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Low yield metals and perforated steel shear walls
for seismic protection of existing RC buildings

A. Formisano* and L. Lombardi?

Abstract: In the field of the seismic protection of buildings, the use of steel plate
shear walls (SPSWs) may be particularly profitable in the seismic retrofitting inter-
ventions of existing RC buildings designed for gravity loads only. Some past
researches have shown that when traditional full SPSWs are used as bracing devices
of framed buildings, they may induce excessive design forces to the surrounding
frame members. Therefore, low yield steels (LYS) could be a valuable option to
overcome this applicability limit. Nevertheless, the scarce availability on the market
of these steels suggests the employment of aluminium alloys and perforated steel
plates, which have the benefit of incurring excursions in plastic range already for
low stress levels. In this paper, a parametric analysis concerning the use of perfo-
rated metal plate shear walls (MPSWs) for seismic upgrading of existing RC framed
structures represents a novelty of the research in the retrofitting interventions field.
To this purpose, first, some experimental tests have been considered to calibrate a
finite element model of the panel devices by using the SeismoStruct software.
Subsequently, the proposed FEM model has been used to design the retrofitting
systems with either full MPSWs or perforated SPSWs of an existing RC residential
five-storey building, designed between the 1960s and 1970s of the last century.
Finally, the different retrofitting panel systems examined have been compared to
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each other in terms of both structural and economic viewpoints, allowing to select
the best intervention strategy.

Subjects: Environmental and Geotechnical Engineering; Structural Engineering; Design

Keywords: metal plate shear walls; perforated panels; bracing devices; existing RC
buildings; retrofitting; FEM model; parametric analysis

1. Introduction

Steel plate shear walls (SPSWs) represent an effective passive control system, they being charac-
terised by high initial stiffness, great strength, and a very stable hysteretic response up to large
deformations. SPSWs are very effective in limiting the inter-storey drifts of framed buildings, also
reducing the structure weight, as well the seismic forces, in comparison to RC shear walls. In addition,
by using shop-welded or bolted connection types, the erection process can be easy, allowing a
considerable reduction of constructional costs. Application examples of such devices in new steel
buildings, with either bracing or dissipative functions, are detected in Asia and America (Astaneh-Asl,
2000). However, the use of SPSWs may be particularly profitable for seismic retrofitting of existing RC
buildings designed for gravity loads only, since their inclusion in the existing structures confers them a
considerable performance increase (Mistakidis, De Matteis, & Formisano, 2007). The beneficial con-
tribution offered by shear panels is guaranteed by the development of a diagonal tensile bands
mechanism (called tension field), which is more effective as greater is the plate area involved in the
deformation process (Basler, 1961). In particular, when traditional full systems, configured as simple
steel panels without stiffeners, are employed, the optimal behaviour is guaranteed with plates having
width-to-height ratios between 0.8 and 2.5 (Formisano, Mazzolani, & De Matteis, 2007).

Some studies have shown that when full SPSWs are used as bracing devices of framed buildings,
they may introduce some problems in the capacity design application, so to result in excessive
design forces to the surrounding frame members, thus increasing their required size and costs
(Vian & Bruneau, 2005). The scarce availability on the market of low-yield steel (LYS), usually
employed to limit the forces transmitted by the plates to steel frame members, suggests the use of
aluminium alloys (Brando, D’Agostino, & De Matteis, 2015; De Matteis, Formisano, & Mazzolani,
2009; Formisano, De Matteis, & Mazzolani, 2010; Formisano & Mazzolani, 2016; Foti, Diaferio, &
Nobile, 2013) and perforated steel plates (Purba & Bruneau, 2007), which have the benefit of
experiencing excursions in plastic range already for low stress levels. A recent study carried out by
the Authors has shown the suitability of such panels for seismic-resistant applications through the
set-up of an easy design tool useful for their use (Formisano, Lombardi, & Mazzolani, 2016).

