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a b s t r a c t

Profiting from previous works done with the INDRA multidetector on the description of the light response 
of the CsI(Tl) crystals to different impinging nuclei, we propose an improved 𝛥𝐸 −  identification-calibration
procedure for Silicon–Caesium Iodide (Si–CsI) telescopes, namely an Advanced Mass Estimate (AME) method.
AME is compared to the usual, simple visual analysis of the corresponding two-dimensional map of 𝛥𝐸 −𝐸 type,
by using INDRA experimental data from nuclear reactions induced by heavy ions in the Fermi energy regime.
We show that the capability of such telescopes to identify both the atomic 𝑍 and the mass 𝐴 numbers of light
and heavy reaction products, can be quantitatively improved thanks to the proposed approach. This conclusion
opens new possibilities to use INDRA for studying these reactions especially with radioactive beams. Indeed, the
determination of the mass for charged reaction products becomes of paramount importance to shed light on the
role of the isospin degree of freedom in the nuclear equation of state [1,2].

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

One of the present motivations for investigating heavy-ion collisions
at intermediate energies consists of improving our understanding of the
equation of state for nuclear matter with the isospin degree of freedom.
The advent of new accelerators, as SPIRAL2 at GANIL, SPES at LNL-
Legnaro, FAIR at GSI, FRIB at MSU-NSCL, RIBF at Riken, FRIBS at
LNS-Catania, providing high intensity radioactive beams, will cover a
broad range of isospin (𝑁∕𝑍) ratios; here 𝑁 and 𝑍 are the neutron and
atomic numbers, respectively . Many products – different in terms of
energy, charge and mass – emerge from these heavy ion reactions. If
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the measure of the kinetic energy and the atomic number have become
usual nowadays, the exact mass and even the atomic mass number 𝐴 are
still difficult to determine, especially when they concern a wide range
of elements of low or intermediate energy emitted in the whole space.
Inventories of the techniques used for isotopic identification [3] put in
evidence the pioneer works in the domains of: (i) the spectrometers [3,4]
deflecting the charged particles in magnetic and electric fields, accord-
ing to their identity; (ii) the time of flight, with pulsed beams, initially
developed to measure the neutron velocity [3,5]; (iii) the telescope
𝛥𝐸−𝐸 [3,6] - based on the specific energy loss in the first, thin stage for
a given residual energy deposited in the second, thicker stage; (iv) the
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pulse shape discrimination in organic scintillators [7] for the neutron-
gamma discrimination or in inorganic ones, as e.g. the caesium io-
dide [8], to identify light charged particles. Each of these items has some
advantages but some drawbacks too. The present paper treats on the
telescope technique – historically limited by the energy straggling [3,9],
mainly at the crossing of the thin stage by the detected ion – but the
most convenient from the volume and cost point of view, indeed. The
evolution of these techniques have led to arrays which combine them
according to the reaction types. Many magnetic spectrometers [10–
12] as well as neutron walls [10,13,14] or 4𝜋 facilities for charged
reaction products [10,15,16] have appeared. A review on the second
and third-generation of multidetectors was done in the framework of
the World Consensus Initiative (WCI) [10]. An experimental setup for
studies of Reactions with Relativistic Radioactive Beams (R3B) is also
under construction as part of the forthcoming Facility for Antiproton and
Ion Research (FAIR) in Europe [17,18]. Jointly, new detection arrays
like FAZIA [19,20], which fully exploit pulse shape analysis from silicon
detectors for the nuclear fragment identification, are under construction
to benefit from these future possibilities. Information on the isospin
dependence of the nuclear EOS can then be obtained by properly
choosing projectile–target colliding systems. To improve the present
experimental capabilities in this framework, fast and reliable methods
have been developed to assign 𝑍 and 𝐴 of the detected charged reaction
products when large numbers of 𝛥𝐸−𝐸 telescopes were used [21–23] as
it is the case, for example, for the CHIMERA array [24,25]. We present
in this article the Advanced Mass Estimate (AME), a new approach,
based upon the telescope technique for INDRA Silicon–CsI telescopes
[26]. This approach will extend the isotopic identification to nuclear
reaction products heavier than those commonly identified with standard
𝛥𝐸− two-dimensional correlations. Here, 𝛥𝐸 indicates the energy lost
in the 1st Silicon stage (Si) of the telescope and  the scintillation light
produced in the 2nd stage, made by a CsI(Tl) scintillator crystal read
by a photomultiplier and corresponds to the residual energy 𝐸 = 𝐸0
deposited by energetic charged reaction products. The main difficulties
for identifying the mass number over a broad range of elements are
related to the non-linear energy response of each of the two stages and,
in particular, of the scintillator. Actually, the light response of the scin-
tillator strongly depends on the reaction product identity (charge and
mass), which makes difficult even the determination of the deposited
energy. At present time, the isotopic identification is visually achieved
only for light nuclei from hydrogen up to (roughly) carbon isotopes
for most of the INDRA Si–CsI telescopes. For some specific telescopes
with smaller thickness - 150 μm instead of 300 μm -, an increased gain
has been used in order to improve the energy resolution and hence
the isotopic separation during the 5th INDRA campaign performed at
𝐺𝐴𝑁𝐼𝐿 a few years ago. In doing so, the isotopic identification for these
specific telescopes has been slightly augmented up to oxygen isotopes
for the best cases. This is also the case for the CHIMERA silicon–caesium
iodide telescopes [24] and the cited paper is a nice piece of work in
the field, employing – for the identification of nuclear fragments –
the automatic procedure developed in the Ref. [23]. By exploiting a
functional based on Bethe formula [27] for the stopping power, which
leads to a direct algebraic relation – depending on seven parameters –
between the measured quantities 𝛥𝐸 and 𝐸 in the corresponding two
dimensional plane, this method succeeds to reproduce the mass distri-
bution (integrated over the energy) in the range 𝑍 = 2 − 8 considered
and even to a reasonable extrapolation for all 𝑍 ≤ 12. The approach
in the present paper is different. By considering the specific energy loss
of all detected nuclear fragments [28–31], it uses precise calibrations
of the measured quantities: the answer of the first, silicon stage of a
telescope and the light induced in the last one — the caesium iodide
scintillator, respectively. Their separate descriptions take into account
the evolution of the charge carriers generated in each detector by the
passing fragment, without worrying about a mathematical connection
between the two responses. We will put thus in evidence the sensitivity
of the scintillation, and consequently, of the whole telescope, to the mass

of the impinging ejectile, and that even for very heavy fragments, up to
the projectile (here 𝑍 = 54).

