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S U M M A R Y
We introduce in the on-site earthquake early warning (EEW) a partially non-ergodic perspective
from the site effects point of view. We consider the on-site EEW approach where the peak
ground velocity (PGV) for S waves is predicted from an early estimate, over the P waves,
of either the peak-displacement (PD) or cumulative squared velocity (IV2). The empirical
PD-PGV and IV2-PGV relationships are developed by applying a mixed-effect regression
where the site-specific modifications of ground shaking are treated as random effects. We
considered a large data set composed of almost 31 000 selected recordings in central Italy, a
region struck by four earthquakes with magnitude between 6 and 6.5 since the 2009 L’Aquila
earthquake. We split the data set into three subsets used for calibrating and validating the
on-site EEW models, and for exemplifying their application to stations installed after the
calibration phase. We show that the partially non-ergodic models improve the accuracy of
the PGV predictions with respect to ergodic models derived for other regions of the world.
Moreover, considering PD and accounting for site effects, we reduce the (apparent) aleatory
variability of the logarithm of PGV from 0.31 to 0.36, typical values for ergodic on-site EEW
models, to about 0.25. Interestingly, a lower variability of 0.15 is obtained by considering IV2
as proxy, which suggests further consideration of this parameter for the design of on-site EEW
systems. Since being site-specific is an inherent characteristic of on-site EEW applications,
the improved accuracy and precision of the PGV predicted for a target protection translate in
a better customization of the alert protocols for automatic actions.
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1 I N T RO D U C T I O N

In the framework of earthquake early warning (EEW), one of the
most modern and technological response of society to seismic risk,
the on-site (or single station) approach refers to the strategy of
promptly delivering to targets real-time alert messages containing
information on the S waves ground shaking predicted by measure-
ments taken over the early P-wave window. In the case of the on-site
EEW, hence, users or automatic devices can exploit the time differ-
ence between the early P wave and the following S waves arrival
at the seismic station (i.e. the lead-time) to undertake actions miti-
gating their exposure to seismic risk. Contrariwise, in the regional
approach a strong motion network is installed close to a seismogenic
area and used for the rapid detection and characterization (e.g. in
terms of magnitude and location) of the occurred earthquake again

exploiting early P-waves signals (Satriano et al. 2011; Picozzi et al.
2015). Whenever a target is located at a distance larger than the
one traveled by the S waves during the time spent for estimating the
event location and magnitude from P waves, users can benefit from
a certain amount of lead-time. The selection of approaches to design
a specific EEW system will therefore depend on both technological
(i.e. essentially the software and telemetry speed) and geometrical
(i.e. the distance between the known seismic threats and the tar-
gets) considerations. Whenever a seismic network is not equipped
with a telemetry system suitable for EEW operations (i.e. delay in
data transmission equals to or smaller than 1 s), or the target to
secure is located within the so called blind zone of a regional EEW
network (i.e. the ground shaking at the target cannot be predicted
before the arrival of S wave due to the short epicentral distance),
the on-site approach is the best possible choice, as the station is
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920 D. Spallarossa et al.

Figure 1. Magnitude versus hypocentral distance scatter plot for Dcal (left), Dval (middle) and Dapp (right). For the purpose of this figure, the moment
magnitude is used when available, otherwise the local magnitude is considered. The locations of the Istituto Nazionale di Geofisica and Vulcanologia-INGV
seismic bulletin (http://cnt.rm.ingv.it/) are considered for computing the distances.

Figure 2. Comparison between the distribution of the observed PGV versus PD (grey circles), condidering Dcal, and the average predictions (black line) from
the model reported in Table 2. Observations from stations NCR, T1243, SACS and PTQR are shown in red, orange, blue and cyan, respectively. The predictions
accounting for δP2S are shown as red and blue dashed lines for stations NCR and SACS, respectively.

located in the proximity of the target site (Zollo et al. 2010; Bindi
et al. 2016). On-site approaches rely on the application of empirical
relationships calibrated over past earthquakes that relate the ground
shaking associated with the early P waves, for example, in terms of
peak ground displacement (PD, Wu et al. 2006; Zollo et al. 2006)
or the cumulative squared velocity (IV2, Festa et al. 2008), to the
corresponding shaking associated with the S waves (e.g. in terms of
peak ground velocity, PGV). Different studies proposed empirical
relationships for on-site EEW (Kanamori 2005; Wu & Kanamori
2008; Böse et al. 2009; Zollo et al. 2010; Picozzi 2012; Brondi et al.

2015; Colombelli et al. 2015; Caruso et al. 2017). The data sets used
for the calibration generally include recordings from multiple sta-
tions in a given region, such as (Caruso et al. 2017) for Italy; (Wu &
Kanamori 2005) for Taiwan; (Wu et al. 2006) for California, or in-
clude data from different regions (Wu et al. 2006; Zollo et al. 2010).
Generally, empirical relationships are calibrated without consider-
ing the station-to-station variability (Wang & Wu 2014), thus incor-
porating the response of the installation site into the ground motion
aleatory variability. Following recent advances in PSHA (Atkinson
2006; Rodrı́guez-Marek et al. 2013; Kotha et al. 2017), ground
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Partially non-ergodic earthquake early warning 921

Figure 3. Station-to-station residuals δP2S for stations in the calibration data set Dcal, considering PD (left) and IV2 (middle). For each station, the mean δP2S
(black square) and its 95 per cent confidence interval (horizontal bar) are shown and the values for a few selected stations indicated with labels. In the right
panel, the δP2S values obtained for PD and IV2 are compared.

