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Abstract. This paper presents a suitable solution to control the pose
of the end-effector of a redundant robot along a pre-planned trajectory,
while addressing an active compliant behaviour in the null-space. The
orientation of the robot is expressed through a singularity-free represen-
tation form. To accomplish the task, no exteroceptive sensor is needed.
While a rigorous stability proof confirms the developed theory, experi-
mental results bolster the performance of the proposed approach.
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1 Introduction

Over the last years, robotic systems are started to be used in those application
areas where human-robot physical interaction becomes unavoidable and neces-
sary. A new term, Socially Assistive Robotics (SAR), is defined in [6] for service
robots working with humans. In certain cases, it might also be useful to measure,
or at least estimate, the exchanged forces and to figure out whether the contact
with the human operator has been unintentional or intentional (i.e., required for
collaborative tasks). The need of safety and dependability measures is discussed
in [8] based on impact tests of a lightweight robot with a crash-test dummy for
possible injuries that can happen in a SAR system, and on the severity of these
injuries.

Hence, for safety reasons, a compliant behaviour is often requested to a robot.
Such compliance can be in principle achieved through either a mechanical de-
vice or a suitable control law. In the former case, an elastic decoupling is placed
between the actuators and the link, obtaining a fixed or a variable joint stiff-
ness [1]. In the latter case, the compliant behaviour is obtained via software, like
implementing an impedance control [7,9,19].

In the research project PHRIDOM, see [5], the components of a robotic
application are discussed based on safety and dependability in physical human
robot interaction. The mentioned components are mechanics, actuation control
techniques and real-time planning for safety measures.
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In the event of using a redundant robot, the compliant behaviour can be
obtained both at the main task level [15,17] and in the null-space [18]. This last
is helpful when the interaction control cannot interfere with the execution of the
main task. In principle, the resulting external wrench affecting the main task
should be properly measured or estimated: in this way, it is possible to design
an impedance behaviour in the null-space without seizing the main one.

Using a redundant robot to minimize the injury possibilities prior to detect
the contact is proposed in [13]. To this aim, a posture optimization technique is
employed to make a redundant robot arm able to change its posture to minimize
the impact forces along a given direction while carrying out the main task.

This paper extends what presented in [18], [20] by explicitly addressing the
tracking case and employing a singularity-free representation for the orientation
of the robot’s end-effector, e.g., axis-angle or unit quaternion. Notice that using
one of these two orientation representations, the theoretical framework in [18]
fails 1. The sought aim is to control the robot arm while the end-effector has to
follow a pre-planned trajectory in terms of both position and orientation, and
the manipulator has to exhibit an active compliant behaviour in the null-space.
A rigorous stability analysis is carried out thanks to the presence of a dynamic
term in the controller, filtering both the effects of the velocity and of the external
wrench, while no exteroceptive sensors are needed to fulfil the given task.

2 Mathematical framework

2.1 Notation

A redundant robot manipulator (n > 6) is considered in this paper, with n the
number of joints. The vector q ∈ R

n denotes the joint positions, while q̇ ∈ R
n

and q̈ ∈ R
n the joint velocities and accelerations, respectively.

Let Σi and Σe be the world inertial frame and the end-effector frame, re-
spectively. The desired trajectory for Σe is specified in terms of the desired
time-varying position pd ∈ R

3, orientation Rd ∈ SO(3), linear velocity ṗd ∈ R
3,

angular velocity ωd ∈ R
3, linear acceleration p̈d ∈ R

3 and angular acceleration
ω̇d ∈ R

3, all expressed in Σi. On the other hand, pe ∈ R
3 denotes the current

position, ṗe ∈ R
3 the current linear velocity, Re ∈ SO(3) the current orientation

and ωe ∈ R
3 the current angular velocity of Σe with respect to Σi. The twist

υ =
[
ṗT
e ωT

e

]T ∈ R
6 is used to compact notation. Finally, the identity and zero

matrices are denoted by Ia ∈ R
a×a and Oa ∈ R

a×a, respectively, while the zero
vector is denoted by 0a ∈ R

a. With the given notation in mind, it is possible
to define the so-called deviation matrix as R̃ = RT

dRe ∈ SO(3). A non-minimal

representation for R̃ can be obtained by resorting to 4 parameters α ∈ R
4 [2,19].

1 In detail, the proof of Proposition 3 within [18] cannot be applied whether the
orientation error is chosen as it will be defined in this paper.