To improve and optimize information coming from INDRA Si–CsI
telescopes as far as the mass number is concerned, we started from
the pioneer works of Pârlog et al. [32,33] which provide an accurate
physical description of the light response produced by the CsI(Tl)
crystals. In these articles, two formulas have been derived concerning
the relation between the light signal , the atomic number 𝑍, the mass
number 𝐴 and the incident energy 𝐸0 of a reaction product detected
by a CsI scintillator. The proposed method was then used and tested on
data recorded with INDRA during the fifth campaign, with telescopes
having as first stage 300 μm or 150 μm-thick Silicon detectors. These
experimental data were obtained by bombarding 112,124Sn targets with
124,136Xe beams at 32𝐴 MeV and 45𝐴 MeV.

The paper is organized as follows. In Section 2, we recall the main
results of references [32,33] concerning the role of quenching and
knock-on electrons in scintillation light from the CsI(Tl) crystals and
show the quality of the analytical description. Section 3 describes the
Advanced Mass Estimate (AME) method and the comparisons with
standard INDRA isotopic identification. In Section 4, determination and
uncertainty on 𝐴 are discussed. In Section 5, we present a summary of
this work.

2. Quenching and knock-on electrons (𝜹-rays) in scintillation light
of CsI(Tl ) crystals

Caesium iodide scintillators, CsI(Tl), doped with thallium at a level
of 0,02–0,2% molar concentration, are inorganic crystals where the scin-
tillation light is produced by the activation (excitation) of the thallium
atoms encountered by the carriers (electrons and holes) produced during
the motion of the incoming charged product. The activation results in
an emission of light by the excited thallium atoms in the green band at
550 nm. The differential scintillation light output 𝑑

𝑑𝐸 as a function of
energy 𝐸 is often described by means of the Birks formula [34]:

𝑑
𝑑𝐸

=  1
1 +

( 𝑑𝐸
𝑑𝑥

)
, (1)

 being the scintillation efficiency and  the quenching coefficient.
The differential light decreases as the stopping power

( 𝑑𝐸
𝑑𝑥

)

increases;
this is the so-called quenching effect, more pronounced for the heavier
ions leading to high carrier concentrations. Under the approximation
( 𝑑𝐸
𝑑𝑥

)

∝ 𝐴𝑍2∕𝐸, the integral over the variable 𝐸 of the above equation
provides a simple formula for the total light response  [35] as a
function of the initial energy 𝐸0 of the detected ion:

(𝐸0) = ∫

𝐸0

0
(𝐸)𝑑𝐸 = 𝑎1𝐸0

[

1 − 𝑎2
𝐴𝑍2

𝐸0
ln
(

1 + 1
𝑎2𝐴𝑍2∕𝐸0

)

]

, (2)

The gain coefficient 𝑎1 includes both the scintillation efficiency
and the electronic chain contribution to the signal amplification. The
quenching coefficient 𝑎2 is mainly related to the prompt direct recombi-
nation of part of the electrons and holes, which thus are not participating
to the excitation of the activator atoms.

The expressions (1) and (2) were used, with reasonable results
[34–36] in the case of light charged particles or Intermediate Mass
Fragments (IMFs) of rather low energy per nucleon 𝐸∕𝐴, i.e. as long as
the contribution to the light response of the knock-on electrons or 𝛿-rays,
escaping the fiducial volume of very high carrier concentration close to
the trajectory of the particle/ion, remains insignificant. Actually, above
a certain energy per nucleon threshold 𝑒𝛿 = 𝐸𝛿∕𝐴, the incident parti-
cle/ion starts to generate these rapid electrons, which are characterized
by a small stopping power. Consequently, the fraction  (𝐸) - firstly
introduced by Meyer and Murray [37] -, of the energy 𝑑𝐸 deposited
into a slice 𝑑𝑥 and carried off by the knock-on electrons is practically
not affected by quenching. The 𝛿-rays increase thus the light output and
this should be necessarily taken into account at energies higher than a
few MeV/nucleon, especially for heavier ions.
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As it penetrates into a CsI crystal, an energetic charged particle/ion
is gradually losing its energy (from 𝐸0 to 0) mainly by ionization – the
electronic stopping power –, leading to the scintillation, but also, in a
smaller extent, by interacting with the host lattice nuclei – the nuclear
stopping power –, lost for the radiative transitions. Both stopping powers
can be quantitatively predicted, e.g. by using Ziegler tables [28] appeal-
ing to the work of Lindhard et al. [29]. Within the INDRA collaboration,
we use stopping power tables for heavy ions in solids from Northcliffe
and Schilling at low energies [30] and from Hubert and Bimbot at
high energies [31], both matched at 2.5 MeV/nucleon. They provide
quite accurate results in the low and intermediate energy range, i.e.
from few hundreds of keV/nucleon up to 100 MeV/nucleon, of interest
here. More than a decade ago, Pârlog et al. [32,33] put in evidence the
role of the two types of energy loss to the quenching and also found
the dependence of the fraction  (𝐸) on the instantaneous velocity (or
energy per nucleon 𝐸∕𝐴). They disentangled the contributions of the
carriers produced in the main particle track and of the 𝛿-rays to the
scintillation too. The authors quantified these processes in a simple
Recombination and Nuclear Quenching Model (𝑅𝑁𝑄𝑀) connecting
the exact value of the total emitted light  to both the electronic
and nuclear infinitesimal stopping powers along the incident particle
track via numerical integration [32]. The model contains Eq. (1) as a
particular case. Under well argued approximations, they derived a more
friendly analytical formula relating  to the quantities 𝑍,𝐴 and 𝐸0 [33]:

(𝐸0) = 𝑎1𝐸0

[

1 − 𝑎2
𝐴𝑍2

𝐸0
ln
(

1 + 1
𝑎2𝐴𝑍2∕𝐸0

)

+ 𝑎2𝑎4
𝐴𝑍2

𝐸0
ln
( 𝐸0 + 𝑎2𝐴𝑍2

𝑎3𝐴 + 𝑎2𝐴𝑍2

)

]

, (3)

for an incident energy 𝐸0 in the CsI(Tl) higher than the threshold 𝐸𝛿 at
which the 𝛿-rays start to be generated. Besides the coefficients 𝑎1, 𝑎2,
with the same physical signification as above in Eq. (2), two others
appear: the energy per nucleon 𝑎3 = 𝑒𝛿 = 𝐸𝛿∕𝐴, (a few MeV/nucleon)
and 𝑎4 =  – the fraction (a few tenths of percents) of energy – they
are carrying off, taken as a constant irrespective of current energy 𝐸
along the particle path above 𝐸𝛿 . At low energy (𝐸 ≤ 𝐸𝛿),  = 0 and
only the first term is present, then Eq. (3) is reduced to Eq. (2). These
four parameters have then to be evaluated by using a number of suitable
calibration points by a fit procedure.

The relation (3) is purely analytical and can then be easily im-
plemented for calibration purpose. It is less accurate than the exact
treatment provided in 𝑅𝑁𝑄𝑀 [32] especially at low energy. One
drawback is also the step function used for  (), which jumps from
0 to 𝑎4 at 𝐸 = 𝐸𝛿 in order to allow the analytical integration over 𝐸.
This introduces a discontinuity in the function (𝐸) at this connection
point, especially for very heavy fragments [33]. Nevertheless, it may
be ad hoc improved by slightly improving the continuity of the fraction
 (𝐸) around 𝐸𝛿 . In this work, we consider that the use of the analytical
expression will only marginally affect the results, taking into account the
intrinsic quality of the Silicon wafers and of the CsI crystals of the INDRA
telescopes, which does not secure the precision required to appreciate
such discrepancies. Moreover, the total light  emitted by the CsI(Tl)
scintillators is not directly measured, but reconstructed, through the
procedure described by Pârlog et al. [33], starting from two components
of the scintillation light measured by integrating the signal in the fast
and slow time gates [33]. Nevertheless, for a more rigorous and accurate
treatment, the use of the exact formulation of 𝑅𝑁𝑄𝑀 [32] is preferable
when possible, for example with high-quality detectors such as FAZIA
Si–CsI telescopes. This will be the subject of a forthcoming paper.

As an example of the quality attained with our analytical description
for the scintillation light in CsI(Tl) crystal, Fig. 1 displays the energy–
light correlation 𝐸0 −  using Eq. (3) superimposed on INDRA data
concerning the system 136Xe + 124Sn at 32𝐴 MeV, for a specific Si–CsI
telescope.

Each full/coloured line in Fig. 1 corresponds to a given nucleus with
an atomic number 𝑍 and a mass number 𝐴. We have chosen here to

display isotopic lines with𝐴 = 2𝑍+1 for even-Z nuclei. We will see in the
following that this mass assumption is quite reasonable for IMFs when
considering the neutron (n)-rich system 136Xe+124Sn. For a given energy
𝐸0 - determined as shown in the next section -, the heavier the nucleus,
the smaller the light value  is; this is a direct consequence of the ratio
nuclear/electronic stopping powers, and also of the quenching effect.
Both quantities increase with the charge and the mass of the fragment
and decrease when 𝐸0 increases. Additionally, above a certain velocity,
𝛿-electrons are generated, very efficient for light production. These are
the reasons why the curvature of the different isotopic curves shown in
Fig. 1 evolves towards a linear behaviour at higher light/energy, here
 > 600. It is worthwhile to mention that the 𝛿-rays contribution to
the light is quite large, reaching 20 − 50% for 𝑍 > 20, as pointed out
in Ref. [33] and must be definitely included in order to reproduce the
experimental data. To obtain the results displayed in Fig. 1, we have
used calibration points coming from secondary light beams stopped in
CsI detectors from 𝑍 = 1 up to 𝑍 = 5 together with punched through
events in the Silicon layer when possible. In a two dimensional 𝛥𝐸 − 
plot, these points are close to the ordinate 𝛥𝐸 axis, i.e. to fragment
energies slightly higher than that necessary to traverse the Silicon stage
of the telescope and to reach the CsI(Tl) one with a quite small residual
energy, sufficient however to be seen in the scintillator stage.

In order to better appreciate the performances concerning the iso-
topic identification in INDRA CsI telescopes, we display in Fig. 2 the cor-
relation between the energy and the CsI light signal (same as for Fig. 1)
for 4 selected elements (carbon, fluorine, magnesium and sulphur), and
for systems with different neutron content: 124Xe+112Sn and 136Xe+124Sn
at 32𝐴 MeV. We can observe a significative difference between the
two systems concerning the neutron richness of the produced fragments
(higher masses for the (n)-rich system in blue) as one could expect from
simple physical arguments. It is worthwhile to mention that this result
requires indeed a very good stability for the CsI light response. This is
done in INDRA by monitoring a laser pulse all along the data taking [33].
Thus, Fig. 2 suggests that the CsI light signal can help to discriminate the
different isotopes, here at least up to 𝑍 = 16 (sulphur). In the following,
we will use this additional valuable information to improve the usual
𝛥𝐸 −  identification method for heavier elements than typically done
up to carbon or nitrogen.