Figure 4. Horizontal to vertical spectral ratio (H/V) for 6 stations whose δP2S are indicated in Fig. 3. Each panel shows the mean logarithm spectral ratio
(black) and the corresponding ±1 standard deviation interval (grey ribbon). The geometric mean of the two horizontal components is considered.

motion estimates can be improved through identification and quan-
tification of site effects; that is, by relaxing the so-called ergodic
assumption (Anderson & Brune 1999). The aim of this study is to
import the methodology developed in the PSHA framework within
the on-site EEW one, and in particular to refine the development
of on-site EEW relationships by including site specific amplifica-
tion factors in the models. We follow the approach used in partially
non-ergodic probabilistic seismic hazard assessment (Anderson &
Brune 1999): site-specific amplifications (or de-amplifications) are
isolated from the residual distribution, and the relevant site-to-site
variability removed from the aleatory variability (Abrahamson &
Hollenback 2012). We apply the procedure in central Italy, a region

struck by four earthquakes with moment magnitude above 6 since
the 2009 L’Aquila earthquake (Chiaraluce et al. 2017). We first
describe the set of recordings used to calibrate the site specific on-
site EEW models. Then, the models are validated using recordings
from independent earthquakes, considering the cases where the sta-
tion corrections are either known or unknown. In the latter case, a
procedure for estimating the site corrections is discussed. Finally,
the improvement achieved by considering the site-specific mod-
els is discussed with respect to the results obtained using both the
the standard ergodic approach and relationships developed in other
studies.
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922 D. Spallarossa et al.

Figure 5. Residuals εP D
es normalized to φSS (circles) grouped for stations in Dcal. For each station, the mean normalized residual (white square) and the

normalized single-station variability φSS, s/φSS (vertical red bars) are shown. The horizontal lines correspond to ±1φSS, ±2φSS and ±3φSS.

2 DATA

The data set considered in this study is composed by 83 237
recordings in the magnitude range 2.5–6.5, hypocentral dis-
tances from 10 to 150 km, and generated by 1902 earthquakes
occurred in central Italy between 2008 and 2018. In the fol-
lowing, we provide the reader with a brief description of the
data set. A detailed description can be found in (Bindi et al.
2018).

All data were collected from the National Seismic Network
(RSN), the Mediterranean Network (Mednet), the Rapid Response
Network operated by the Istituto Nazionale di Geofisica e Vul-
canologia (INGV) and the National Accelerometric Network (RAN)
operated by the Department of Civil Protection (DPC). Except for
the data from the DPC repository (http://ran.protezionecivile.it/IT
/index.php), the waveforms were retrieved from the European In-
tegrated Data Archive (https://www.orfeus-eu.org/data/eida/). All
recordings underwent instrumental correction, including the ap-
plication of a pre-deconvolution Butterworth bandpass filter with
an adaptive high-pass corner-frequency spanning the range 0.05–
0.4 Hz, depending on the signal-to-noise ratio (SNR), and a low-
pass corner frequency fixed to 40 Hz. Strong motion data from the
the DPC repository were processed following the procedure of the
Italian strong motion data base ITACA (Luzi et al. 2008; Paolucci
et al. 2011). Only recordings with SNR greater than 6 for at least
75 per cent of the frequencies within the frequency range were con-
sidered in the analysis. For each processed recording, we computed
the integral of the squared velocity (IV2) (Kanamori et al. 1993;
Brondi et al. 2015) and the peak ground displacement (PD) over
the vertical P-wave window (i.e. considering a time window starting
from the P-wave onset and ending at the S-wave arrival). Following
(Picozzi et al. 2017), the PD was computed after application of a
bandpass filter 0.075–3.0 Hz. Moreover, we computed the S-wave
peak ground velocity (PGV) as the geometrical mean of the values
relative to the two horizontal components. To develop the on-site
EEW models, we considered a data set including 175 stations with
at least 20 recordings covering a hypocentral distance range of at
least 25 km and a magnitude range spanning at least 2 magnitude

units. The data set selected for the analysis is composed by 31 000
recordings.

The selected data set was split into three separate data sets (Figs 1
and A1): DScal, DSval and DSapp. In the following, we refer to DScal

as the calibration data set. It is composed of 16 478 recordings from
872 earthquakes occurred before 2016 October 29 and recorded by
138 stations. The validation data set DSval includes 12 018 record-
ings from 501 earthquakes occurred after 2016 October 29 and
recorded by 94 stations shared with DScal. Finally, the data set DSapp

is completely disjoint from DScal since it includes 2333 recordings
from 443 earthquakes occurred after 2016 October 29, recored by
37 stations not belonging to DScal. Moreover, DScal includes PD and
IV2 values in the range [10−6 − 0.5] cm and [10−10 − 4] cm2 s–1,
respectively, corresponding to PGV in the range [6 10−5 − 13.4] cm
s–1; DSval includes PD and IV2 values in the range [2.5 10−6 − 0.98]
cm and [10−10 − 5.7] cm2 s–1, respectively, corresponding to PGV
in the range [8–10−5 − 36.4] cm s–1. The spatial distribution of
stations and events of the three data sets is shown in Fig. A1 of the
Appendix.

