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1 Introduction

Higher-Spin (HS) theories have been over the last decades an intense field of research

that has attracted an increasing attention, starting from the works of the late 80’s by

Fradkin and Vasiliev [1, 2] and Vasiliev [3–12] that opened the way to the first classically

consistent examples of non-abelian interactions of this type. However, we are still far from

a satisfactory understanding of the problem, so much so that only in the last few years a

reasonable understanding of the free HS theory has been attained (see e.g. [13–22]). Two
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distinct approaches have indeed come to terms with a problem that, in some respects, dates

back to the early days of Quantum Field Theory (QFT) (see, e.g. [23–28]). The first is a

“metric-like” approach, initiated in the works of Singh and Hagen [29, 30], Fronsdal [31, 32]

and de Wit and Freedman [33], and reconsidered more recently by Francia and Sagnotti [34–

36]. In their works the authors of [34–36] proposed a geometric reinterpretation of the

free-field equations that can be expressed as

1

�n
∂ · R [n]

;µ1...µ2n+1 = 0 , (1.1)

for odd spins s = 2n + 1, and

1

�n−1
R [n]

;µ1...µ2n = 0 , (1.2)

for even spins s = 2n, together with the related minimal Lagrangian formulation [37, 38],

that rests for any s on at most two additional fields and simplifies the previous BRST

(Becchi, Rouet, Stora, Tyutin) constructions of [39–45]. This form of the free equations

includes the three familiar lower-spin examples, given by the linearized Einstein equations

for s = 2, by the Maxwell equations for s = 1 and formally also by the Klein-Gordon

equation for s = 0, together with non-local equations for spin larger than two. One

can thus have, somehow, an intuition, even if restricted to a single spin at a time, of

possible generalizations of the geometric framework of Maxwell theory and Einstein gravity

to HS, pointing also to a possible key role of non-localities, that may be more and more

fundamental at the interacting level, together with an eventual reconsideration of QFT from

a more general perspective. More recently, these results were also generalized to reducible

HS free fields, starting from the “triplet” system and recovering similar interesting non-

local structures [46, 47]. The constructions for symmetric (spinor)-tensors that we have just

outlined afford also interesting generalizations to the case of mixed-symmetry fields of the

type φµ1...µs1 ;ν1...νs2 ...
, whose non-local geometric equations were first proposed in [48–50],

while the Lagrangian formulation was initiated with the pioneering work of Labastida [51–

59] and was completed only a few years ago in [60, 61]. A second kind of approach is the

“frame-like” one, was developed mostly by Vasiliev and collaborators [3–12], generalizing

the Cartan-Weyl framework to HS, and led to the Vasiliev system. Despite the remarkable

success of Vasiliev’s approach, only recently has it been possible to arrive at a covariant

description of all bosonic flat space cubic interactions in [62] by purely field theoretical

methods. At the same time, starting from a String Theory vantage point all consistent

cubic interactions involving bosonic and fermionic fields were obtained in [63, 64].1 This

extended previous results, including the works of the 80’s by Bengtsson, Bengtsson and

Brink [68, 69] and the important works of Metsaev [70–75], in the light-cone formulation,

and the works of Berends, Burgers and van Dam [76–78] in a covariant formulation that

were then reconsidered and extended by Boulanger and others in [79–87], and were recently

exploited in the interesting work of Bekaert, Joung and Mourad [88, 89].

This paper is aimed at improving our understanding of HS interactions, extending and

generalizing the results of [63, 64]. Actually, the string results and their structure may

1Further off-shell completions were presented in [65–67].

– 2 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

give new insights on field theory properties that manifest themselves when looking at HS

fields, pointing out and motivating a closer relation between ST and HS gauge theories and

resonating with the long-held feeling that ST draws its origin from a generalized Higgs effect

responsible for its massive excitations (see e.g. [63, 64, 90–97]). The crux of the matter has

long been to construct a consistent deformation of the free system at the quartic order.