In this paper, in order to perform a parametric analysis concerning the use of full metal plate
shear walls (MPSWSs) and perforated SPSWs for seismic upgrading of an existing RC-framed
structures, first the experimental test results conducted in Bagnoli (district of Naples) (De Matteis
et al,, 2009; Formisano et al., 2010) have been considered to calibrate a finite element model in
SeismoStruct (Seismosoft, 2014). In this software, shear walls have been implemented according
to the equivalent tensile diagonal method proposed by Thorburn et al. (1983). The excellent
experimental-to-numerical correspondence of results has validated the proposed modelling pro-
cedure for the application of full MPSWs and differently perforated SPSWs into an existing resi-
dential five-storey RC building in Torre del Greco, a town in the province of Naples. Following the
same design approach reported in Mistakidis et al. (2007), pushover analyses on the retrofitted
structure with the before mentioned metal shear walls have been performed. Finally, the structural
and economic differences among these solutions have been exposed and critically discussed
aiming at individuating the best solution for retrofitting the inspected building.

2. The experimental study
In order to both study the behaviour of existing RC buildings retrofitted by perforated SPSWs and

validate the model proposed in SeismoStruct (Seismosoft, 2014), an experimental test performed
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Figure 1. View of the original RC
building (a), its division in sub-
structures (b) and plan config-
urations at different levels (c).

in the framework of the ILVA-IDEM project (Mazzolani, 2008) has been considered. In this project,
the retrofitting of an industrial building located in Bagnoli (district of Naples) by using various
reinforcement systems, including the aforesaid panels, was carried out.

Thanks to the regular configuration of the structure, once cladding and internal walls were
eliminated, the building was divided in six test modules (Figure 1). Different upgrading techniques
were tested; in particular, the module no. 5 was chosen to test the metal shear panels system.

The geometrical configuration of this substructure is characterized by a rectangular plan with
dimensions of 6.30 X 5.90 m and two 3.30 m high levels (see Figure 2). More details about
geometry, materials and steel reinforcement can be found in Formisano et al. (2010).

The seismic retrofitting of the RC module was designed following the performance-based design
approach according to US guidelines (Applied Technology Council (ATC)-40, 1996, Federal
Emergency Management Agency(FEMA)-273, 1997).

Steel panels with dimensions of 600 X 2,400 X 1.15 mm and pure aluminium (AW-1050A) plates
with dimensions of 600 x 2,400 x 5.00 mm were chosen for experimental tests. Mechanical
properties of these panels are reported in Table 1.

Since the Canadian code (Canadian Standards Association (CSA), 2001) suggests the use of plate
width-to-height ratios between 0.8 and 2.5, the use of intermediate stiffeners, composed by two
steel plates connected through bolted connections, was foreseen. The thickness of the stiffeners
plate was determined according to the EC3 provisions (EN 1993-1-1, 2005). Furthermore, an
intermediate steel beam was considered to reduce bending effects of the steel columns of the
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Figure 2. Test set-up of the
module no. 5 by using module
no. 6 as retaining structure (a),
first floor carpentry (b) and
vertical sections (c).
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Table 1. Mechanical properties of panels obtained from experimental tensile tests

Material f, (MPa) f, (MPa) £, E (MPa) Strain
hardening
factor
Steel 305 340 32 200,000 1.15
AW-1050A 21* 80 45 70,000 3.76

*Conventional yielding strength at 0.2% strain level.

surrounding frame. This steel frame, having pinned joints, was made of S275 UPN180-coupled
profiles for perimeter beams and columns and by S275 UPN240-coupled sections for the inter-
mediate beam. It was designed in order to both avoid any buckling phenomenon and resist to the
effects induced by the tension-field mechanism of plates. The plate-to-frame connections were
realised by means of bolted joints. Both the first level and foundation RC beams were reinforced by
two UPN220-coupled profiles, opportunely stiffened, designed in order to absorb the maximum
load transferred during test. Figure 3 shows one of the described retrofitting systems and the
results obtained from experimental tests.

