0, (11a)

H̄i,i−1(k|k) < Γijl (k|k), ∀l|Γijl (k|k) > 0,∀j 6= i− 1.

(11b)
Now, we are ready to give our control law. First, we randomly
elect the pacemaker, w.l.o.g. agent 1, whose control law is

u1(k) = d ∀k. (12)

The decentralized control action governing the motion of the
other agents i = 2, . . . , N activates when they identify their
closest follower, and then prescribes that i is pushed by its
closest follower i− 1, i.e.

ui(k) =

{
d+Ksgn+(b− x̂i,i−1(k), ∀k ≥ ki,
0, otherwise,

(13a)
(13b)

where xij(k) is the scalar estimate of xij(k), computed as
x̂ij(k) = Hij(k). Taken altogether, equations (12) and (13)
imply that ui(k) ∈ {0, d, d + K}. Notice that, once agent
i identified its follower, it adjusts its speed to the maximal
possible value d + K until it reaches the desired spacing
with agent i− 1. Once b− x̂i,i−1(k) becomes negative, then
agent i becomes aware it has achieved its control goal, and
thus starts traveling at the reference speed d. The general
idea here, is that the pacemaker, which is the only agent
such that ui(0) 6= 0, ignites a mechanism in which agent 1
pushes agent 2 which in turn pushes agent 3 and so on until
each agent has achieve the desired spacing with its closest



follower. This mechanism will eventually come to an end as
the control law of the pacemaker lacks a feedback term.

This three-level control action allows a decentralized in-
terval estimation of ûij(k) := ûj − ui, where ûj is the
estimate made by i of the speed of agent j. Specifically,
before identifying its closest follower,

ûj(k) = [0 d+K] ∀k < ki and ∀j. (14)

Once agent i has identified its closest follower, according to
eq. (13a) it only needs an estimate x̂i,i−1(k)of xi,i−1(k), as
at that point and it only needs to compute Γij(k|k− 1) only
for j = i− 1. Hence, only ûi−1(k) is needed which agent i
obtains as

ûi−1(k) = [d d+K], if ki ≤ k < k̄i,

ûi−1(k) = d, if k ≥ k̄i,
(15)
(16)

where k̄i is the time first instant greater than ki such that

Hi,i−1(k) ∩Hi,i−1(ki) = ∅. (17)

The idea behind equations (15) is that initially agent i must
perform estimates of all the other agents’ control signal. This
is true until k = ki, when finally i can focus only on its
follower, i−1. For an agent to identify its closest follower, a
relative motion must have taken place among the two. Hence,
from equation (13a), after ki agent i can infer that ui−1(k) ≥
d. Finally, as i is aware of the control law of its peers, it
knows that, to distance its closest follower, i− 1 must have
already achieved the desired spacing with i − 2 and thus,
from eq. (13b) it must have switched to ui−1 = d. Hence, as
soon as agent i is aware it has started traveling faster than
its follower i − 1, which is the meaning of eq. (17), it sets
ûi−1 = d as prescribed by eq. (16).

V. VALIDATION

A. Numerical setting

To validate our estimation and control strategy, we con-
sider N = 6 agents that must achieve an ε-balanced forma-
tion on a square of perimeter l = 4, which, from Definition
1, sets the value of the target spacing b to l/6. Consistently
with Assumption 3, we set r = 0.32 and r̄ = 0.35. We
conclude the parametrization of equation (6) by selecting
q̄ = 0.5. Finally, the reference speed d of the pacemaker is
set to 0.003. To facilitate the repeatability of our results, we
now derive the expression of the multi-interval Υij(k) as a
function of yij(k) for the specific shape of the selected curve
γ. To do so, let us recall that, according to equation (5) and
from Assumption 2, if a measurement yij(k) is available,
then

mij(k) ∈M ij(k),

where

M ij(k) := [max{0, yij(k)− ϕ},min{yij(k) + ϕ, r̄}]
(18)

Indeed, the relation between M ij(k) and Υij(k) depends
both on the specific curve γ that is selected, and from r̄.

0 200 400 600
0

0.5

1

1.5

2

2.5

Fig. 2. Plot of xij(k), (i, j) = (2, 1), (3, 2), (4, 3), (5, 4), (6, 5), (1, 6)
for a representative simulation.

Having selected γ to be a square with unit sides, and as r̄ =
0.35 < 1, then Υij(k) is made of two intervals. Moreover,
under the considered parametrization it is trivial to show that
mij(k) ≤ xij(k) ≤

√
2mij(k) and thus, if a measurement

is available, we have

Υij(k) = Υij
1 (k) ∪Υij

2 (k),

Υij
1 (k) = [−

√
2M̄ij(k), −Mij(k)],

Υij
2 (k) = [Mij(k),

√
2M̄ij(k)].