It is indeed this the case in which the HS program has encountered along the years an

insurmountable barrier, both in the metric-like formulation and in the frame-like one, in

which Vasiliev’s system unfortunately does not provide a transparent answer. Indeed,

only recently in [98] the chain of higher-derivative terms found in the works of Fradkin and

Vasiliev [1, 2] and weighted by inverse powers of the cosmological constant Λ was recognized

to be related, in the case of the gravitational coupling, to a higher-derivative seed that is

nicely associated to the simpler flat space cubic vertex, whose exact structure can be

recovered, in a suitable scaling limit, wiping out the lower members of the tail. Moreover,

even the origin of the spin-2 excitation present in the Vasiliev system is still unclear from a

field theory perspective, since it can be dressed with Chan-Paton factors like any excitation

belonging to the open bosonic string. This would make the “graviton”2 colored, in contrast

with standard field theory results pointing out inconsistencies of this kind of option [99]

(strictly speaking with finitely many fields). To reiterate, at the quartic order a number

of difficulties have piled up along the years, starting from the no-go results [100–109] and

the inconsistencies found by Weinberg in [110], up to the inconsistency pointed out in [79]

for the Berends-Burgers-van Dam cubic coupling of spin-3 fields (for a recent review see

for instance [111] and references therein). Four-point functions for HS fields have been and

still are somehow the most intriguing source of difficulties. Here we shall try to address

these questions studying a class of solutions to the Noether procedure and discussing the

role of Lagrangian non-localities along lines that are actually in the spirit of the previous

work [112]. As we shall see, some non-localities turn out to naturally arise at the Lagrangian

level as soon as massless HS particles are considered. This reflects very peculiar and subtle

aspects of the corresponding tree-level S-matrix amplitudes that clash with the factorization

property usually assumed in the framework of the S-matrix theory.

It is instructive to introduce our arguments starting from the usual field theory per-

spective on the problem of HS interactions given by the Noether procedure, that played a

key role in the construction of supergravity [113, 114], and in its various incarnations has

played a crucial role in order to solve for cubic HS couplings in explicit cases [62, 76–78].

From this point of view the HS problem can be reformulated as equivalent to finding, order

by order in the number of fields, a deformation of the free system of the form

S[φ] =
∑

s

S (2)[φµ1...µs ] + ǫ S (3)[φµ1...µs ] + ǫ 2 S (4)[φµ1...µs ] + O(ǫ 3) , (1.3)

including at least one field of spin s > 2 and where the contribution S (3) is cubic, S (4)

is quartic, and so on. Consistency of the deformation (1.3) translates into an equivalence

class of deformations of the linearized gauge symmetries of the type

δΛ φµ1...µs = δ
(0)
Λ φµ1...µs + ǫ δ

(1)
Λ φµ1...µs + ǫ 2 δ

(2)
Λ φµ1...µs + O(ǫ 3) , (1.4)

2We call it graviton here with a little abuse of language since it admits colors.
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leaving invariant S[φ] order by order, and defined modulo local redefinitions of fields and

gauge parameters of the form

φµ1...µs → φµ1...µs + ǫ f(φ)µ1...µs + O(ǫ 2) ,

Λµ1...µs−1 → Λµ1...µs−1 + ǫ ζ(φ,Λ)µ1...µs−1 + O(ǫ 2) .
(1.5)

Interestingly enough, there is a translation of this procedure that is closely related to a