3 M O D E L C A L I B R AT I O N

The relationships relating the logarithm (in base 10) of the S-wave
peak ground velocity PGV to an early estimate (i.e. over P waves)
of the logarithm of either the peak displacement (PD) or the integral
of the squared-velocity (IV2) are obtained by performing a mixed-
effects regression (Pinheiro & Bates 2000; Bates et al. 2015) over
Dcal

Log PGVes = a1 + a2 log P Des + δP2SP D
s + δB P D

e + εP D
es (1)

Log PGVes = b1 + b2 log I V 2es + δP2SI V 2
s + δB I V 2

e + ε I V 2
es , (2)

where the coefficients ai and bi, with i = 1, 2, define the median
predictions (fixed effects); δP2Stype

s , δBtype
e , with type either PD or

IV2 are the random effects (normal distributions with zero mean)
describing the station-to-station and the between-event residuals,
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Partially non-ergodic earthquake early warning 923

Figure 6. Residuals γ es (see eqs 4 and 5) normalized to σ SS (circles) grouped for stations in Dval, considering PD (top) and IV2 (bottom). For each station, the
mean normalized residual (white square) and the normalized single-station variability φSS, s/σ SS (vertical red bars) are shown. The horizontal lines correspond
to ±1σ SS, ±2σ SS and ±3σ SS.

respectively, for station s and event e; εt ype
es indicates the event- and

station-corrected residual, also referred to as single-station within-
event residuals, δWSes (Al Atik et al. 2010). In the following, we
drop the usage of the superscript type when referring to the generic
distribution. The standard deviations of the normal distributions of
δP2S, δB and ε are indicated with φP2S, τ and φSS, respectively. The

standard deviation of the models is given by σ =
√

φ2
P2S + τ 2 + φ2

SS

and quantifies the (apparent) aleatory variability of the models. For
reader convenience, the above nomenclature, which is a de-factor
standard in the analysis of the ground motion variability (Al Atik
et al. 2010), is summarized in Table 1. Aim of this study is to relax
the ergodic assumption by considering the station-to-station term in
computing the predictions and, consequently, by removing the cor-
responding variance φ2

P2S from the (apparent) aleatory variability σ .

The obtained coefficients ai and bi of models (1) and (2) are listed
in Table 2. Fig. 2 compares the best fit model with the distribution
of the observed PGV versus PD values. The PGV for stations NCR
(red), T1243 (orange), SACS (blue) and PTQR (cyan) highlights the
large contribution of the site effects to the overall PGV variability,
as quantified by the distribution of the random effects for all stations
listed in Table A1 of the Appendix and shown in Fig. 3. For exam-
ple, the difference δP2SP D

NC R − δP2SP D
PT Q R is 1.03, corresponding

to more than a factor 10 on PGV. The site effects for few selected
stations are exemplified in Fig. 4, where the average horizontal-to-
vertical spectral ratios (H/V) (Lermo & Chávez-Garcı́a 1993) are
shown. The analysis of the site effects at some of these stations was
the target of previous studies. For example, station Nocera (NCR),
which is classified as class E of Eurocode-8 (CEN 2004), i.e., soil
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924 D. Spallarossa et al.

Table 1. Residual components and corresponding standard deviations. For
details, see (Al Atik et al. 2010).

Symbol Description

δBe between-events residuals δB for event e
δP2Ss on-site EEW site-to-site residuals δP2S for station s
εes event and station corrected residuals ε for event e and station s

(single-station within-event residuals)
τ standard deviation of the between-events residuals
φSS standard deviation of the event and station corrected residuals

(standard deviation of the single-station within-event residuals)
φSS, s standard deviation of the event and station corrected residuals

for station s
φP2S standard deviation of the on-site EEW site-to-site residuals
σ SS aleatory variability of the ground motion under the partially

non-ergodic single-site assumption
σ aleatory variability of the ground motion under the ergodic

assumption

Table 2. Coefficients and standard deviations of models in eqs (1) and (2).
Intercept indicates coefficients a1 and b1; slope indicates coefficients a2 and
b2.

Equation Proxy Intercept Slope φP2S τ φSS

1 PD 1.129 0.813 0.249 0.122 0.224
2 IV2 0.882 0.518 0.130 0.056 0.146

deposits with thickness smaller than about 20 m having an average
shear wave smaller than 360 m/s and overlying a rock, shows strong
amplifications at 7.4 and 21 Hz. Previous studies (Rovelli et al.
2002; Cultrera et al. 2003) investigated the complexities of the
amplifications at Nocera, showing their dependence on the source
azimuth due to the presence of a nearby fault zone. Other exam-
ples shown in Fig. 4 are Colfiorito station (CLF), installed within
a basin where local induced surface waves generate strong ampli-
fication at 1 Hz (Di Giulio et al. 2003), and station L’Aquila-Valle
Aterno (AQV), installed in the middle of the Aterno valley and
showing a broad range of amplification over the frequency band
1–4 Hz and a strong peak of amplification at 10 Hz (Akinci et al.
2010). Such amplifications are reflected in the large δP2S values
for these three stations (Fig. 3). It is worth mentioning that the site
amplifications at these stations can involve amplifications also over
the vertical components (Parolai & Richwalski 2004). Therefore,
δP2S is not only an empirical estimate of the site effects affect-
ing S waves (at those frequencies mostly contributing to PGV)
which can generate, at a given station, systematic deviations from
the generic PGV predictions. Indeed, δP2S is also influenced by
amplifications on the vertical components occurring at frequencies
influencing either PD or IV2. In other words, the values of δP2S for
two stations with identical amplification effects on the horizontal
components could be different if the two stations experience dif-
ferent amplifications on the vertical component. Finally, stations
Pietraquaria (PTQR) and Leonessa (LSS), both installed on rock
without significant amplification (Fig. 4), show large negative δP2S
values.