3. Set-up and validation of the FEM model

The choice of an appropriate and easily implementable FEM model to both simulate the
above experimental tests and perform supplementary numerical analyses is a crucial impor-
tance task. In order to carry out a parametric analysis on the application of both full and
perforated SPSWs inside existing RC framed structures, the FEM software SeismoStruct
(Seismosoft, 2014) has been used. This software can predict the behaviour of three-
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Figure 3. Retrofitted structure
with steel plates (a) and com-
parison of the experimental

load-displacement curves (b).
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dimensional framed structures under static and dynamic loads by taking into account both
geometric non-linearity and materials inelasticity. So, the explicit modelling of the inelasticity
diffusion both along the element and through the section allows for an accurate estimate of
the damage accumulation.

For monotonic analyses, metal shear panels can be simply schematised by a single equivalent
tensile diagonal (Thorburn et al., 1983) having a cross-section area equal to

t b sin?2a

2 sinp sin2p )

d
where t and b are the plate thickness and width, respectively, whereas a and  are the tension-field
angle and the diagonal angle of the steel plate measured from the vertical direction, respectively.
Equation (1) is based on an elastic strain energy formulation. An alternative model is the strip one,
which can be sometimes very difficult to be implemented in the used software. In this model, the
tension-field angle a is given by

1+42

tan“a = - >
1+td (A +ssits)

()

where A and I. are the cross-section area and the second moment of area of the surrounding
columns, respectively; A, is the beam cross-section area and d is the panel height (Timler & Kulak,
1983). The Canadian code (CSA, 2001) provides the following minimum second moment of area I,
of columns adjoining SPSWs to prevent their excessive deformation, leading to premature buckling,
under the pulling action of the plates:

0.00307 t d*

Ic > b

3)

Any contribution offered from the plate buckled in compression can be neglected. In this condition,
for width-to-height ratios between 0.8 and 2.5, the inclination of the generated tension field can
be directly assumed to be 45°.

When the equivalent scheme is subject to an initial shear load V, a horizontal displacement &,
occurs at the top (see Figure 4). By simple analytical steps, the elongation AL, and tensile force N in
the equivalent diagonal can be evaluated through the following relationships:

ALy = §;sinp (4)
N= EdAd ALd/Ld = V/smﬁ (5)

where in Equation (5), the terms E; and Ly are the Young modulus of the plate material and the
diagonal length, respectively.
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Figure 4. Schematization of the
equivalent tensile diagonal
model and nomenclature of
geometrical parameters consid-
ered in Equations (4) and (5).

Figure 5. Numerical model of
the substructure no. 5 set-up
with the SeismoStruct
software.

l' ALd ;ﬂ:

Ld

According to Sabouri-Ghomi et al. (2005), the behaviour of thin plates in pinned joint frames can
be schematised through an elastic-perfectly plastic bilinear behaviour, where both the shear
strength Fp, and initial stiffness K, of the panel can be evaluated as follows:

Cm1

Foy = > b t sin2y (6)
Cm1 H
=5 oy sin29b t
KPW - 2 Cmp oty ? (7)
E sin29

In Equations (6) and (7), d, b and t are the terms already introduced, E and G are the normal and shear
moduli of the metal plate, o3, is the tension-field stress in the yielded plate, ¥ is the tension-field angle,
measured from the vertical direction, and Cp,; and Cp,; are modification factors, taking into account
beam-to-column connections, plate-to-frame connections and the effect of both flexural behaviour
and stiffness of boundary elements. Such modification factors are limited as follows: 0.8 < Cpy; < 1.0
and 1.0 < Cpy; < 1.7, but Sabouri-Ghomi et al. (2005) recognised that these values will need further
refinement as more test results will become available in the future. These values can be obtained from
the numerical calibration of experimental tests, as proposed by Formisano et al. (2016), where an
example of a useful analytical tool for the estimation of these factors is proposed.

The forecast behaviour of the panel can be implemented by assigning at the fictitious material of
the equivalent diagonal yielding strength 6,4 and Young modulus E4 evaluated, respectively,
through the following relationships:

_ Fwy
Oyd = Aq sing 8)
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In order to set-up a valuable FEM model of metal panels in SeismoStruct, the behaviour of the bare
RC structure of Bagnoli has been first calibrated. RC beams and columns have been modelled by
infrmFB elements, while the floor has been modelled by elfrm beams having same stiffness and
weight of the effective floor. A three-dimensional view of the modelled substructure is illustrated in
Figure 5.