BRST formulation of HS fields [20, 39–45, 112, 115–122] and in general to String The-

ory [123–127] and to String Field Theory (SFT), both open [128] and closed [129]. Indeed,

given any nilpotent anti-derivation one can retrace the well known theory of Free Differ-

ential Algebras (FDA) [130–134] in order to build fully non-linear covariant HS equations

of motion.3 The choice of the framework of FDA in order to describe the dynamics of a

physical system is not a new idea, since it lies at the heart of the Vasiliev system and of

some supergravity models as well as being a particular incarnation of a very general con-

struction that appeared also in a number of different avatars like L∞ algebras [135–137],

of which the BV formalism [138–140] is one example, or again homological perturbation

theory, Q-manifolds [140] and so on. For instance, the Vasiliev system is indeed formulated

in terms of a FDA based on the nilpotent de Rham differential and can be presented in

the remarkably compact form

F̂ =
i

2
dZ i ∧ dZ i Φ̂ ⋆ κ , D̂Φ̂ = 0 , (1.6)

where in these equations the ⋆ operation implements the higher-spin algebra in the frame-

like approach. Leaving aside a detailed discussion of these equations (see e.g. [3–22] for

more details), let us stress that the HS curvature is here defined as

F̂ = dÂ + Â ⋆ ∧ Â . (1.7)

However, the de Rham differential does not define any local propagating degrees of freedom

within its cohomology classes, and one is forced to introduce infinitely many auxiliary fields

recovering a system of equations in the so called unfolded formulation. The end result can

be regarded as a Hamiltonian-like first-order rewriting of some linear, at the free level,

or fully non-linear and non-local equations, at the interacting level. It is conceivable in

this sense that non-localities, even those of the type 1
�
, need to be expanded in terms of

perturbatively local contributions in order to recover this unfolded form of the equations,

in which any higher-derivative term is redefined as a new field. As a result, the theory

will be related to some massive parameter whose role is played here by the cosmological

constant Λ. The starting point of our construction, in analogy with and generalizing what

has been done in constructing SFT [128, 129], for example, is to consider a FDA built from

3We could think of them as zero curvature equations taking the freedom to use the word curvature in

this slightly different framework as a generalization of the results presented in [46, 47] where it was shown

how the non local curvature equations of [34–36], as well as a new kind of non-local equations related to the

triplet system, can be obtained integrating out the various auxiliary fields. The idea that we have in mind

is an extension of those arguments at the full non-linear level that should produce in principle a consistent

non-linear deformation of the usual linearized HS curvatures.
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a nilpotent anti-derivation Q capable of identifying the degrees of freedom of free massless

HS fields directly in its cohomology classes, ending up with non-linear, and eventually

manifestly non-local, equations of the form4

R(Φ) = QΦ + G(Φ) = 0 . (1.8)

From this point of view we are going to extend what was previously considered in the

framework of the triplet system in [65, 143–145], stressing however the role played by the

simpler gauge-fixed system5

L =
1

2
φ(−p) ⋆ p 2 φ(p) , (1.9)

for bosons, and

L =
1

2
ψ̄(−p) ⋆ /p ψ(p) , (1.10)

for fermions, where here and henceforth we shall refer to the ⋆ as an inner-product in

the metric-like formalism whose role is to contract the corresponding indices of the various

polarization tensors. As we shall see, these provide the simplest setting in order to search for

consistent deformations of the HS free theory and actually can be regarded as a starting

point for any possible off-shell completion whose structure, at the end, can make some

geometric features of the theory more manifest. Restricting the attention for brevity to the

bosonic case of eq. (1.9), the master field φ(p , ξ) is initially subject to the transversality

constraint

p · ∂ξ φ(p , ξ) = 0 , (1.11)

and is a generating function of the form

φ(p , ξ) =
∞∑

s=0

1

s!
φµ1...µs(p) ξ

µ1 . . . ξµs , (1.12)

whose components carry an arbitrary bosonic, in general also reducible, representation of

the Lorentz group.6 This system is gauge invariant under the transformation

δφ(p , ξ) = p · ξ Λ(p , ξ) , (1.13)

with

p · ∂ξ Λ(p , ξ) = 0 , p 2Λ(p , ξ) = 0 , (1.14)

where the components of the generating function of gauge parameters satisfy algebraic

constraints similar to those satisfied by φ(p , ξ).