To illustrate the overall sensitivity of the Si–CsI(Tl) telescopes to
the mass number, Fig. 3 displays the 𝛥𝐸 −  correlation bidimensional
matrix of the 2nd module (including a 300 μm-thick Si) for the 1st ring
(2◦≤ 𝜃 ≤ 3◦) of INDRA, and for 124Xe and 136Xe projectiles on 124Sn at
32𝐴 MeV and 45𝐴 MeV bombarding energies. The bright/yellow spots,
indicated by arrows on the borders of the geometrical loci for 𝑍 = 54
(two in the region of the 32𝐴MeV incident energy and other two in that
of 45𝐴 MeV one) correspond in both cases to the (n)-poor or (n)-rich
projectiles, respectively. These findings indeed show the good sensitivity
of the response of INDRA telescopes to the mass of the detected ejectile,
thus calling for a deeper analysis of the experimental data as presented
hereafter.

3. Advanced mass estimate (AME ) in INDRA Si–CsI telescopes

In this section, we are going to present the new AME identification
method in details. We use information given by the energy lost in the
Silicon detector, 𝛥𝐸, and the atomic number 𝑍 taken from the usual
𝛥𝐸 −  identification method in a Si–CsI map (see Fig. 3 for example).
Doing so, we benefit from the previous identification works done for
INDRA data : 𝑍 identification in Si–CsI matrices by semi-automatic [23]
or handmade grids and the careful calibration of the Silicon detector,
by means of 𝛼 particle source and secondary beams stopped in this
layer [38]. For heavy ions (𝑍 > 15), the Pulse Height Defect (PHD)
in this detector can be large [38] and has to be carefully evaluated. For
INDRA, we use the elastic scattering of low-energy heavy ion beams (Ni
and Ta at 6 AMeV) which are stopped in Silicon detectors. Traditionally,
we quantify the PHD as a function of the atomic number, the energy
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Fig. 1. Energy (𝐸0)–Light () correlation in a CsI(Tl) scintillator, for even-Z fragments. The points correspond to data from the telescope 2 of the ring 6 (14◦≤ 𝜃 ≤ 20◦) of the INDRA
4𝜋 array for the system 136Xe + 124Sn at 32𝐴 MeV. The atomic number of the heaviest fragments emitted in this angular domain is 𝑍 = 16. The full/coloured lines illustrate the Eq. (3)
predictions. The mass number for each element is likely corresponding to the most probable isotope, here 𝐴 = 2𝑍 + 1. See text for explanation. (colour online).

Fig. 2. Energy (𝐸0)–Light () correlation in the CsI(Tl) scintillator of telescope 1 of the ring 4 (7◦≤ 𝜃 ≤ 10◦), shown here for the two systems 124Xe + 112Sn and 136Xe + 124Sn at 32𝐴 MeV,
and for some selected elements: carbon, fluorine, magnesium and sulphur. The large/green symbols correspond to the (n)-poor system (124Xe + 112Sn) and the small/blue ones to the
(n)-rich system (136Xe + 124Sn). (colour online).

of the particle and the quality of the detector, according to Moulton
formula [39].

For a given element characterized by its atomic number 𝑍, the
measured energy 𝛥𝐸 deposited in the first layer of the Si–CsI(Tl)
telescope depends on the velocity, or the initial energy and the mass
of the incident particle and, in principle, it cannot provide by itself the
two quantities without ambiguity. To perform consistently the isotopic
identification in Si–CsI matrices, we then assume a starting value 𝐴0
for the mass number concerning one detected nucleus with its atomic
number 𝑍 and, by constraining the energy loss 𝛥𝐸 in the Silicon stage at
the measured value, we compute both the total energy at the entrance of
the Silicon stage and the residual energy 𝐸0 deposited in the CsI(Tl) by
using the above-mentioned range and energy loss tables [30,31]. This
procedure imposes also to accurately evaluate the thickness of the 𝛥𝐸
Silicon detector. The value of the scintillation light  given by Eq. (3)
for the residual energy value 𝐸0 associated to this starting value of 𝐴 is
then compared to the experimental light output 𝑒𝑥𝑝 from the CsI(Tl).
In order to determine the best ‘theoretical’ value (𝐸0), we iterate on

mass number 𝐴 (and consequently on the value of 𝐸0) until we find
the best agreement between the theoretical and experimental values of
the light, always compatible with the energy lost in the Silicon stage.
It is worthwhile to mention that the mass number is an integer and,
as such, is varied by increment of one mass unit. At the end of the
iteration, we get an integer mass number, giving the best agreement
for the experimentally determined quantities 𝛥𝐸 and 𝑒𝑥𝑝 as displayed
in Fig. 3. This is the basis of the Advanced Mass Estimate (AME) method,
which, by making use in a consistent way of the experimental quantities
𝛥𝐸 and 𝑒𝑥𝑝, brings a more accurate information on both the mass and
the residual energy (and consequently the total energy too).

As one may guess from Fig. 3, the calibration for the Silicon
detector should be as accurate as possible to perform the best isotopic
identification. The formula given by [39] used to calculate the PHD does
not depend on the ion mass. This is certainly an advantage as it simplifies
our approach, but it may become a drawback too. Even if the calibration
of the Silicon stage can be considered to be rather accurate, we estimate
that it represents at present time one of the known limitations for the
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Fig. 3. 𝛥𝐸 − correlation for INDRA data obtained with a module placed at a forward angle for the 124,136Xe+ 124Sn systems at 32𝐴 MeV and 45𝐴 MeV bombarding energies, illustrating
its sensitivity to the detected fragment mass. The Silicon stage is 300 μm thick. See text for explanation. (colour online).