A reduced Young modulus E. for RC beams and columns has been adopted for taking into
account the environmental degradation effect associated to the construction age. In particular, 0.5
E. and 0.4 E. have been adopted for beams and columns, respectively. Degradation zones
extended at lengths of 35 and 65 cm from the ends of beams and columns, respectively, have
been assumed. The experimental-to-numerical modal comparison achieved with these assump-
tions is shown in Table 2.

Subsequently, 0.3 E. and a reduced strength have been assumed for the edge columns to
consider the damages in these zones caused by the experimental pull-out test previously carried
out in the transversal direction on the same structure upgraded with shape memory alloy bracings
(Mazzolani, 2008).

In Figure 6, both the experimental curve and the final numerical one based on the RC bare
structure experimental stiffness, the latter introducing the previously mentioned reduction coeffi-
cients, are shown.

Once the initial structure behaviour has been calibrated, the steel shear walls have been
modelled in SeismoStruct. The steel frame members have been modelled by elfrm elements to
remain in the elastic range under the forces applied by SPSWs. The steel frame hinges have been
modelled by link elements with translational stiffness infinitely greater than rotational one. Finally,
the wall-to-RC beam connections have been modelled by means of rigid links.

Table 2. Experimental-to-numerical comparison of the module no. 5 vibration periods
Mode 1 2 3 4 5 6

Experimental 0.625 0.556 0.455 0.208 0.186 0.147
period(s)

Numerical 0.639 0.505 0.428 0.201 0.191 0.152
period(s)

Figure 6. Comparison between 35
the experimental curve and the 30
final numerical one of the RC
bare structure.

- = = -experimental

SeismoStruct

N
w

=N
v o
\
I

Base shear (KN)
'
\

[y
(=]

0 1 2 3 4 5 6
First floor displacement (mm)

Page 7 of 18



Formisano & Lombardi, Cogent Engineering (2018), 5: 1525813 O;K': Cogent Y= g | nee ri N g
https://doi.org/10.1080/23311916.2018.1525813

Figure 7. Calculation scheme of
the SPSW (a) and SeismoStruct
numerical model of the retro-
fitted substructure no. 5 (b).

Each of six panel fields, having dimensions of 600 X 400 mm and being separated to each other
by means of horizontal stiffeners, has been numerically represented with an equivalent diagonal,
as previously described (see Figure 7).

The equivalent tensile diagonal has been modelled by a truss element with an elastic-plastic
material behaviour, starting from the shear strength Fy, and initial stiffness K, of the wall
estimated as follows:

Fuy = % oty bt sin2 (10)
Cm i
2 oy Sin20bt
Ko="3ta0 g (11)
E sin2v

where Cy1 and C, are modification factors, taking into account both the plate behaviour and the
wall flexural effect, that should be properly calibrated (Sabouri-Ghomi et al., 2005).

The calibration of the wall model in SeismoStruct has been performed by deriving the force-
displacement curve of the only-walls contribution. In fact, knowing the force-displacement curve of
the retrofitted structure and the calibrated curve of the initial structure, the latter furtherly pushed
up to the same ultimate displacement of the experimental test, the only-walls contribution can be
simply derived by subtraction. By adopting the values of 1.0 and 5.4 for C,; and Cp, respectively, the
experimental curve appears to be well simulated by the numerical one (see Figure 8). The same
comparison could be also done for the aluminium panels solution but, with the damages occurred
after the test on steel panels, a further calibration of results is needed, representing a future
development of the study.