To reiterate, our aim here is to combine the simplifications coming from these gauge

fixed systems with the off-shell structure encoded by the FDA. We are then able to recognize

a simpler incarnation of the Noether procedure at the level of the n-point functions that

4See e.g. [141, 142] for interesting discussions about the relations between first order systems based on

the de Rham differential and systems based on a BRST differential.
5From now on, with a little abuse of notation, we shall refer to these systems involving transverse and

possibly traceless fields as on-shell systems or on-shell gauge-fixed systems or similar circumlocutions.
6In principle we can consider also generating functions of mixed-symmetry fields.
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Figure 1. Building blocks for the G
(i)
12...n’s.

realize both the linearized gauge symmetries and the global symmetries of the free system,

to be contrasted with the n-point Lagrangian couplings, that nonetheless can be directly

extracted from these data. Hence, defining by K̃12...n(p i , ξi , . . .) the generating functions

of color-ordered HS n-point functions, that by definition we consider as formal series whose

relative coefficients are in general functions of the Mandelstam-like invariants, one is led

in the FDA framework to the off-shell homogeneous equations

(Q1 + Q2 + . . . + Qn) K̃
FDA
12...n = 0 . (1.15)

These equations can be solved at the level of the gauge-fixed theory (1.9) where they

simplify into

p i · ∂ξi K̃
on-shell

12...n (p i , ξi , . . .) ≈ 0 , i = 1 , . . . , n , (1.16)

in which the approximate equality means on-shell and modulo divergences. The strategy

is then to extend this result adding traces and/or divergences in order to recover the

same equality

p i · ∂ξi K̃
off-shell

12...n (p i , ξi , . . .) ≈ 0 , i = 1 , . . . , n , (1.17)

but now in any off-shell framework and where the equality is modulo the full Lagrangian

equations of motion (EoM), without using any divergence constraint. Equivalently, the

same strategy is to complete the on-shell gauge-fixed solution to a full solution of (1.15).

The solution to this problem can be expressed in terms of powers of the standard color-

ordered n-point functions G
(i)
12...n of the most general theory built from a gauge boson, a

scalar field and a spin-1/2 fermion, that are uniquely specified by the cubic couplings in

figure 1. One should add, in principle, also the usual Yang-Mills quartic couplings, that
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however can be reconstructed here interpreting them as counterterms restoring the lin-

earized gauge invariance of the tree-level amplitudes, thus making clear the fundamental

role of the latter with respect to the former. Notice that eqs. (1.15) and (1.16) fix basically

the dependence of the kernel K̃12...n on the symbols, but leave open the possibility of multi-

plying each independent gauge invariant tensor structure with functions of Mandelstam-like

invariants. Moreover, let us underline a kind of correspondence between tree-level n-point

functions and n-point Lagrangian couplings. The former are associated to a linearized

gauge symmetry related to the free system of eq. (1.9) together with the corresponding

global symmetries, while the latter encode somehow geometrical principles, together with

a fully non-linear deformation of the original gauge symmetries that could be captured,

in principle, by a resummation of the full tower of non-linear couplings. For instance, in

the case of spin-2 this resummation rebuilds the usual Riemaniann geometry, as observed

by Deser in [146], and references therein, and in the case of HS fields should encode, in

a similar fashion, the HS geometry. One should also gain a deeper understanding of the

non-linear symmetries and of the global symmetries of the system, that need to be related

to some HS algebra and whose analysis we leave for the future.