The δP2S of the six stations in Fig. 4 are indicated in the dis-
tributions shown in Fig. 3. Since the δP2S term accounts for the
site-specific amplification of PGV, the δP2S values for PD and IV2
show an overall correlation but with a large spread (right-hand panel
of Fig. 3) since the frequency-dependent amplifications of the ver-
tical component can affect differently PD or IV2 (since the former

is a peak parameter in displacement, while the latter is an integral
parameter in velocity).

4 S I N G L E - S TAT I O N
E V E N T - C O R R E C T E D R E S I D UA L S

The event- and station-corrected residuals εes (eqs 1 and 2) for
earthquake e recorded at station s are used to compute the single
station variability, which is defined as the standard deviation of the
εes values grouped by station, that is:

φSS,s =
√∑Ns

i=1 ε2
is

Ns − 1
, (3)

where the summation is performed over the Ns recordings available
for station s. For the considered on-site EEW models, the standard
deviation in eq. (3) represents a lower bound for the variability of
the predictions computed at any specific station. The results for
PD are shown in Fig. 5, where the εes values are normalized to
φSS (i.e. the standard deviations of the overall event- and station-
corrected residual ε, see Table 1). Fig. 5 shows that, when considered
individually, almost all stations are characterized by a variability of
residuals with respect to their own median model, φSS, s, close to the
one computed for all stations together, φSS (the latter corresponding
to the horizontal lines at ±1) reported in Table 2. In other words,
most of the stations included in Dcal shows a similar variability of
the single station within-event residuals. The only stations with φSS, s

exceeding 1.25 times φSS are NRCA (Norcia, 307 used recordings)
and MDAR (Monte Daria, 33 recordings used), located in Fig. 5
at the extreme right of the distribution. A similar distribution is
obtained for IV2 (Fig. A2 in the Appendix) but, in this case, the two
stations showing the largest variability are OFFI and ATLO.

5 M O D E L VA L I DAT I O N

The recordings in the validation data set, DSval, are used to test the
accuracy of the models listed in Table 2. DSval includes 94 stations
used also for the calibration. Therefore, an estimate of δP2S for
these stations is available. The validation is performed considering
about 12 000 records of earthquakes that were not included in
the calibration data set DScal. The comparison between the PGVes

observed for earthquake e at station s and the relevant predictions
is performed in terms of station-corrected residuals γ es, that is

γes = Log(PGVes) − a1 − a2 log P Des − δP2SP D
s (4)

and

γes = Log(PGVes) − b1 − b2 logI V 2es − δP2SI V 2
s (5)

Since the δBe values for these earthquakes are not known, the be-
tween event variability τ is considered in the aleatory variability

and σSS =
√

τ 2 + φ2
SS is used to normalize γ es, being σ SS equal to

0.255 and 0.156 for PD and IV2, respectively. The results are shown
in Fig. 6, where the stations are ordered for increasing average nor-
malized residuals (i.e. the most anomalous stations are located in
the tails of the distribution). For PD, most of the stations have an av-
erage γ s (white square in Fig. 6) close to zero. Only for six stations,
the average γ s exceeds σ SS (i.e. the average normalized residual
γ es/σ SS is smaller than –1 for stations MIDA, RNI2, INTR, POFI,
VVLD, GIUL), and for no stations it is larger than two times σ SS,
confirming that the calibrated models have a satisfactory predictive
power. Similar results are obtained also for IV2, being γ es/σ SS <
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Partially non-ergodic earthquake early warning 925

Figure 7. Residuals γ es for PD normalized to σ (circles) grouped for stations in Dval without considering δP2S. For each station, the mean normalized residual
(white square) and the normalized single-station variability φSS, s/σ (vertical red bars) are shown. The horizontal lines correspond to ±1σ , ±2σ and ±3σ .

−1 for stations POFI, MIDA, INTR, RNI2, GIUL and larger than
1 for station MPAG.

Finally, to highlight the benefits from using site-specific ampli-
fication attributes, Fig. 7 shows the PGV predictions from PD for
the validation data set Dval but without considering the δP2S adjust-
ments. In this case, φP2S is moved back to the aleatory variability,

and σ =
√

σ 2
SS + φ2

P2S is considered to normalize the residuals. In

this case, the variability is σ = 0.356 and 0.203 for PD and IV2,
respectively. As shown in Fig. 7, the spread of γ es significantly in-
creases with respect to Fig. 6. In particular, the standard deviation
of γ es increases from 0.09 to 0.25, as shown by the histograms of
the residuals reported in Fig. 8 (first and second panel from the
top). Fig. 8 also shows the distribution of the residuals between the
observed and predicted Log(PGV) values (i.e. eq. (4) but without
considering δP2S) predicted by different models proposed in litera-
ture (see Table 3): the (Wu et al. 2007) model was derived merging
data from Taiwan and southern California; the model of (Zollo et al.
2010) was calibrated over a data set including recordings from Tai-
wan, California and Italy; finally, the model of (Caruso et al. 2017)
has been recently derived from 128 Italian earthquakes. Fig. 8 shows
that all models that not account for site-specific amplification term
show a similar large spread of the residual distribution. It is worth
warning the readers interested in operating on-site EEW systems
that the use of models calibrated for regions different from the tar-
get area could also show significant offsets. This behavior is partly
attributable to the use of these latter models outside their range of
applicability. We conclude that the use of the site terms δP2S both
reduces the (apparent) aleatory variability of the PGV (σ SS against
σ ), and improves the accuracy of the site-specific median predic-
tions for most stations. The implications of these results are further
argued in the discussions.