4. Application to a case study

The benefits arising from the use of perforated steel panels instead of traditional full ones are
already known (Formisano et al., 2016; Purba & Bruneau, 2007). However, few studies on existing
RC buildings retrofitted with such devices are available, whereas the current applications deal with
either common SPSWs (De Matteis et al., 2009; Formisano et al., 2010) or Buckling Restrained
Braces (Di Sarno & Manfredi, 2010, 2012). Therefore, in this paper, an existing building has been
retrofitted with either traditional panels or perforated ones aiming at showing the different
advantages deriving from their use (Formisano & Lombardi, 2015; Formisano & Sahoo, 2015).
The case study is a residential multistorey RC building in Torre del Greco (district of Naples, Italy),
representative of the typical 1960s and 1970s constructions designed for gravity loads only. The
building under investigation develops on five storeys with rectangular shape of dimensions
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30 X 12 m (see Figure 9). It has two bays in the transversal direction and seven bays in the
longitudinal one. The ground floor, dedicated to commercial activities, has height of 4.0 m, while
the height of other floors is 3.2 m. The building total height is 16.8 m, without considering the
summit parapet.

Seismic-resistant frames are placed in the longitudinal direction only. They are connected to
each other in the transversal direction from both the slab and the edge beams only. The staircase

Figure 9. Existing building
under investigation: typical
plan layout (a) and vertical
sections (b).
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Figure 10. Numerical model of
the investigated 5-storey RC-
existing building.

is located in the building central position and it is made of 30 X 60-cm knee beams. Floors are
made of RC—hollow tiles mixed slabs having depth of 28 and 24 cm at the intermediate and top
levels, respectively.

In absence of a specific documentation on carpentries, the elements sizes have been detected
from in-situ inspections, whereas the reinforcement details have been deduced from an appropriate
simulated design (R.D.L. n. 2229, 1939). According to the materials used at that construction time,
Rcm180 concrete and Ag50 Italian steel (fyn, = 270 MPa and f,m = 550 MPa) have been considered. In
order to take into account the presence of a cracking state of the structural members, according to
EC8, a 50% reduced Young modulus has been assumed for both beams and columns.

The building is located on a soil type C and it is subjected to a peak ground acceleration ag4S of
0.28 g associated to an elastic response spectrum with a 975-year return period at the life safety
limit state.

The three-dimensional view of the examined structure modelled with the SeismoStruct software
is illustrated in Figure 10.

From the modal analysis, whose results are depicted in Table 3 and Figure 11, the building has
shown a high deformability, especially in the transversal direction, due to the lack of frames.

From the pushover analyses on the initial structure, as shown in Figure 12 where also the
performance points in both analysis directions are individuated, it appears that in the longitudinal
direction, the demand is particularly focused between the third and the forth floors, where the
variation of elevation stiffness is very high (see Table 4). On the other hand, in the transversal
direction, the failure is essentially caused by the staircase column collapse.

The seismic upgrading of the above RC building by means of full MPSWs, which are known to give
to the structure a significant contribution in terms of initial stiffness, shear strength and dissipated
energy (Formisano, De Matteis, Panico, Calderoni, & Mazzolani, 2006; Formisano, De Matteis,
Panico, & Mazzolani, 2008), has been developed on the basis of the US procedures (Applied
Technology Council (ATC)-40, 1996, Federal Emergency Management Agency(FEMA)-273, 1997).

Table 3. Modal analysis results

Mode 1 (U,) 2 (R) 3 (U
Period(s) 1.70 1.40 0.95
Participating mass (%) 84 78 70
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Figure 11. Deformed shape of
the building under pushover
analysis in directions X (a) and
Y (b) (amplified deformation
factor equal to 50).

Figure 12. Capacity curves and
performance points of the
initial structure in directions X
(a) and Y (b).
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Table 4. Regularity analysis of the structure

Floor Seismic Mass Direction X Direction Y
mass (t) Val‘(l;)t)l on Lgteral Lf!terul Lf]teral Lf:lterul
stiffness stiffness stiffness stiffness
(kN/m) variation (kN/m) variation
(%) (%)
5 353 =25 87,877 - 31,419 -35
4 473 - 87,760 -51 48,290 =21
3 474 -1 180,779 -38 60,844 -14
2 478 -4 293,620 -26 70,666 =21
1 499 - 397,521 - 89,464 -