Tracking control of redundant manipulators 3

2.2 Axis-angle and unit quaternion

The matrix R̃ can be seen as a rotation of an angle φ̃ ∈ R around the unit
vector r̃ ∈ R

3. Such representation is not unique because R̃(φ̃, r̃) = R̃(−φ̃,−r̃).
Expressing the columns of the current ne, se, ae ∈ R

3 and desired nd, sd,
ad ∈ R

3 rotation matrix of Σe with respect to Σi as Re =
[
ne se ae

]
and Rd =[

nd sd ad

]
, respectively, it is possible to choose the following compact expression

for the orientation error [19]: õ = 1
2
(S(ne)nd + S(se) sd + S(ae)ad) , where

S(·) ∈ R
3×3 is the skew-symmetric matrix. When the axes of Rd and Re are

aligned, õ is zero and R̃ = I3. An equivalent expression for the orientation error
in axis-angle representation is given by õ = sin(φ̃)r̃ [2].

The ambiguity of the axis-angle representation can be overcome by introduc-

ing the unit quaternion. Define the quantities η̃ = cos
(
φ̃/2

)
and ǫ̃ = sin

(
φ̃/2

)
r̃,

where ǫ̃ ∈ R
3 is the vectorial part of the quaternion, while η̃ ∈ R is its scalar part.

The quaternion is referred to as unit since it satisfies ǫ̃Tǫ̃ + η̃2 = 1, and it is a
double cover of SO(3) since it can be shown that (η̃, ǫ̃) and (−η̃,−ǫ̃) corresponds
to the same rotation matrix. Therefore, ǫ̃ = 03 if and only if η̃ = ±1. This means
that both (η̃ = 1, ǫ̃ = 03) and (η̃ = −1, ǫ̃ = 03) correspond to R̃ = I3, and thus
Re = Rd as desired.

The orientation error for the axis-angle representation can be expressed in
terms of unit quaternion as õ = 2η̃ǫ̃ [2]. In this paper the following orientation
error definition is instead preferred õ = ǫ̃. It is possible to prove that, in case
õ = ǫ̃ = 03, the indetermination η̃ = ±1 does not affect the system stability [2].

Moreover, after deriving the kinematic equations for the unit quaternion as ˙̃η =

(1/2)ǫ̃Tω̃ and ˙̃ǫ = −(1/2) (η̃I3 + S(ǫ̃)) ω̃, set α =
[
η̃ ǫ̃

T
]T

, the time derivative
of the orientation error can be written as

(1)˙̃o = Lq(α)ω̃,

where ω̃ = ωd − ωe ∈ R
3 is the angular velocity error and Lq(α) = −(1/2)

(η̃I3 + S(ǫ̃)) ∈ R
3×3 is a nonsingular matrix.

2.3 Dynamics

The dynamic model of a robot arm in the joint space can be written as [19]

B(q)q̈ +C(q, q̇)q̇ + g(q) = τ − τ ext, (2)

whereB(q) ∈ R
n×n is the inertia matrix in the joint space;C(q, q̇) ∈ R

n×n is the
so-called Coriolis matrix; g(q) ∈ R

n is the vector collecting gravity terms; τ ∈ R
n

is the control torques vector; τ ext ∈ R
n is the vector representing the effect of the

resulting external wrench mapped on the joints. Since no force/torque sensors
are employed, τ ext cannot be measured.

Denoting with J(q) ∈ R
6×n the geometric Jacobian of the robot arm, the

equation υ = J(q)q̇, holds [19]. As an assumption, J(q) is always full rank2. Fol-
lowing the joint space decomposition method [15], it is possible to add r = n− 6

2 Notice that, during the experiments, a damped least-squares solution is anyway
employed.



4 F. Vigoriti, F. Ruggiero, V. Lippiello, L. Villani

auxiliary variables λ ∈ R
r to the end-effector velocity υ defined as q̇ = Z(q)λ,

where Z(q) ∈ R
n×r is such that J(q)Z(q) = O6×r. Notice that Z(q) spans

the null-space of J(q). A convenient choice for λ is given by the left inertia-
weighted generalized inverse of Z(q) [14], such that λ = Z(q)#q̇, with Z(q)# =(
Z(q)TB(q)Z(q)

)−1
Z(q)TB(q). In the same way, it is possible to define a dy-

namically consistent generalized inverse Jacobian [12] as J(q)# = B(q)−1J(q)T(
J(q)B(q)−1J(q)T

)−1
whose metrics is induced by the inertia matrix, as well

as for Z(q)#, and that plays a key role in null-space dynamics [15]. Therefore,
the following decomposition for the joints velocity holds

q̇ = J(q)#υ +Z(q)λ, (3)

Interested readers may find more details in [15,18].