6 A P P L I C AT I O N T O N E W
E A RT H Q UA K E S A N D S TAT I O N S

Besides the assessment of the predictive power of the mod-
els presented so far, in the following we consider the situation

where an EEW operator would like to apply the P D to PGV and
I V 2 to PGV models to a station for which the δP2S adjustment
is not known. This situation mimics the application of the on-site
EEW models to stations installed after (or not considered in) the
calibration phase. The data set Dapp used in this analysis contains
recordings from 37 stations and 443 events both independent from
Dcal. Our analysis of Dapp is intended to demonstrate the number
of small to moderate earthquakes need to calibrate δP2S when a
new station has been installed in an EEW network. To estimate the
δP2S of these stations, we follow the same approach proposed by
(Rodrı́guez-Marek et al. 2013; Kotha et al. 2017) for determining
the δP2S values within the framework of site-specific hazard assess-
ment. The approach consists in the computation of δBe and δP2Ss by
distributing the event-specific and site-specific residuals among the
earthquake and station populations in a way similar to the random
effect regression:

δBe = τ 2
∑Ne

i=1(Log(PGV obs
ei ) − Log(PGV pred

ei ))

Neτ 2 + φ2
P2S + φ2

SS

(6)

δP2Ss = φ2
P2S

∑Ns
i=1(Log(PGV obs

is ) − Log(PGV pred
is ) − δBe)

Nsφ
2
P2S + τ 2 + φ2

SS

,(7)

where Ne and Ns are the number of recordings for event e and sta-
tion s, respectively. The estimated δP2S values are shown in Fig. 9.
These values, along with the median predictions obtained using the
models in Table 2 , allow us to perform site-specific predictions for
the stations installed after the calibration phase. For each station, the
δP2S values in Fig. 9 were computed using all available recordings
in Dapp. These recordings are also used to evaluate the variability of
δP2S as function of the number of used recordings. Fig. 10 shows
the example of station AMT (other examples are shown in Fig. A3
of the Appendix). Since Dapp is composed of the recordings of the
2016–2017 central Italy sequence, for which the earthquakes show
spatial and temporal clustering (Barani et al. 2017, 2018), the ac-
tual temporal order of occurrence of the recordings could show a
large path-correlation among elements close located in the temporal
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926 D. Spallarossa et al.

Figure 8. Histograms of γ es for Dcal computed considering PD as proxy.
From top to bottom: model calibrated in this study considering δP2S, without
considering δP2S, model of (Caruso et al. 2017), model of (Wu et al. 2007)
and model of (Zollo et al. 2010). The mean residual is indicated by the red
vertical line, and the normal distributions with mean and standard deviation
computed from each histogram are shown in black.

Table 3. Coefficients of earlier on-site EEW models.

Model Proxy Intercept Slope σ

(Caruso et al. 2017) PD 1.45 0.84 0.36
(Zollo et al. 2010) PD 1.30 0.73 0.36
(Wu et al. 2007) PD 1.609 0.903 0.309

sequence. Therefore, we assess δP2S for the new stations consid-
ering both the actual time order of the recordings and a shuffled
version of the temporal sequence where the order of occurrence of
the events has been randomized. Fig. 10 exemplifies the results for
station AMT, whereas other examples are given in Fig. A3 of the
Appendix. In these Figures, we compare the variation of δP2S ob-
tained considering the actual temporal order (black symbols) with
those resulting from the shuffled temporal sequence (red symbols).
Some stations, and mainly for PD, show a faster rate of convergence
for the randomized temporal order, suggesting that the minimum
number of recordings needed to get a reliable assessment of δP2S
should take into the amount of independent information carried by
each new recording. Considering the random sampling in time, the
convergence requires a number of recordings that varies from sta-
tion to station and is on the order of a few tens (between 20 and
60).

Finally, to test the reliability of δP2S computed through eq. (7),
we apply the leave-one-out (LOO) approach (Stone 1974) to each of
the 94 stations in Dval for which δP2S is known from the calibration
phase. Following the LOO approach, the regression is repeated by
removing one station at a time from Dcal. The obtained model is
therefore independent from the removed station, and the recordings
in Dval are in turn used to compute the leave-one-out estimate of
δP2S, by using eq. (7). The procedure is repeated until each one
of the 94 stations in Dcal has been removed once. The results in
Fig. 11 show that the stations deviating by more than ±1˜φSS (see
Table 2) are those already pointed out in the validation section (i.e.
the stations in the tails of the distributions in Fig. 7). For these
stations, the δP2S values obtained in the calibration phase do not
allow predicting PGV as well as for other stations suggesting that
either the median model is less suitable for describing the PD-to-
PGV relationship (e.g. due due significant dependence on distance,
azimuth or magnitude) or the δS2S values do not fully describe their
site effects. Since, for these stations, the δP2S values obtained from
the LOO approach are derived directly from the station-specific
residuals (see the numerator in eq. 7), a discrepancy between the
estimates of δP2S obtained in the calibration and validation phases
larger than for other stations was expected. Except for these few
stations, an overall good agreement is observed, confirming the
reliability of the δP2S values.