In this work we take the aforementioned perspective in order to study how field theory

can in principle overcome some difficulties encountered over the years. The main result

can be roughly summarized by the generating function

K̃1234 (Ξi) = −
1

su

[
1 − su

∑

c∈F

G
(c) fermi
1234 (Ξi)

]
exp

[
− su

∑

d∈B

G
(d) bose
1234 (Ξi)

]
, (1.18)

of four-point S-matrix amplitudes involving massless HS fields where the G
(d) bose
1234 ’s and the

G
(c) fermi
1234 ’s are generically gauge boson four-point functions as discussed in section 4.1 and

in appendix A.2. They have been multiplied by Mandelstam invariants in order to get only

single poles while their current exchange parts reconstruct HS exchanges after combining

properly their power expansion. Moreover, the generating function should be considered

modulo functions of the Mandelstam variables that do not introduce poles of order grater

than one. Appendix A contains a preliminary classification of n-point functions involving

HS fields so that looking back at the three-point case, that is the only one in which the

kernel K̃ coincides with the Lagrangian coupling generating function, we are able to recover

the results of [62] in the bosonic case and of [64] in the bosonic and fermionic case, that in

the gauge-fixed theory (1.9) take the form

K̃123 = (1 + δ + /ξ 1 + /ξ 2 + /ξ 3) (1.19)

× exp

{√
α ′

2

[
(ξ1 · ξ2 + 1)ξ3 · p 12 + (ξ2 · ξ3 + 1)ξ1 · p 23 + (ξ3 · ξ1 + 1)ξ2 · p 31

]}
.

Let us remark again that this result should be considered as a generating function, whose

relative coefficients between different terms can be chosen arbitrarily at the cubic level while

they ought to be fixed by consistency with the quartic results or any other consistency

condition. In this sense the exponential used by String Theory could leave the way to

other functions. Here δ contracts indices belonging to two spinor-tensors and the 1 is the

– 7 –
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purely bosonic part of the coupling. This structure of the four-point functions (and of

their n-point counterparts) arise as solution to the Noether procedure for a general field

theory with massless particles of any spin. Moreover, while embodying an infinite class of

local quartic couplings, it also contains the seeds for the difficulties that have been faced

along the years and also, hopefully, the way in which field theory can in principle bypass

the no-go results of [100–110]. However, the physical interpretation and the need for the

corresponding Lagrangian non-localities is still a subtle issue and the peculiar form of the

amplitudes one arise at clashes in general with commonly accepted ideas about the S-

matrix structure that reflect some difficulties in defining an S-matrix for massless particles

(see e.g. the discussion in the introduction of [110] or [147]). The full amplitude generating

function, containing also Chan-Paton factors [148–152], is finally recovered summing over

all non-cyclic permutations of the external legs, as

A(Φ1,Φ2, . . . ,Φn) =
∑

σ

Tr
[
Φ1(ξ1) Φσ(2)(ξσ(2)) . . . Φσ(n)(ξσ(n))

]

⋆ 12...nK̃1σ(2)...σ(n)(p i, ξ i) , (1.20)

where the trace is over the color indices carried by the polarization generating functions

Φi, recovering in this way a kind of generalized open-string-like form. Interestingly, from

four points onwards, there are more possibilities, since some permutations with respect

to the labels {1 , . . . , n} of the G
(i)
12...n’s are independent for n ≥ 4. This means that one

can combine two or more totally cyclic independent kernels, eliminating the Chan-Paton

factors and recovering in this way a kind of closed-string-like amplitudes from which the

usual gravitational four-point functions emerge, together with HS generalizations. In the

four-point case, for instance, for each G
(i)
1234 there are two independent options and one can

recover in this fashion the closed-string-like kernel

K̃(ξi , ξ
′
i ) =

(
∑

σ

K̃1σ(2)σ(3)σ(4)(p i, ξ i) K̃1σ(2)σ(4)σ(3)(p i, ξ
′
i)

)
, (1.21)

together with analogous generalizations to higher orders described in appendix A. These

results are analyzed in a number of examples pointing out some differences between the

graviton and the colored spin-2 fields but leaving for the future a detailed analysis of

the generalized closed-string-like amplitudes together with possible generalizations of the

Bern-Carrasco-Johansson (BCJ) construction of [153] to HS.