Following a performance-based design approach, which aims at increasing the overall lateral
stiffness of the initial structure, the procedure involves the choice of a target spectral displace-
ment of the retrofitted structure, Sq,,, corresponding to a given performance level (operational,
immediate occupancy, life safety and near collapse). Once the seismic hazard parameters are
known, the elastic spectral acceleration Sgepp is determined from the ADRS (acceleration-
displacement response spectrum) format. So, the target period T, and the target stiffness
Kret of the retrofitted structure are calculated from Equations (12) and (13), respectively. In
particular, in Equation (13), the term T;,; is the fundamental period of the initial structure. After
defining the performance points of the retrofitted structure, the stiffness contribution K,
provided by the walls is determined from Equation (14), where the term K, is the initial
structure stiffness.
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Figure 13. Location of MPSWs
(a) and details of the external
frame (b).

Sd, pp

Tret = 21 Sae.0p (12)
T\ 2
Kret = Kini (#) (13)
ret
Kw = Kret - Kini (14)

Considering that the retrofitted structure is able to provide at least the same damping level of
the bare structure, the target shear strength of the retrofitted structure Vi is obtained from
Equation (15), where V;,; and Sg;in; are the shear strength and the inelastic spectral acceleration
of the initial structure, respectively, and S, .t is the retrofitted structure inelastic spectral
acceleration. Finally, the contribution in terms of shear strength V,, given by walls is evaluated
through Equation (16).

S.:
Viet = Vini Sa"mt (15)
ai.ini
Vw = Vret - Vini (16)

In Figure 13, the response spectrum is plotted in the ADRS plane, considering the spectral accel-
eration reduction obtained with a damping equal to 20%.

Once the required stiffness and strength of the panels have been determined, their preliminary
design is developed. In analogy with Formisano and Sahoo (2015), an upgrading system with
partial-bay MPSWs, arranged in one and two pairs along directions X and Y, respectively, has
been designed (see Figure 13). The MPSWs disposition has been dictated from both the necessity
to reduce as much as possible the interruption of building activities and to respect architectural
requirements.

In order to respect the optimal panel shape ratio (Formisano et al., 2007) and considering the
building inter-story height, the width B,, of MPSWs has been chosen equal to 1.65 m, while its
depth has been divided in two equal parts by means of an intermediate steel beam within the
external frame. In particular, the design of metal walls has been carried out initially considering
full S235 steel plates (see Tables 5 and 6).

The plate thicknesses have been first derived by reversing Equations (10) and (11) and by
assuming Cpm1 and Cp equal to 1.0 and 1.7, respectively, and C, x and Cpy equal to 8.5 and 13.6,
respectively. These modification factors are obtained by iterations in order to fit the numerical
behaviour of the retrofitted structure to the design requirements both in terms of global strength
and stiffness. Logically speaking, these values should be obtained from experimental tests on
designed shear walls. Since the stiffness-based design implies greater thicknesses than the
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Table 5. Thicknesses of full SPSWs derived from the strength-based design

Floor Cmi B, (mm) | V,, (kN) Ny x tx (mm) | V,, (kN) t,, (mm)
5 1.0 1,650 223 2 0.58 475 4 0.61
4 1,650 465 2 1.20 989 4 1.27
3 1,650 651 2 1.68 1,383 4 1.78
2 1,650 780 2 2.01 1,658 4 2.14
1 1,650 856 2 221 1,818 4 2.34

Floor E (MPa) | K, (kN/ Gx Hyx tox Koy npy Hyy ty
m) (mm) (mm) (KkN/ (mm) (mm)
m)
5 200,000 14,991 8.5 2,300 1.78 31,850 13.6 2,400 3.15
4 2,250 1.74 2,400 3.15
3 2,250 1.74 2,400 3.15
2 2,250 1.74 2,400 3.15
1 3,375 2.61 3,450 4.53

strength based one, the values from the former design process have been considered, they being
subsequently replaced by the most common commercial thicknesses. Subsequently, the equiva-
lent bracing behaviour has been obtained by means of Equations (8) and (9) for its implementa-
tion in numerical analyses.