0

Fig. 4. Isotopic distributions from lithium (left) to oxygen (right). The isotopes are
indicated by their mass numbers. The black and grey/red labels are explained in the text.
Data concern the rings 6 to 9 for the system 136Xe + 124Sn system at 32𝐴 MeV recorded
with INDRA and correspond to forward angles between 14◦ and 45◦ in laboratory frame.
Empty histograms are the results obtained with the standard 𝛥𝐸 −  method and filled
histograms those from the AME method for the same sample of events. The Silicon stage
is 300 μm thick. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

extension of the identification method towards heavier nuclei (𝑍 > 30).
Nevertheless, we will see in the following that it does not hamper very
much the isotopic identification for such heavy products.

In the next sections, we will estimate the performances of this new
identification procedure. As a first step, we will benchmark the new
method for light nuclei where isotopic identification is already achieved
(1 ≤ 𝑍 ≤ 6–8) with traditional methods. In a second step, we will
then get some quantitative values concerning the improvement for the
isotopic identification of heavier nuclei, up to xenon isotopes in our case.

3.1. Benchmark with the standard 𝛥𝐸 −  method

Using the AME method, we obtained isotopic distributions of light
nuclei that have been compared to the ones obtained with the standard
method (making use of visual grids) for INDRA Si–CsI telescopes. Fig. 4

Fig. 5. Isotopic distributions from lithium (left) to oxygen (right). The isotopes are
indicated by their mass numbers. The black and grey/red labels are explained in the text.
Data concern the specific telescopes with a high gain 150 μm Silicon from rings 6 to 9
for the system 136Xe + 124Sn system at 32𝐴 MeV recorded with INDRA and correspond to
forward angles between 14◦ and 45◦ in the laboratory frame. Empty histograms are the
results obtained with the standard 𝛥𝐸 −  method and filled histograms those from the
AME method for the same sample of events. (For interpretation of the references to colour
in this figure legend, the reader is referred to the web version of this article.)

displays the isotopic distributions obtained by the new AME method
(filled histograms) and the standard 𝛥𝐸 −  one, using standard grids
(empty histograms), from lithium (𝑍 = 3) up to oxygen (𝑍 = 8)
isotopes. The numbers indicate the isotope masses. For the meaning of
the colours of these numbers : black or grey/red, see Section 4. The
Particle IDentifier (PID) defined as 𝑃𝐼𝐷 = 8𝑍 + 𝐴, and allowing to
separately observe the neighbouring elements, was chosen as abscissa
for this representation. The modules incorporating silicon detectors of
only 300 μm thickness were kept for this representation. We observe an
overall good agreement for the most probable isotopes, found as having
the mass number 𝐴 = 2𝑍 + 1 as already discussed for Fig. 1.

We also notice that the new method can still provide isotopic
identification for less abundant species ((n)-rich and (n)-poor carbon to
oxygen isotopes for example) since it does not use any visual recognition
to build the grids for which a sufficiently large production cross-section
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Fig. 6. Isotopic distributions (PID as 8𝑍 + 𝐴) from lithium (left) to phosphorus isotopes (right), provided by AME with ordinary telescopes (300 μm-thick Si). The filled histograms
correspond to the 124Xe + 112Sn system and the empty histograms to the 136Xe + 124Sn system at the same incident energy per nucleon 𝐸∕𝐴 = 45 𝑀𝑒𝑉 (INDRA data). The most abundant
isotope in each case is indicated too. (colour online).

Fig. 7. Isotopic mass distributions for different elements from 𝑍 = 5 up to 𝑍 = 54 for the 136𝑋𝑒 + 𝑛𝑎𝑡𝑆𝑛 system at 32𝐴 MeV. The histograms display the original isotopic distributions
and the symbols the rebuilt ones (colour online).

is needed. This is clearly an improvement compared to the standard
methods since it allows to recover the overall isotopic distributions for
a given element 𝑍, at least in this range of atomic numbers 𝑍 = 3–8.
This new feature is welcome for studying isospin effects as for example
isotopic yields or isoscaling [2,40].

To complete the benchmark on light nuclei, we also present in
Fig. 5 the isotopic distributions obtained for the specific 150 μm-thick
Silicon detectors with a high gain, but for lower statistics. These ones
allow to better discriminate the isotopes for light IMFs (up to 𝑍 ≈ 8)
and constitute a more stringent test for the comparison. Actually, the
mass distribution for the carbon isotopes given by the standard method
becomes now significantly larger, closer to that provided by the AME
method, which recovers more exotic species. We also notice that even
the yield for the most probable isotopes given by the two methods are
sometimes not the same, due to the absence of grids for some telescopes
where the visual inspection does not permit to define properly the

isotopes curves and boundaries. This is particularly true for 𝑍 = 7–8.
In Figs. 4 and 5, the black numbers indicate the masses estimated with
an uncertainty lower than one mass unit, while the grey/red ones,
those affected by higher uncertainty. This specific point is developed
in Section 4.

3.2. Comparison with different isospin systems

To extend and confirm the previous results, we checked the isotopic
identification by means of the AME method for two systems with
different isospins : 124Xe + 112Sn and 136Xe + 124Sn at the same incident
energy per nucleon of 45 AMeV without any event selection except here
a common trigger multiplicity 𝑀 = 1. These latter are also part of the
data extracted from the 5th INDRA campaign performed at GANIL. We
could reasonably expect an overproduction of (n)-rich isotopes in the
case of the (n)-rich 136Xe + 124Sn system, for light nuclear fragments. In
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Fig. 8. Correlation between the mass difference 𝛥𝐴 and the atomic number 𝑍. The weights
of each bin in atomic number 𝑍 have been normalized to 100% (colour online).

the following, we compared the isotopic distributions obtained for both
systems, in order to see whether we observe any difference reflecting
the possible different production yields for a given element 𝑍.