7 D I S C U S S I O N S

In the framework of on-site EEW, alert protocols are defined in terms
of threshold values for the ground shaking parameter of interest,
such as the peak ground velocity (PGV). The expected PGV is
predicted by applying empirical relationships defined for proxies
computed over the early P waves, such as peak displacement (PD),
and the integral of squared velocity (IV2). The selection of the
threshold values is driven by the application of interest such as,
for example, the expected level of damage suffered by the target
when exposed to different shaking levels. The main results of this
study is summarized in Fig. 8 which shows that the non-ergodic
EEW model better predicts the site-specific PGV, with a significant
reduction of the standard deviation when site amplification effects
are considered. Keeping in mind that the final goal of an on-site
EEW is the operational real-time prediction of the S-wave ground
motion level at a target site in order to trigger seismic risk mitigation
actions, it is worth noting that the performance of such systems
(i.e., measured in terms of correct, false and missed alerts) strongly
depends on the standard deviation of the adopted model. Reducing
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Figure 9. δP2S for stations in Dapp, computed following (Rodrı́guez-Marek et al. 2013; Kotha et al. 2017) (see eqs 6 and 7). Left: results obtained considering
PD as proxy; right: results considering IV2. Symbols are color coded according to the number of recordings available for each station. Please note the different
scales on the y-axes and the different station order on the x-axes.

Figure 10. δP2S for station AMT as function of the number of recordings in Dapp, computed using eq. (7). Results obtained considering PD are shown on the
left, for IV2 on the right. The results in black are obtained preserving the temporal order of the earthquakes where the results in red are obtained by randomizing
the order of the events. Please note the different scales on the y-axes.

the standard deviation through a partially non-ergodic approach
that take into account site effects provides a significant contribution
at improving the performance of on-site EEW systems. Moreover,
Fig. 8 shows that the application to our target area in central Italy of
models exported from other hosting regions can generate significant
bias in the mean residual. Although more detailed analysis are
needed to reveal the origin of such a bias (e.g., its connection with
differences in the calibration and application ranges of the involved
variables), Fig. 8 warns EEW operators against including in their

systems hosting models without evaluating the need of regional
adjustments for the area of interest.

Turning to the details of our results, the development of empiri-
cal on-site EEW models that account for site-specific effects allows
us to improve the accuracy of the expected PGV and to reduce
its aleatory variability. Considering PD and accounting for site ef-
fects,the (apparent) aleatory variability of the logarithm of PGV
is reduced from 0.31-0.36, typical values for ergodic on-site EEW
models, to about 0.25. Interestingly, a lower variability of 0.15
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Figure 11. Results of the leave-one-out analysis: comparison between δP2S from calibration and computed by applying equations 7 to the station left out.
Left: results obtained for PD; right: results for IV2. The 1:1 line (continuous red) and ±φSS (dashed red) are given for reference.

is obtained by considering IV2 as proxy, which suggests further
consideration of this parameter for the design of on-site EEW sys-
tems. Since matrices adopted for alert systems are constructed over
the expected peak shaking values and their uncertainties (Parolai
et al. 2015), the results summarized in Fig. 8 support the adop-
tion of a non-ergodic approach to on-site EEW. The reduction of
the aleatory variability is achieved by removing the site-specific
contribution from the total variance, i.e., by accounting for site
amplifications through the δP2S term (eqs 1 and 2) in the median
PGV prediction. The epistemic uncertainty in δP2S (see Fig. 3)
decreases with the square root of the number of available record-
ings and can be treated, along with the epistemic uncertainty af-
fecting φSS, s, in the same fashion as in non-ergodic probabilis-
tic seismic hazard assessment (Faccioli et al. 2015; Kotha et al.
2017).

Considering that the number of operational EEW systems is
expanding with time, and that regions where targets and seismic
threats are close located require adopting on-site approaches, we
faced the problem of evaluating the number of recordings needed
to assess the site amplification terms for new installed stations.
To do this, we followed the approach used for non-ergodic PSHA
(Kotha et al. 2017), where the δP2S for the new installations can
be initially set to zero, with standard error on δP2S equal to φP2S

(Abrahamson & Hollenback 2012). Then, with the increasing num-
ber of recordings at the station, the assessment can be refined using
eq. (7). Figs 10 and A3 of the Appendix show that the number
of recordings needed to achieve a stable δP2S value varies from
station to station and it is of the order of 20–60. It is therefore
possible to include new installations in the network of stations for
on-site EEW without requiring a re-calibration of the models. It is
worth noting that as site effects we primarily mean the effect of
subsurface geology on ground shaking, but they also account for
the response of the hosting structure. This is an important aspect
to account for, as on-site installations are often performed within
buildings or infrastructure (Picozzi 2012; Parolai et al. 2015; Petro-
vic & Parolai 2016). Moreover, δP2S also reflects possible ground
motion amplification along the vertical component (i.e. affecting
the predictive proxies). Indeed, we have observed a good corre-
lation between δP2S and the amplifications displayed by the H/V
curves.