Assuming to guarantee the same lateral stiffness level of the full SPSWs, the study has been
extended by considering full LYS and aluminium plates, as already done in De Matteis, Formisano,
Mazzolani and Panico (2005), as well as perforated S235 steel panels.

Table 7 shows the mechanical properties of all the metallic materials considered in the retrofit
design.

Two drilling configurations have been proposed for perforated SPSWs. The first solution is
characterized by plates with 36 holes having diameter of 160 mm and hole percentage p
(intended as the ratio between the holes area Apges and the panel one Agy) equal to 40%,
while the second solution has 36 holes having diameter of 190 mm and p equal to 60%. The
behaviour of the perforated panels has been implemented in the FEM model by adopting a
linear reduction of the modification factors in comparison to those used for full panels
(Formisano et al.,, 2016). The modification factor values for C,1; and Cn,; assumed in this
paper are equal to 0.40 and 0.70, respectively, for p = 40%, and 0.20 and 0.40, respectively, p
= 40%.

Table 7. Metallic materials considered for the shear walls design

Material f, (MPa) f, (MPa) & (%) E (MPa)
Steel 235 360 35 200,000
LYS 86* 236 50 200,000
AW 1050A 21 80 45 70,000

*Conventional yielding strength at 0.2% strain level.
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Table 8 shows the commercial thicknesses of plates assumed in the following analyses. Due to
the different Young moduli, aluminium plates thicker than steel ones have been considered in
order to have comparable results in terms of global stiffness of the retrofitted structures.

The steel frame surrounding SPSWs has been designed to both possess an adequate stiffness
and remain in the elastic field when the plates are subjected to significant plastic strains. This
outcome is achieved for full panels by both using the Equation (3) and verifying the elements in
terms of strength, under the actions induced by the tension-field mechanism (Bhowmick et al.,
2014). The coupled UPN profiles made of S275 steel have been obtained from this procedure for
the examined cases of shear walls (see Table 9).

Moreover, in order to transfer the actions to the walls, the RC beams have been reinforced,
analogously to the intervention of Figure 3, by means of two S275 steel-coupled UPN profiles fixed
to the RC beams by means of steel bolts (see Table 10).

The analysis results of the retrofitted structures have shown that due to the failure of
existing columns, further interventions are necessary for other RC members in order to

Table 8. The used commercial thicknesses of panels

Floor Steel plates AW1050A plates
tpx (mm) tp,y (mm) tpx (mm) tp,y (mm)
1 1.80 4.00 4.00 7.00
2 1.80 4.00 4.00 7.00
3 1.80 4.00 4.00 7.00
4 1.80 4.00 4.00 7.00
5 3.00 5.00 6.00 10.00

Table 9. The assumed steel frame members

Floor Full SPSWs Perf. (40%) SPSWs and Perf. (60%) SPSWs and
LYS-PSWs AW1050A-PSW
Dir. X Dir. Y Dir. X Dir. Y Dir. X Dir. Y
5 2 x UPN160 2 x UPN240 2 x UPN120 2 x UPN180 2 x UPN120 2 x UPN120
4 2 x UPN160 2 x UPN240 2 x UPN120 2 x UPN180 2 x UPN120 2 x UPN120
3 2 x UPN160 2 x UPN240 2 x UPN120 2 x UPN180 2 x UPN120 2 x UPN120
2 2 x UPN160 2 x UPN240 2 x UPN120 2 x UPN180 2 x UPN120 2 x UPN120
1 2 x UPN260 2 x UPN320 2 x UPN160 2 x UPN220 2 x UPN120 2 x UPN160

Table 10. The assumed steel members for the strengthening of RC beams

Floor Full SPSWs Perf. (40%) SPSWs Perf. (60%) SPSWs

and LYS-PSWs and AW1050A-PSW
Dir. X-Y Dir. X-Y Dir. X-Y

5 2 x UPN260 2 x UPN240 2 x UPN220

4 2 x UPN260 2 x UPN240 2 x UPN220

3 2 x UPN260 2 x UPN240 2 x UPN220

2 2 x UPN260 2 x UPN240 2 x UPN220

1 2 x UPN300 2 x UPN280 2 x UPN260
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Figure 14. Capacity curves of
initial and retrofitted structures
in directions X (a) and Y (b).