Fig. 6 shows the isotopic distributions from lithium to phosphorus
isotopes, provided by Silicon–CsI telescopes. We display here only the
results for the 300 μm-thick Silicon ones. We can observe a global shift
of the isotopic distribution towards more (n)-rich species for the (n)-rich
system (136Xe+ 124Sn) as compared to the (n)-poor one (124Xe+ 112Sn). If
we consider the most abundant isotope per element, it is 7𝐿𝑖 instead of
6𝐿𝑖 and 17𝑂 instead of 16𝑂 for example, together with the enhancement
of very (n)-rich isotopes production for the (n)-rich system (136Xe +
124Sn) as one could expect. This illustrates the fact that the isotopic
distributions determined with 𝐴𝑀𝐸 are not an artefact of the method
but they truly could be associated to the genuine (physical) isotopic
distributions.

4. Qualifying the isotopic identification

4.1. Sensitivity analysis

In order to check the sensitivity of the new AME method, we follow
the same spirit as presented in [24]. We evaluate the robustness of the
isotopic identification obtained with AME by degrading intentionally
the energy resolution of the silicon and CsI detectors and see the
results on the rebuilt mass 𝐴𝑟𝑒𝑏𝑢𝑖𝑙𝑡. We take some realistic values for the
energy resolution for the silicon detectors and CsI light output coming
from [24,33], here 2% for the silicon and 4% for the CsI. As original
values for this test, we take the experimental data in term of mass
𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙, and the well defined spectrum for the total energy 𝐸𝑡𝑜𝑡 = 𝛥𝐸+𝐸.
Starting from 𝐸𝑡𝑜𝑡, we compute the energy lost in the silicon layer
thanks to the energy loss tables and we degrade it by applying a finite
energy resolution of 2% to get the quantity 𝛥𝐸′. We then compute the
corresponding residual energy 𝐸′ which takes into account the silicon
energy uncertainty. From 𝐸′, we are able to determine the light ′ in
the CsI using Eq. (3). Applying a finite resolution of 4% for the light
in the CsI, we get now the quantity ′′. We can then redo the AME
procedure from the new 𝛥𝐸′ and ′′ in order to determine a computed
mass 𝐴𝑟𝑒𝑏𝑢𝑖𝑙𝑡 to be compared to the original one 𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙. Doing so, we
can check our isotopic determination with the AME method against
realistic energy 𝛥𝐸 and light  uncertainties, these latter including also
the uncertainties coming from the energy loss tables calculations. The
results from 𝑍 = 5 up to the projectile atomic number, here 𝑍 = 54,
are displayed in Fig. 7 where the original isotopic distributions and
the rebuilt ones are presented for the 136Xe + 𝑛𝑎𝑡Sn system at 32𝐴 MeV.
Even though some discrepancies appear here and there in the cases with
very poor statistics, we can notice a very good global agreement for all
elements. This gives a certain credit concerning the robustness of the
AME method.

Fig. 9. INDRA data. Correlation between the velocity 𝑉𝑧 in cm/ns, parallel to the beam
direction, and the atomic mass 𝐴 for 136Xe+112Sn at 32𝐴MeV obtained in the very forward
rings (1–5) for a trigger multiplicity 𝑀 ≥ 1. The upper panel displays the traditional 𝛥𝐸−
identification method with no mass determination and the EAL hypothesis for the masses
of the fragments. The same for the middle panel, but with the 𝛽-stability valley hypothesis
for the masses of the fragments. In the lower panel are plotted the results obtained with
the new AME method. The circles indicate the projectile mass (𝐴 = 136) and the parallel
projectile velocity (𝑉𝑧 = 7.9 cm∕𝑛𝑠), while the stars correspond to the peak of each two-
dimensional distribution. (colour online).

To get a more global picture about this finding, we present in Fig. 8
the difference 𝛥𝐴 between the original mass 𝐴𝑜𝑟𝑖𝑔𝑖𝑛𝑎𝑙 and the rebuilt one
𝐴𝑟𝑒𝑏𝑢𝑖𝑙𝑡 as a function of the atomic number 𝑍, always for the 136Xe+𝑛𝑎𝑡Sn
system at 32𝐴 MeV. The weights of each bin in atomic number 𝑍
have been normalized to 100% in order to give directly the percentages
associated with 𝛥𝐴 for a given element 𝑍. In almost all cases, we obtain
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Fig. 10. INDRA data. Particle IDentification 𝑃𝐼𝐷 = 8𝑍 +𝐴 for the 136Xe + 112Sn at 32𝐴 MeV obtained in the forward rings (1–5) for a trigger multiplicity 𝑀 ≥ 1. The upper panel refers
to the standard method: above 𝑍 = 8, there is no isotopic identification and a mass hypothesis (here EAL [41]) is necessary. The lower panel illustrates the new AME method, leading –
for each element – to their distribution of isotopes, the most abundant ones being indicated by their mass numbers. The grey numbers correspond to elements where 𝛿𝐴 > 0.5 (see text
for details). (colour online).

Fig. 11. INDRA data. Isotopic distribution of xenon isotopes (𝑍 = 54) for the 124Xe+ 112Sn
(filled histogram) and 136Xe + 112Sn (empty histogram) at 45𝐴 MeV provided by the AME
method, in the most forward rings (1–3) for a trigger multiplicity 𝑀 = 1. (colour online).

𝛥𝐴 values centred around 0 for the largest percentage values, with 75–
80% in average, even 85–90% for 𝑍 = 5–12. In brief, we can conclude
from Fig. 8 that 𝛥𝐴 variation is negligible for 𝑍 = 5–12, does not
exceed ±1 for 12 < 𝑍 < 30 and does not overcome ±2 for 𝑍 > 30. We
consider these values as representative of the uncertainties concerning
the AME method itself for the determination of the atomic mass 𝐴. In
the following, we are going on to evaluate the AME method by looking
to more direct experimental quantities.