3 Control design

The purpose of the control is to track a desired trajectory for the pose (position
plus orientation) of the end-effector in the Cartesian space while fulfilling a
compliant behaviour for the manipulator without interfering with the main task.

The first level of the designed controller is a classic inverse dynamics [19]

τ = B(q)uq +C(q, q̇)q̇ + g(q), (4)

where uq ∈ R
n is a new virtual control input. Replacing (4) into (2) yields the

following closed-loop dynamics

q̈ = uq −B(q)−1τ ext. (5)

The following command acceleration can be thus designed [18]

uq = J(q)#
(
uυ − J̇(q)q̇

)
+Z(q)

(
uλ − Ż(q)#q̇

)
, (6)

where uυ ∈ R
6 and uλ ∈ R

r are new virtual control inputs in the Cartesian
and in the null-space, respectively. The closed-loop dynamics can be projected
in both spaces by substituting (6) into (5). Afterwards, multiplying both sides
of the resulting equation by J(q) and Z(q)#, respectively, yields

υ̇ = uυ − J(q)B(q)−1τ ext, (7)

λ̇ = uλ − Z(q)#B(q)−1τ ext. (8)

The design of uυ and uλ is addressed in the following.

3.1 Design of uυ

Let p̃ = pd − pe ∈ R
3 and ˙̃p = ṗd − ṗe ∈ R

3 be the position and the linear

velocity error vectors, respectively. Moreover, set υ̇d =
[
p̈T
d ω̇T

d

]T ∈ R
6, eυ =
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[
˙̃p
T
ω̃

T

]T
∈ R

6, and et =
[
p̃
T
õ
T
]T ∈ R

6. Then, the input term uυ in the

Cartesian space can be designed as

(9)uυ = υ̇d +Dυeυ +Kυet − J(q)B(q)−1γ,

with Kυ = diag(Kp,Ko) ∈ R
6×6, where Kp ∈ R

3×3 is a positive definite
diagonal gain matrix and Ko ∈ R

3×3 is an invertible matrix, Dυ ∈ R
6×6 a

positive definite diagonal gain matrix, and the vector γ ∈ R
n is defined such

that its time derivative is equal to

(10)γ̇ = −KI(γ + τ ext)−K−1
γ B(q)−1J(q)Teυ,

where KI ∈ R
n×n and Kγ ∈ R

n×n are positive definite diagonal gain matrices.
Examining (10) it is possible to notice that a measurement of τ ext is needed.

Nonetheless, it is possible to show that (10) has a closed-form solution

(11)
γ(t) = KI

(
B(q)q̇ −

∫ t

0

(
τ +C(q, q̇)Tq̇ − g(q) + γ(σ)

)
dσ

)

−K−1
γ

∫ t

0

B(q)−1J(q)Teυdσ,

that can be directly replaced in (9). Notice that the measurements of neither q̈
nor τ ext are required in (11). The first part of (11) is equal to the momentum-
based observer introduced in [3]. The last part has been instead added to cope
with the employed singularity-free orientation representations.

By substituting the designed control law (9) into (7), it is straightforward to
write down the corresponding Cartesian space closed-loop equation as

ėυ +Dυeυ +Kυet = J(q)B(q)−1eγ , (12)

where eγ = γ + τ ext ∈ R
n.

3.2 Design of uλ

Let λd ∈ R
r and λ̇d ∈ R

r be the null-space desired velocity and acceleration
vectors, respectively. Define with qd ∈ R

n the time-varying desired value of the
joint positions. This should be planned accordingly to (pd,Rd) through the robot
inverse kinematics. Moreover, let eλ = λd−λ ∈ R

r and eq = qd−q ∈ R
n be the

null-space velocity and the joint configuration errors, respectively. As highlighted
in [4], λ is not integrable and it is not thus possible to define a position error in
the null-space. Therefore, the design of uλ follows [16,18] as