8 C O N C LU S I O N S

A large data set of seismic recordings allowed the calibration and
validation of partially non-ergodic on-site EEW models in cen-
tral Italy. As on-site early warning applications are inherently site-
specific, introducing a non-ergodic perspective allows improving
the accuracy of the predicted PGV and reducing the (apparent)
aleatory variability of the residuals. The main conclusions drawn
by this study are the following:

(1) using the peak displacement PD as predictive proxy, the in-
corporation of site effects reduces the variability of the logarithm
of PGV from values in the range 0.31–0.36 (typical of ergodic on-
site EEW models) to 0.25, being about 0.22 the contribution of the
single-station variability;

(2) considering the integral of the squared velocity IV2, a lower
non-ergodic variability is obtained, of the order of 0.15, which
suggests further consideration of this parameter for the design of
on-site EEW systems;

(3) biases in the mean residuals are observed when models cali-
brated for other regions, or using different data sets, are used;

(4) for stations that are not considered in the calibration phase,
the site specific adjustments can be estimated and updated using
newly recorded earthquakes; the number of recordings needed to
achieve a stable estimate varies from station to station, and is in the
range between 20 and 60;

In conclusion, adopting a partially non-ergodic perspective to
on-site EEW allows us to enter more accurate and precise pre-
dictions into the alert matrices for automatic actions, taking into
consideration site specific modifications to ground shaking due to
local geological conditions, or to the interaction with the housing
structure.
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A P P E N D I X

The Appendix includes three Figures and one Table. Fig. A1 shows
the maps with station locations and source-to-station ray paths for
the three considered data sets (i.e. Dcal, Dval and Dapp); Fig. A2
shows the residuals ε I V 2

es normalized to φSS, along with the single
station mean normalized residual and normalized single station
variability φSS, s/φSS; Fig. A3 shows the δP2S for nine stations as
function of the number of considered recordings (see also Fig. 10
of the main article); finally, Table A1 lists the δP2S for PD and IV2
for the calibration stations.
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Figure A1. Data sets used in this study. Top: Dcal; middle: Dval; bottom:
Dapp. Triangles indicate the station locations; grey lines connect the station
locations with epicenters.
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Figure A2. Residuals ε I V 2
es normalized to φSS (circles) grouped for stations in Dcal. For each station, the mean normalized residual (white square) and the

normalized single-station variability φSS, s/φSS (vertical red bars) are shown.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article-abstract/216/2/919/5173041 by G

eoforschungszentrum
 Potsdam

 user on 10 D
ecem

ber 2018



932 D. Spallarossa et al.

Figure A3. δP2S for nine stations not considered in the model calibration, as function of the number of recordings in Dapp. The values are relevant to the
model for PD and are computed using eq. (7). The results in black are obtained preserving the temporal order of the earthquakes where the results in red are
obtained by randomizing the order of the events. Please note the different scales on the y-axes.
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Table A1. Staton-to-station residuals δP2S (eqs 1 and 2) and 95 per cent confidence interval (CI).

Station δP2SPD 95% CI δP2SIV2 95% CI

0CAN −0.1169 0.0670 −0.0372 0.0435
ANT 0.1163 0.0784 0.0739 0.0508
AOI −0.1700 0.0509 −0.0060 0.0330
AQF 0.1596 0.0848 −0.0125 0.0549
AQG 0.2497 0.0917 0.1719 0.0593
AQU −0.1839 0.0389 −0.0287 0.0251
AQV 0.2586 0.0834 0.1467 0.0540
ARRO −0.2307 0.0396 −0.1445 0.0256
ARVD −0.1976 0.0320 −0.1403 0.0205
ASS 0.1485 0.0833 0.0354 0.0540
ASSB −0.0365 0.0350 −0.0421 0.0225
ATCC −0.0081 0.0395 0.0053 0.0254
ATFO −0.2108 0.0373 −0.1010 0.0240
ATLO −0.2545 0.0717 −0.0140 0.0464
ATMC −0.1281 0.0722 0.0393 0.0466
ATMI −0.1901 0.0438 0.0759 0.0283
ATPC −0.1776 0.0460 0.0536 0.0297
ATTE −0.3219 0.0338 −0.0492 0.0217
ATVA −0.4098 0.0549 −0.0391 0.0355
ATVO −0.2877 0.0415 −0.0504 0.0268
BRS 0.2553 0.0806 0.0248 0.0523
BSSO −0.3122 0.0815 −0.1795 0.0523
CADA −0.0139 0.0805 −0.0758 0.0522
CAFI −0.2978 0.0591 −0.1102 0.0383
CAFR −0.0175 0.0661 0.0531 0.0428
CAMP −0.1627 0.0251 −0.1263 0.0159
CCT −0.1133 0.0978 0.0640 0.0633
CERA −0.2904 0.0482 −0.0249 0.0311
CERT −0.1871 0.0237 −0.0085 0.0150
CESI 0.0413 0.0218 0.0273 0.0137
CESX −0.1272 0.0247 0.0714 0.0157
CING −0.0250 0.0270 −0.0480 0.0172
CLF 0.2031 0.0528 0.0126 0.0342
CRE −0.1848 0.0855 −0.0044 0.0553
CSC 0.1488 0.0836 −0.0271 0.0541
CSO1 −0.1110 0.0898 0.0074 0.0582
CSP1 0.1253 0.0525 0.1525 0.0340
CTD 0.1993 0.0880 0.1168 0.0570
FAGN 0.0770 0.0246 −0.0028 0.0156
FBR 0.2870 0.0848 0.0049 0.0550
FDMO −0.0431 0.0226 −0.0042 0.0142
FEMA 0.2371 0.0462 0.1531 0.0299
FIAM −0.2613 0.0206 −0.1284 0.0129
FMG 0.0293 0.0982 −0.0557 0.0634
FOC 0.5578 0.0410 0.1783 0.0264
FOPC 0.1303 0.0528 −0.0693 0.0342
FOS 0.1773 0.0671 −0.0065 0.0435
FOSV −0.1021 0.0462 −0.0439 0.0298
FRES −0.0513 0.0972 0.0598 0.0626
FSSB 0.1235 0.0492 0.1137 0.0318
GIGS −0.1820 0.0374 −0.0187 0.0241
GIUL −0.4696 0.0522 −0.2816 0.0338
GNU 0.0971 0.0479 0.1131 0.0310
GSA 0.1430 0.0702 −0.0334 0.0456
GUAR −0.1979 0.0403 −0.0953 0.0260
GUMA 0.2857 0.0252 0.2815 0.0160
INTR −0.1098 0.0251 −0.0455 0.0159
LG02 0.0115 0.0448 −0.1052 0.0289
LG05 0.5007 0.0399 −0.0013 0.0256
LG07 0.1569 0.0482 −0.3256 0.0311
LG08 0.3686 0.0639 0.0543 0.0413
LG10 0.2729 0.0426 0.0250 0.0274
LG11 0.2744 0.0631 0.0708 0.0408
LG12 0.4885 0.0428 0.1423 0.0275
LG13 0.3488 0.0480 0.0371 0.0310
LG14 0.0414 0.0475 −0.0480 0.0307
LG15 −0.0172 0.0455 −0.1705 0.0293
LG16 0.1341 0.0392 0.0579 0.0252
LG17 0.4012 0.0388 −0.2746 0.0249
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Table A1. Continued