achieve the target displacements. Therefore, the retrofit project has been completed with RC
jacketing of (1) longitudinal perimeter columns at the third and fourth floors, (2) transversal
perimeter columns from the second floor to the fourth one and (3) the staircase columns up
to the fourth floor. Furthermore, jacketing with steel profiles has been considered for mem-
bers exhibiting brittle failure due to shear. These additional interventions on the existing
members have been designed to ensure the expected performance of the structure up to the
target displacements.

Figure 14 shows the results obtained from the pushover analyses on the structure equipped with
the mentioned solutions.

The results show that the shear strength of the structure retrofitted with full SPSWs is clearly
higher than the other solutions. As a negative consequence, the greater actions induced by the
full SPSWs on the RC structure have requested the design of additional local retrofitting
interventions.

Also for the other shear panel solutions, additional interventions on the main RC structure
have been foreseen, but they have been more economic than those required by using full
SPSWs. In particular, although the solutions based on plates with low yield strength materials
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Table 11. Economic comparison among examined solutions

Wall type Plates (€) Perimetral steel Local Total (€)
frame (€) interventions (€)

Full SPSWs 14,200 36,000 72,000 122,200

Perf. (40%) SPSWs 15,100 22,500 68,400 106,000

Perf. (60%) SPWSs 15,100 17,800 64,100 97,000

LYS-PSW 19,900 22,500 68,400 110,800

AW1050A-PSW 37,100 17,800 64,100 119,000

(i.e. low yield steel and pure aluminium) seem to be comparable with those based on perfo-
rated plates made of traditional steels in terms of performances, the differences are noticed
from the economic point of view (see Table 11). In fact, considering the current Italian costs of
both steel elements and local reinforcing interventions, a cost saving of about 16% and 27%
has been, respectively, estimated for the less drilled and the more drilled perforated SPSWs
with respect to the installation of full SPSWs. This confirms the benefits deriving from the use
of perforated SPSWs.

5. Conclusions

In this paper, a study aimed to show the benefits of using perforated SPSWs has been carried
out. The use of such systems, already known in literature for applications into new steel
structures, can be particularly advantageous for retrofitting existing buildings designed with-
out seismic criteria, although the current Eurocodes do not provide any indications about this
issue.

When referred to existing RC structures, the use of traditional full SPSWs may involve the
transfer of excessive stresses on the boundary members induced by the plate tension-field
mechanism. Such stresses can lead to the design of massive local strengthening interventions,
which are very often economically inconvenient.

Starting from these premises, in the first part of the paper, the availability of recent experimental
test results on a real RC building retrofitted with SPSWs has allowed both to calibrate and validate
a simple FEM model developed by the SeismoStruct software.

Subsequently, the case study of an existing multistorey RC building retrofitted either with full
MPSWs (i.e. traditional steel, LYS and pure aluminium plates) or perforated SPSWs has been
numerically analysed in the static non-linear field. The analysis results have shown that
perforated SPSWs with drilling percentages of 40% and 60% provide cost savings in the retrofit
design of about 16% and 27%, respectively, compared to the cost deriving from using full
plates. By increasing properly the drilling configuration, a significant shear strength reduction is
achieved without excessively compromise both the stiffness and the ductility of the retrofitted
structure. In fact, by choosing an appropriate drilling pattern, it is possible to reach large drifts
without fractures around the holes, which could decrease the shear capacity of panel devices.
The main benefit deriving from the use of perforated plates is to choose a priori the shear
strength they offer on the basis of a given drilling configuration, according to the design
requirements, without changing the geometric dimensions of the walls, which sometimes
represent architectural requirements impossible to be modified.

Although perforated SPSWs made of common steel plates can be a viable alternative to other
stiffening solutions based on metals more expensive (aluminium) and not available on the European
market (LYS), further experimental tests are necessary for the validation of modification factors to be
used in the used retrofitting design formulas.
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