(13)uλ = λ̇d +Λλ(q)
−1

(
(µλ(q, q̇) +Dλ) eλ +Z(q)T (Kqeq +Dqėq)

)
,

where Kq ∈ R
n×n and Dq ∈ R

n×n are definite positive gain matrices, Λλ(q) =

Z(q)TB(q)Z(q) ∈ R
r×r, and µλ(q, q̇) =

(
Z(q)TC(q, q̇)−Λλ(q)Ż(q)#

)
Z(q) ∈
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R
r×r. Notice that Λλ(q) is positive definite, while Λ̇λ(q) − 2µλ(q, q̇) is skew-

symmetric [18]. By substituting (13) into (8), it is possible to write down the
null-space closed-loop equation as

(14)Λλ(q)ėλ + (µλ(q, q̇) +Dλ) eλ +Z(q)T (Kqeq +Dqėq) = Z(q)Tτ ext.

This acts as an impedance controller against the projection τ ext in the null-
space. The matrix Λλ(q) represents the inertia in the null-space, while µλ(q, q̇)
the Coriolis matrix in the same space. These matrices cannot be modified, as
instead Dλ, Kq and Dq that can be tuned to specify the desired null-space
behaviour.

4 Proof of stability

Recalling the designed control inputs (9), (11) and (13), and the resulting closed-
loop system equations (12) and (14), to rigorously prove the stability of the
system, the state x = (eq, et, eυ, eγ , eλ) ∈ R

m, with m = 2n + r + 12, has to
asymptotically go to zero. Conditional stability [16] is the concept employed in
the provided proof. Therefore, it is worth introducing the following theorem.

Theorem 1. Let x̄ = 0m be an equilibrium point of the system ẋ = f(x), with
f(x) ∈ R

m. Then, x̄ is asymptotically stable if, in a neighbourhood Ω of x̄, there
exists a function V ∈ C1 such that

1. V (x) ≥ 0 for all x ∈ Ω and V (x̄) = 0;
2. V̇ (x) ≤ 0 for all x ∈ Ω;
3. on the largest positive invariant set L ⊆ Y = {x ∈ Ω : V̇ (x) = 0}, the

system is asymptotically stable.

Proof. See [11].

The following proposition proves the stability of (12) and (14).

Proposition 1. Let Kυ be a block-diagonal invertible matrix, while let Dυ,KI ,
Kγ ,Kq,Dq,Dλ be diagonal and positive definite matrices. Assume that τ̇ ext =
0n and λd = Z(q)#q̇d. Then, considering a redundant robot arm whose dynamic
model is given by (2), the control laws (4), (9), (11) and (13) are able to

1. bring the state x = (eq, et, eυ, eγ , eλ) asymptotically to zero if τ ext = 0n,
and qd is chosen as fitting the pose (pd,Rd) at each instant of time;

2. bring the state asymptotically to zero except eq if τ ext 6= 0n and/or qd is
chosen such that the manipulator end-effector is not in the pose (pd,Rd) at
each instant of time. In this case q tends to q⋆ 6= qd, that belongs to the set of
solutions locally minimizing the quadratic function ‖Kqeq +Dqėq − τ ext‖2.

Proof. The proof is based on Theorem 1. Define the following scalar function in
a neighbourhood Ω of the origin x̄ = 0m

(15)V (eυ, et, eγ) =
1

2
eTυ eυ +

1

2
eTt KV et +

1

2
eTγKγeγ + fV (α),
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where KV = diag(Kp,KV,2) ∈ R
6×6, with KV,2 ∈ R

3×3 a positive definite
diagonal matrix, and fV (α) ∈ R ≥ 0. This last function depends on the chosen
orientation representation. In the case of interest with õ = ǫ̃, then fV = kǫ(η̃ −
1)2, with kǫ > 0. Notice that V (0m) = 0 and since V (eυ, et, eγ) is not defined on
all the state variables, it is only semi-definite in Ω. This satisfies the first point
of the Theorem 1. It is useful to compute the time derivative of et that is equal
to

ėt =
[
˙̃p
T

fm(α, ω̃)T
]T

, (16)

with fm(α, ω̃) chosen on the base of the available representation for the orienta-
tion. Having in mind (1), it yields fm(α, ω̃) = Lq(α)ω̃. Moreover the assump-
tion τ̇ ext = 0n yields

ėγ = γ̇. (17)

Therefore, choosingKo = kǫI3 andKV,2 = 2kǫI3, taking into account (12), (16)

and (17), deriving (15) with respect to time yields V̇ = −eTυDυeυ−eTγKγKIeγ ,
which is negative semi-definite in Ω, satisfying the second point of Theorem 1.