A general lesson to be drown from the results that we have summarized is that HS n-

point functions appear to go in hand with a peculiar feature: while they are still built from

current exchanges and local terms, they generally factorize only on (infinite) subsets of the

available exchanges that lack finite numbers of lower-spin contributions clashing with the

usual factorization property of the S-matrix. This unusual feature is tantamount to a non-

local nature of HS Lagrangian couplings, in particular when expanded around flat-space.

These anyway result from conventional amplitudes built from Feynman propagators and

one can expect them to be still compatible with the notion of causality and with the cluster

property. Nonetheless, potential clashes with tree-level unitarity may be possibly related

– 8 –
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to the fact that infinitely many degrees of freedom ought to contribute to the same residue.

In this respect we can only anticipate that within what we shall call minimal scheme, even

admitting non-localities, no pole arising in the amplitude can lack an interpretation as an

external particle participating in the physical process. This can give some hope to arrive to

an understanding of background independent HS interactions, even though we are not able

at present to give a definite answer about the consistency of the proposed scheme in flat

space. We choose to take this point of view in this paper having also in mind a deformation

of the flat-space results to constant curvature backgrounds or to massive fields.

Among other things, we shall discuss from the same perspective the role of the spin-

2 excitation present in the Vasiliev system that admits in principle Chan-Paton factors,

trying to give an answer to a puzzle pointed out in [38] together with a very interesting

open question about its true nature. Indeed, at the massless level a mixing between the

singlet part of colored spin-2 components and a combination that is strictly uncolored and

plays the role of a graviton, anticipated in [38], is here justified by the existence of two

different kinds of amplitudes, the first of the open-string-type and the second of the closed-

string-type. Here, however, we shall see that a non-abelian colored spin-2 field brings about

non-localities, and from this point of view it is naturally related to the massive excitations

present in the Open String spectrum while only the spin-2 components interacting with a

closed-string-like amplitude can be directly related to the usual graviton. The non-local

nature of HS Lagrangian couplings puts our discussion of QFT on more general grounds,

that ought to be better understood, as we anticipated. From this point of view important

questions arise concerning both the nature and the geometrical meaning, if any, of the

non-localities that we find in this work.

Our explicit construction leads us to propose a milder constraint that we name as

minimal scheme. As we shall explain in more detail in the following:

• it is equivalent to locality in all standard frameworks,

• it allows for the presence of a very restricted set of non-localities whenever HS fields

are considered recovering insofar as possible the commonly expected structure of the

S-matrix,

At the same time this discussion, and in particular our generalization of open-string-like

and closed-string-like amplitudes, reinforces the feeling that ST hides within its structure

a number of potentially profound lessons for Field Theory.

The plan of the paper is the following. In section 2, restricting the attention to the case

of symmetric fields, we briefly review the symbol calculus of [63, 64], with special emphasis

on the extension of the formalism to a full BRST framework that entails also anticommuting

coordinates related to ghosts and auxiliary fields. In section 3 we recast the usual Noether

procedure in the form of a FDA, describing briefly the case of cubic and quartic interactions

and pointing out how the information on the non-linear deformations of gauge symmetries

are nicely encoded in the free system (1.9). In section 4 we turn to describe four-point

amplitudes, first in the simpler case of Yang-Mills theory and then in the general setting of

HS theories, pointing out the differences between open-string-like amplitudes and closed-

– 9 –
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string-like amplitudes and how the usual no-go theorems can be overcome, in principle at

least, by the solution proposed. In section 5 we describe the new features of HS couplings,

with special emphasis on non-localities. Our conclusions are summarized in section 6.

Finally, the appendices address the extension to fermionic four-point functions, to n-point

functions and to theories containing mixed-symmetry (spinor-)tensors together with some

results on the relation between the gauge-fixed theory of eqs. (1.9) and (1.10) and the

off-shell completions.