4.2. Experimental checks

The isotopic identification can be further qualified by some specific
tests made directly with the help of experimental data. As a first stage,
we can provide a quite accurate estimate for the mass number 𝐴 even
if the full isotopic resolution is not achieved. We remind that, knowing
the thickness of the Silicon detector (300 μm all along this section), the

atomic number 𝑍 value of a detected fragment and the well determined
𝛥𝐸, corrected for the PHD [38,39], we can start by proposing an atomic
mass 𝐴𝑖 number and compute the corresponding residual energy 𝐸0𝑖 in
the CsI stage using the energy loss tables. They are connected to the
calculated scintillation light 𝑖 = (𝐸0𝑖, 𝐴𝑖) via the Eq. (3). Then, the
integer mass number is varied, by steps of one unit, in order to minimize
the quantity 𝑑𝑖 = |𝑖 − 𝑒𝑥𝑝|∕𝑒𝑥𝑝, in such a way that the measured 𝛥𝐸
value be reproduced too. After a few iterations, the best integer value 𝐴∗

of 𝐴𝑖 and the related value of 𝐸0𝑖 are found, characterized by the shortest
normalized distance 𝑑𝑖 between the calculated 𝑖 and experimental 𝑒𝑥𝑝
light. Finally, to get a representative value 𝐴𝑒𝑠𝑡 for the estimated mass
number in a single event (one experimental point in the 𝛥𝐸 − plot) at
a given 𝛥𝐸, we simply weight the different 𝐴𝑖 values by the inverse of
𝑑2𝑖 as:

𝐴𝑒𝑠𝑡 =
1

𝛴𝑖
1
𝑑2𝑖

𝛴𝑖
𝐴𝑖

𝑑2𝑖
(4)

Thus, we shall exploit not only the mass number as an integer but
directly the 𝑃𝐼𝐷, defined above as: 𝑃𝐼𝐷 = 8𝑍+𝐴𝑒𝑠𝑡, by letting now the
mass number 𝐴𝑒𝑠𝑡 to be a real number. Of course, for an experimental
light 𝑒𝑥𝑝, the main contributions to 𝐴𝑒𝑠𝑡 are coming from the shortest
distances 𝑑𝑖. Doing so, we can obtain an estimation concerning the
uncertainty 𝛿𝐴 by taking the absolute difference between the optimum
value 𝐴∗, corresponding to the smallest distance 𝑑𝑖 and the weighted
value 𝐴𝑒𝑠𝑡 obtained with the Eq. (4):

𝛿𝐴 = |𝐴∗ − 𝐴𝑒𝑠𝑡| (5)

If the two values 𝐴𝑒𝑠𝑡 and 𝐴∗ are close enough (𝛿𝐴 < 0.5, so
comprised in one unit range), we assume a full isotopic identification,
whereas if 𝛿𝐴 ≥ 0.5, we have only a limited isotopic identification.
This procedure can be therefore considered as a simple and easy way
to qualify the isotopic identification. This is illustrated by the black and
grey/red numbers on Figs. 4 and 5. The black numbers refer to 𝛿𝐴 < 0.5
whereas the grey/red ones to 𝛿𝐴 ≥ 0.5.

In order to further evaluate the validity of the method, we have also
used INDRA results for the four different systems: 124,136Xe + 112,124Sn
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Fig. 12. 𝑍−𝑁 charts of the detected nuclei in the forward rings (1–9) of INDRA for a trigger multiplicity 𝑀 ≥ 4 from the four reactions 136,124Xe+112,124Sn at 32𝐴MeV. Data correspond to
the AME method. The different grey/coloured curves correspond to the EAL hypotheses on the neutron number 𝑁 and the black line to the 𝛽-stability valley one. See text for explanation.
(colour online).

at 32 AMeV. Several tests are then proposed in the following. First, we
have looked to data at the most forward angles, from rings 1–5, i.e.
2◦≤ 𝜃 ≤ 15◦. These ones are obtained from the system 136Xe + 112Sn at
32 AMeV, by requiring a trigger multiplicity (fired telescopes) 𝑀 ≥ 1,
in order to select mostly quasi-elastic events. From Fig. 3, we could
indeed notice that we recover as main contribution the quasi-projectile
(𝑍 ≈ 54) in the most forward rings. For such high 𝑍 values, the isotopes
are not visually separated in the 𝛥𝐸 − matrix; in the framework of the
standard method, a hypothesis on the mass has to be made for finding
their velocities starting from the measured energies deposited in the
1st stage of a telescope. Fig. 9 displays the correlation between the
mass and the velocity parallel to the beam, for different ejectiles and
for different mass estimates. The yellow stars indicate the maximum
number of entries.

The two upper panels of Fig. 9 display the 𝐴 − 𝑉𝑧 correlation for
the standard case (usual 𝛥𝐸 − 𝐸 type), where only the atomic number
𝑍 is determined from the 𝛥𝐸 −  plot. In the upper panel, for 𝑍 = 54
we took as mass hypothesis the prediction 𝐴 = 120 for the Evaporation
Attractor Line (EAL) [41] (see below). It leads to a value 𝑉𝑧 ≈ 8.5 cm∕𝑛𝑠
of velocity parallel to the beam direction. In the middle panel, the 𝛽-
stability hypothesis is used, and the mass for xenon is set to 𝐴 = 129,
richer in neutron, and results 𝑉𝑧 ≈ 8.2 cm∕𝑛𝑠. In both cases, the values
of the atomic mass 𝐴 and the parallel velocity are peaked quite far
from the expected elastic contribution, in the present case: 𝐴 = 136 and
𝑉𝑧 = 7.9 cm∕𝑛𝑠 represented by the filled circles on Fig. 9. This is due to
the incorrect attributed values of the mass number 𝐴, simply calculated
from the atomic numbers 𝑍 via different hypotheses. Consequently, the
corresponding parallel velocities 𝑉𝑧 are also incorrect since they were
computed by means of these hypothetical 𝐴 values. At variance, we
can notice that applying the iterative 𝐴𝑀𝐸 method – lower panel of
Fig. 9 –, the plotted distribution presents at 𝐴 ≈ 133 and 𝑉𝑧 ≈ 8.0 cm∕𝑛𝑠
a maximum located much closer to the elastic contribution. We could
therefore infer that the obtained results with 𝐴𝑀𝐸 are more valid for
the (n)-rich projectiles even for these very heavy ions detected in the
region of quasi-elastic events. We also found the same conclusion for
the proton (p)-rich system 124Xe + 112Sn at 32𝐴 MeV.