Now the objective is to fulfil the third point of Theorem 1. Define the set
Y = {x ∈ Ω : eq, et, eυ = 06, eγ = 0r, eλ}. Besides, define

VY =
1

2
eTλΛλ(q)eλ +

1

2
eTt et +

1

2
eTq Kqeq, (18)

which it positive definite in Y. In this set, since eυ = 06 then υd = υ. Moreover,
having in mind (12) and since eγ = 0r as well, this implies that et = 06. Because
ėq = Zeλ and considering (3), (14) and (16), the time derivative of (18) within

Y is V̇Y = −eTλ

(
Dλ +ZTDqZ

)
eλ + eTλZ(q)Tτ ext.

Initially, consider the first point of Preposition 1. Since τext = 0n and qd is
chosen such that the manipulator end-effector is located at (pd,Rd) at each in-
stant of time, then V̇Y < −λTDλλ, which is negative semi-definite in Y. Invoking
the La Salles invariance principle and having in mind (14), it is straightforward
to prove that eq → 0n. Hence, for the above considerations, the system is asymp-
totically stable on the largest invariant set L ⊆ Y. This satisfies the third and
last point of Theorem 1, and thus proves the first point of Proposition 1.

Finally, consider the second point of Proposition 1. Since τ ext 6= 0n and qd

is not chosen such that the end-effector is located at the desired configuration
(pd,Rd) at each instant of time, all the states variables of x goes asymptot-
ically to zero except eq. As a matter of fact q → q⋆ as shown in [18]. This
happens because the robot reaches a joints configuration q⋆ compatible with
the main task (pd,Rd) since et = 06 and minimizing the elastic potential en-
ergy ‖Kqeq +Dqėq − τ ext‖2. The solution of such a minimization is found by

solving Z(q)T (Kqeq +Dqėq − τ ext) = 0r. Subsequently, V̇Y is less or equal to

−λTDλλ, and thus eλ tends to zero: this proves the second point of Proposition
1.
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A B

Fig. 1. The KUKA LWR4 employed for the experiments in the initial, and desired,
configuration for the joints, and with the desired orientation for the end-effector.

5 Experiments

Experimental validation has been carried out on a KUKA LWR4 with n = 7.
For each case study described below the controller sample time is equal to 2 ms,
while the gains have been experimentally tuned to the following values: Kp =
150I2, Ko = 150I3, Dυ = blockdiag{20I2, 10I3}, KI = 10I7, Kγ = 100I7,
Kq = 5I7, Dλ = 5I5. The computation of Z(q) has been carried out in a
symbolic way thanks to the Mathematica software. Without loss of generality,
only the unit quaternion representation is employed in the following.

Three case studies are investigated. The considered scenario is depicted in
Fig. 1. In the first case study the robot end-effector has to follow the path
from A to B, whose length is about 0.6 m, keeping fixed the intial orientation.
The timing law along the path is a trapezoidal acceleration with the cruise
acceleration set to 0.15 m/s2 [19]. By following the path, the tool attached to
the end-effector crashes against the obstacles. However, since only the two planar
positions variables in Σi and the orientation are constrained (the vertical position
is left free), the dimension of λ is r = 2. This allows a human operator to push
the robot to avoid obstacles by changing the configuration in the null space.
It is worth pointing out that, due to the human presence, it is not possible to
guarantee a constant τ ext during the experiments. Even if the developed theory
shows asymptotic stability only for τ̇ ext = 0n, the overall performance remains
good as admirable in the next subsections. The desired qd is chosen off-line such
that at each instant of time the end-effector is kept on the designed path.

In the second case study, the robot performs the same task, but Kq is set to
zero. Hence, the robot does not come back to the planned qd when pushed.

In the third case study, the two obstacles at the boundaries are removed:
only the central obstacle depicted in Fig. 1 is kept. The matrix Kq is set back
to its tuned value. The same position path is followed but the orientation has to
follow a desired trajectory as well. The initial and final quaternions are αinit =[
0.007 0.9336 0.3581 −0.0007

]T
and αfin =

[
0.7071 0.7071 0 0

]T
. An angle-axis

orientation planner is then built [19], with a trapezoidal acceleration whose cruise
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(d) Time history of γ.