Station δP2SPD 95% CI δP2SIV2 95% CI

LG18 0.3928 0.0429 0.1663 0.0276
LG19 0.1946 0.0537 0.1713 0.0346
LNSS 0.1668 0.0219 0.1939 0.0138
LPEL 0.0024 0.0330 −0.0558 0.0212
LSS −0.1303 0.0422 −0.1105 0.0273
MCT 0.3522 0.0914 0.2405 0.0592
MDAR −0.0244 0.0773 0.0423 0.0500
MGAB −0.1918 0.0285 −0.0507 0.0182
MIDA −0.2000 0.0440 −0.1274 0.0284
MMP1 −0.0774 0.0555 0.0243 0.0360
MMUR 0.2152 0.0702 0.1462 0.0455
MNF 0.1320 0.0583 0.0620 0.0378
MNS −0.1345 0.0338 −0.1037 0.0217
MNTP −0.0205 0.0507 −0.1457 0.0328
MODR −0.2645 0.0867 −0.0494 0.0558
MOMA 0.0288 0.0728 0.1107 0.0471
MPAG −0.3167 0.0573 −0.1527 0.0371
MTCE −0.3482 0.0325 −0.0817 0.0209
MURB 0.1954 0.0284 0.3053 0.0181
NARO −0.1427 0.0556 −0.0904 0.0360
NCR 0.5289 0.0749 0.3287 0.0486
NRCA 0.4095 0.0268 0.0883 0.0170
OFFI −0.0481 0.0270 −0.0480 0.0172
ORC 0.2696 0.0786 0.1600 0.0509
PAN −0.3241 0.0863 −0.1605 0.0559
PARC −0.0512 0.0629 −0.0068 0.0406
PCB 0.2881 0.0664 0.2557 0.0431
PGG 0.2488 0.0864 0.0325 0.0560
PIEI −0.0427 0.0454 0.0214 0.0293
POFI −0.4875 0.0344 −0.1472 0.0221
PP3 −0.0646 0.0956 −0.0324 0.0619
PTQR −0.5041 0.0476 −0.0871 0.0308
PTRJ −0.0841 0.0920 0.0578 0.0591
RM13 0.2124 0.0511 0.3352 0.0330
RM14 0.0407 0.0604 −0.1689 0.0390
RM16 0.3898 0.0556 0.1930 0.0360
RM20 −0.0568 0.0584 0.0153 0.0377
RM24 0.2559 0.0702 0.1535 0.0454
RM33 0.1003 0.0331 0.0736 0.0212
RMP −0.3227 0.0784 −0.3009 0.0508
RNI2 −0.3109 0.0455 0.0589 0.0293
SACR −0.2991 0.0874 −0.0496 0.0560
SACS −0.5072 0.0505 −0.2095 0.0327
SGG −0.2903 0.0802 −0.0974 0.0515
SMA1 0.0369 0.0373 −0.0675 0.0240
SNTG −0.0499 0.0264 −0.0804 0.0168
SPD 0.0243 0.0980 −0.0539 0.0633
SPM 0.2810 0.0631 0.0992 0.0409
SRES −0.4716 0.0437 −0.1416 0.0282
SSFR 0.2880 0.0335 0.0550 0.0215
SULA −0.1855 0.0847 0.0838 0.0549
SULP −0.0222 0.0782 0.1519 0.0507
T0110 −0.0313 0.0320 −0.0617 0.0205
T1201 0.1007 0.0501 −0.0086 0.0324
T1243 0.5778 0.0358 0.3214 0.0230
T1246 0.1641 0.0375 0.0865 0.0241
T1247 0.0687 0.0415 0.0024 0.0268
TER 0.0843 0.0748 −0.0425 0.0486
TERO 0.1109 0.0203 0.0215 0.0127
TOLF −0.5436 0.0866 −0.3858 0.0561
TRE 0.0591 0.0381 −0.0666 0.0245
TRIV −0.4439 0.0680 −0.1981 0.0437
TRL 0.3261 0.0760 0.1938 0.0493
TRN1 −0.2866 0.0592 −0.2731 0.0384
TRTR −0.0981 0.0463 −0.1205 0.0300
VAGA −0.1221 0.0642 0.0294 0.0412
VAL 0.3311 0.0933 0.1195 0.0604
VCEL 0.0018 0.0253 0.0265 0.0161
VVLD −0.2282 0.0301 −0.0951 0.0192
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