Now, if we look at the 𝑃𝐼𝐷 distributions in Fig. 10, we may stress
also the differences. In the upper panel, when we are not using the
scintillation light to determine the mass number (usual method), we can
get some partial isotopic identification up to 𝑍 = 6–8. By contrast, as
shown in the lower panel, thanks to the new AME method, we are now

able to distinguish a fair isotopic identification up to at least 𝑍 ≈ 12–13
for which we have 𝛿𝐴 ≤ 0.5 as obtained from Eq. (5) for the most
abundant isotopes; this latter is fully consistent with the sensitivity
analysis presented in the previous section. The improvement concerning
the isotopic resolution is indeed obtained by taking into account the
supplemental information of the light from the CsI crystal.

We could also qualify the accuracy of the isotopic identification
for 𝑍 much higher than 12 by taking advantage once again of the
elastic channel for both reactions. For a trigger multiplicity 𝑀 = 1, an
angular range between 2◦ and 7◦ (rings 1–3), and by selecting only the
xenon nuclei (𝑍 = 54), we obtain the isotopic distributions displayed
in Fig. 11. These latters are centred around 𝐴 ≈ 124 for 124Xe (the
mass of the projectile) and 𝐴 ≈ 133 for 136Xe (three mass units smaller
than the projectile). For the 136Xe data, due to its neutron richness,
one could expect a loss of few neutrons for the projectile even in very
peripheral collisions, transforming thus the elastic contribution into a
quasi-elastic one. The results are therefore compatible with physical
arguments and with those shown in the lower panel of Fig. 9 (mass–
velocity correlation). The width of these isotopic distributions reflect
indeed the convolution of the physical isotopic distribution as well as
the uncertainty on the determined mass. We can therefore reasonably
deduce that the difference of 3 mass units found in Fig. 11 could
represent an upper limit for the mass uncertainty.

Finally, we display in Fig. 12 the 𝑁 −𝑍 charts for the reaction prod-
ucts in the above-mentioned reactions, their masses being determined
via the AME procedure. We have selected the trigger condition 𝑀 ≥ 4,
thus removing the major part of the quasi-elastic contribution presented
in the previous Figs. 9,11. The grey/coloured curves represent the
evaporation attractor lines [41], predicting the number of neutrons 𝑁 as
an integer function of 𝑍: the steeper/pink line, with 𝑁 = 1.072𝑍+2.032×
10−3𝑍2 recommended for 𝑍 < 50 and the more gentle slope/green line,
with 𝑁 = 1.045𝑍 + 3.57 × 10−3𝑍2 recommended for 𝑍 ≥ 50. The black
curve indicates a 3rd degree polynomial fit of the 𝛽-stability valley as
the integer of 𝑁 = 1.2875+0.7622𝑍+1.3879×10−2𝑍2−5.4875×10−5𝑍3,
with i.e. nuclei more (n)-rich than for the EAL lines.

The 𝑍 − 𝑁 charts in Fig. 12 concern the forward detection angles:
2◦≤ 𝜃 ≤ 45◦(rings 1–9 of INDRA). These data seem to reflect mainly the
ratio 𝑁∕𝑍 of the projectile and none of these hypotheses on the number
𝑁 of neutrons, and consequently on 𝐴, is able to reproduce in average
the results, especially for the (n)-rich 136Xe projectiles (lower panels).
This overall view pleads in favour of the AME procedure compared to a
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simple mass hypothesis. With the present method we can obtain a better
calibration of very thick CsI(Tl) scintillators allowing at the same time
the full detection of very energetic charged reaction products and their
mass determination with the best resolution. AME upgrades thus the 4𝜋
INDRA array, designed to measure only the atomic number 𝑍 of the
heavy nuclear fragments stemming from multifragmentation reactions,
to a device able to estimate their mass 𝐴 too, up to 𝑍 ≈ 12–13 for an
isotopic resolution 𝛿𝐴 ≤ 0.5 and 𝑍 ≈ 54 for 𝛿𝐴 ≤ 3, and this in a very
compact geometry.

5. Conclusion

We have presented a method called Advanced Mass Estimate (AME),
a new approach for isotopic identification in Si–CsI telescopes using the
analytical formulation for the CsI(Tl) light response provided in [33].
It includes explicitly the light quenching and the 𝛿-rays contribution
to the scintillation of the CsI(Tl) crystals. In this framework, we have
shown that it is possible to use an iterative procedure to accurately
calibrate the CsI detectors and, at the same time, to estimate the
mass number 𝐴 of the charged reaction products, besides the atomic
number 𝑍, with a resolution better than the one previously achieved by
standard techniques. This method allows to recover not only the isotopic
distributions obtained by the usual visual techniques for 𝑍 = 1–8, but it
can also be extended safely up to 𝑍 ≈ 12–13, and with an uncertainty of
plus or minus one atomic mass unit for higher atomic numbers (< 30)
for the telescopes of the INDRA array. In addition, from the comparison
with experimental data, we have shown that it is reasonably possible
to estimate the atomic mass within 3 mass units up to xenon isotopes,
if one is able to carefully evaluate the thickness and the pulse height
defect in the 𝛥𝐸 silicon layer. We then consider that the quality of INDRA
Si–CsI experimental results can be dramatically improved by using the
new AME method, and that is particularly well adapted to undergo
analyses with radioactive beams exploring a large 𝑁∕𝑍 domain. The
AME method is not only suited for INDRA Si–CsI(Tl) telescopes but can
be also successfully exploited with any charged particle array using the
same kind of telescopes. Further studies concerning the implementation
of the Recombination and Nuclear Quenching Model with the exact
treatment mentioned in the first section are currently in progress, by
using high-quality data from FAZIA telescopes, and will be the subject
of a forthcoming paper.
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