Fig. 2. Time histories related to the first case study.

value is 0.15 rad/s2. Again, the planned movement leads to a collision between
the tool attached at the end-effector and the central obstacle. A human operator
can reconfigure the robot internally by pushing it to avoid the object since the
vertical position is not constrained. Again, the dimension of λ is r = 2.

5.1 Case Study 1

Time histories related to this first case study are depicted in Fig. 2. The two
planar components of p̃ in Σi are shown in Fig. 2(a): the overall graph error is
between ±0.02 m, while its maximum is reached at about 15 s when there is a
relevant interaction with the human operator, as it is also possible to check from
Fig. 2(d) where the γ term, resembling τ ext, is represented. From Fig. 2(d), it
is also possible to see that human interaction happens at around 1 s, 6 s, 10 s,
15 s and 18 s to both avoid obstacles and test robustness.

The orientation error õ is depicted in Fig. 2(b) through its geodesic measure
og in SO(3) [10]. While the non-dimensional term õ is directly used in the con-
trol and it is not a clearly understandable for a reader, the geodesic measure
is expressed in radians (or degree) and represents the distance of the devia-

tion matrix R̃ from the identity. Expressing with ‖·‖F the Frobenius norm, the
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Fig. 3. Time histories related to the second case study.

geodesic measure can be computed as og = 1/
√
2‖logR̃‖F . Within Section 2.2,

and the references therein, it is possible to find the relations linking R̃ with õ.
From the time history related to the first case study, it is remarkable that the
orientation error is under the 3 deg for most of time. The maximum error is
reached again around 15 s. It is worth highlighting that the error does not come
back exactly to zero due to the presence of non-negligible joint friction and other
small uncertainties that the system is not able to recover.

Finally, the time history of eq is depicted in Fig. 2(c). It is possible to appre-
ciate that once the interaction with the human is ended, the manipulator tends
to come back to the (time-varying) desired qd.

5.2 Case Study 2

The time histories related to this case study are depicted in Fig. 3. The position
error p̃ is shown in Fig. 3(a) for the two planar components expressed in Σi: the
overall graph error is between ±0.015 m. Fig. 3(d) shows instead the time history
of the γ term, in which it is possible to see that human interaction happens at
around 2 s, 8 s, 11 s, 13 s, 17 s, 22 s and 26 s to both avoid obstacles and test
robustness. The geodesic measure og related to õ is depicted in Fig. 2(b). Such
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Fig. 4. Time histories related to the third case study.

orientation error is lower than 2 deg for most of experiment. The maximum error
is reached around 13 s and 26 s. Finally, the time history of eq is depicted in
Fig. 3(c). It is possible to appreciate that once the interaction with the human
is ended, the manipulator stays in the reached internal configuration since the
gain Kq has been set to zero. The manipulator behaviour is pretty similar to
the one achievable through a direct zero-force control law.

5.3 Case Study 3

Time histories related to this case study are depicted in Fig. 4. The position
error p̃ is shown in Fig. 4(a) for the two planar components expressed in Σi:
the overall graph error is between ±0.01 m. The geodesic measure og related to
õ is depicted in Fig. 4(b). Such orientation error is lower than 3 deg for most
of experiment. The maximum error of about 4 deg is reached around 16 s. The
time histories for the γ term and eq are not reported for brevity since they are
very similar to the first case study, in which the end-effector desired behaviour
was to track a path for the position and keep fixed the orientation. This last case
study, instead, shows how the proposed controller is able to track the desired
Cartesian pose, while preserving the possibility to act in the null-space with a
compliance behaviour preserving the main task. These and other experiments,
like pouring a water in a moving glass, are available in the related video-clip3.

6 Conclusion

In this paper, a framework to control a redundant manipulator in the Cartesian
space for a tracking task is designed addressing a singularity-free representa-
tion for the orientation, and allowing the possibility to change the null-space
configuration of the manipulator without affecting the main task. The designed
controller does not need any exteroceptive sensors to accomplish the task, as

3 https://www.youtube.com/watch?v=PirdFEAE_D8

https://www.youtube.com/watch?v=PirdFEAE_D8


12 F. Vigoriti, F. Ruggiero, V. Lippiello, L. Villani

well as no joints torque sensors are requested. Theory and experimental results
bolster the effectiveness of the proposed control scheme.
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