(19)

(20)

(21)

On the other hand, if a measurement is not available, then
following the same lines of argument we can state that

Υij(k) = Υij
1 (k) ∪Υij

2 (k),

Υij
1 (k) = (r, l/2],

Υij
2 (k) = (−l/2, −r).

(22)

(23)

(24)

This estimation strategy, paired with the control strategy
given in (12)-(13) is effective in achieving an ε-balanced
formation, with ε being at most 0.09b across our numerical
analyses. Figure 2 shows the results of a simulation that is
representative of the rationale behind our control strategy
which prescribes that each agent i except the pacemaker is
pushed by its closest follower i − 1. As the reader may
notice, agent i = 2 is the first agent such that xi,i−1(k)
reaches its steady-state value. This as, before k2, we have
that ui,i−1(k) = 0 for all i = 3, . . . , N . In turn, k2 is the
first time instant such that u32(k) < 0, and thus a cascade
is triggered that ends when x65(k) reaches its steady-state
value, which is also the time instant in which x16(k) settles
as agent 1 is the pacemaker.

B. Performance analysis

In what follows, we further delve on the performance of
our strategy by assessing the role of the control gain K and



Factor degrees of freedom p-value
K 3 0
ϕ 2 0

TABLE I
TWO-WAY ANOVA TO TEST THE INFLUENCE ON ε OF THE FACTORS K ,

AND ϕ.

Factor degrees of freedom p-value
K 3 0
ϕ 2 0.74

TABLE II
TWO-WAY ANOVA TO TEST THE INFLUENCE ON THE SETTLING TIME k5

OF THE FACTORS K , AND ϕ.

of the bound on the measurement noise ϕ on the formation
accuracy ε and on the speed of convergence. Specifically,
we vary K in the set {0.5d, d, 1.5d, 2d} and, for each
value of K, we vary ϕ in the set {2K, 3K, 4K}. For each
combination of K and ϕ, we have performed a set of 100
numerical simulations each of T = 5000 time instants. To
avoid overtaking among the agents, we have selected the
100 different initial conditions randomly, but ensuring that
|xij(0)| ≥ 4ϕmax + 2(d + Kmax), where Kmax and ϕmax

are the maximal values of K and ϕ across our numerical
campaign.

First, we start by pointing out that in all experimental con-
ditions, we have experienced convergence to an ε-balanced
formation, as defined in Definition 1, with ε = 0.09b, while
the average formation error across all performed experiments
was 0.02b. To evaluate the influence on the formation error
ε of varying the control gain K and the measurement noise
bound ϕ, we perform a two-way ANOVA. As summarized
in table I, we obtain negligible p-values for both parameters,
indicating that both factors have a statistically significant
effect on ε. Specifically, the formation accuracy improves
when either K or ϕ is decreased.

The same statistical analysis was performed to test the
influence of K and ϕ on the settling time k5, which we
define as the first time instant such that

|xij(k)− xij(T )| ≤ 0.05xij(T ),

for all (i, j) ∈ {(2, 1), (3, 2), . . . , (1, N)}, k ≥ k5.
As summarized in Table II, while we found statistical

evidence that varying the control gain K it is possible to
tune the speed at which the agents achieve the desired
formation, we registered no significant effect of the bound
on the measurement noise.

Taken altogether, our results indicate that as the measure-
ment noise increases, the accuracy of the formation worsens,
while the control gain K can be tuned to achieve the optimal
trade-off between the time in which the agents achieve the
formation and its accuracy. We stress that, as we have tackled

the problem in discrete time, the control gain K can be
reduced by reducing the sampling time, which would allow
increasing the formation accuracy without compromising the
time required to achieve the control goal. Indeed, this would
come at the price of increasing the cost of the control
architecture.

VI. DISCUSSION

In this manuscript, we tackled the problem of balancing
a formation of autonomous agents along a generic Jordan
curve. Leveraging our previous work, we have devised an
estimation and control strategy whose effectiveness is not
limited to circular formations. The combination of a pre-
diction/correction estimation strategy with a three-level bang
bang controller also allowed to deal with non-ideal proximity
sensors characterized by i) a limited range, ii) bounded
uncertainty, and iii) a non-deterministic behavior when the
distance is close to their maximum range. We evaluated the
effectiveness of the proposed strategy on a testbed curve,
the square, which among all the regular polygons (with the
exception of the triangle), is the worst approximation of the
circle. Interestingly, we found that in all the simulations a
balanced formation was achieved, with the only caveat that
the agents should not be too close at time 0 to avoid possible
overtaking. Furthermore, we observed that the control gain K
can be used to regulate the trade-off between the convergence
speed and the accuracy of the formation. This encouraging
numerical results constitute a further incentive to search for
i) analytical conditions guaranteeing the effectiveness of the
strategy, and ii) explicit estimates of convergence speed and
formation accuracy. Our future work will be devoted to find
useful analytical cues that can facilitate control design.
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