2 Symbol calculus

In this section we review a few basic techniques that will be used in this paper, among

which symbol calculus is possibly the most relevant. Following [63, 64], a simplification

relies on the introduction of auxiliary variables ξ µi that make it possible to define generating

functions of HS tensor fields. By convention, we shall denote such generating functions as

φ i(p i, ξi) =
∞∑

s=0

1

s!
φ i µ1...µs(p i) ξ

µ1
i . . . ξ µs

i . (2.1)

The auxiliary coordinates ξµi can be considered, with a little abuse of notation, as “phase

space” coordinates together with the xµ’s, in close analogy to the Weyl-Wigner set up,

and can be extended to a similar kind of super phase-space H adding corresponding anti-

commuting “coordinates” and “momenta” that play the role of ghosts for the x and ξ

variables in a standard BRST treatment. The construction is very simple and proceeds via

the introduction of the anti-commuting coordinates

(
θ0 θ ∂ θ̄

∂θ0 θ̄ ∂θ

)
, (2.2)

following techniques and ideas similar to those used in [20, 65, 122, 143–145]. Here, for

convenience, we have arranged the θ’s taking into account the ghost number, so that the first

line contains ghost-number +1 “coordinates” and “momenta” while the second line contains

their ghost-number −1 counterparts. To make a link with the previous constructions let

us stress that our θ-variables are nothing but the “symbols” of the string-like operators

(
c0 c−1 c1
b0 b−1 b1

)
, (2.3)

exactly as ξ is the “symbol” of the oscillator α−1. While any formula that we will write

hereafter can be translated in the operator setting by using the aforementioned dictionary,

we choose to use and extend the symbol notation of [63, 64] working with functions on

some kind of superspace and dealing with generating functions instead of Hilbert-space

states. As usual, one can put some structure on H, defining an adjoint operation by

x† = x , p† = p , ξ † = ∂ξ , θ0
†
= θ0 , ∂θ0

† = ∂θ0 , θ† = ∂θ̄ , θ̄ † = ∂θ , (2.4)
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so that one is naturally led to consider the graded space of functions over H, that we call

Ω(H), defining over it a nilpotent derivation given by a BRST charge of ghost number 1.

The BRST charge should encode the free propagating degrees of freedom of the system in

its cohomology classes. The simplest choice is related to reducible HS gauge fields and is

solely built from the mass-shell and transversality constraints without taking into account

trace constraints. Following the usual BRST setting (see e.g. [20, 39–45, 115–118, 122]),

one thus obtains

Q = θ0 p 2 + θ p · ∂ξ + ∂θ̄ p · ξ − θ ∂θ̄ ∂θ0 , (2.5)

that is one possible gauge-invariant off-shell completion of p 2. Other consistent comple-

tions are related to the Fronsdal setting [31, 32] or to the related compensator setting

of [34–36] as well as to other frameworks, that we shall describe briefly for completeness in

appendix C, remarking their links with the gauge-fixed system described at the quadratic

level by (1.9), to which all can be reduced. The major advantage of performing off-shell

computations with this BRST setting will be clear in the following. For instance, one can

have some kind of intuition related to the super phase-space H making also manifest the

link with the tensionless limit of ST, which is naturally formulated in this language [115–

118]. Moreover, one can now move between gauge-fixed and off-shell theory projecting onto

the purely bosonic symbols ξ and imposing or relaxing the transversality constraint on the

generating functions.

Applying Q to the most general ghost-number 0 HS super-field Φ ∈ Ω(H)

Φ (p, θ0, ξ, θ, θ̄) = φ(p, ξ) + θ0 θ̄ C(p, ξ) + θ θ̄ D(p, ξ) , (2.6)

that from now on we consider in full generality as a matrix valued field

Φ = Φa T a , (2.7)

where the T a’s are matrices associated to the Chan-Paton factors [148–152], one gets the

equation of motion

QΦ = θ0
(
p 2φ(ξ) − p · ξ C(ξ)

)
+ θ

(
p · ∂ξ φ(ξ) + C(ξ) − p · ξD(ξ)

)
(2.8)

+ θ0 θ θ̄
(
p 2D(ξ) − p · ∂ξC(ξ)

)

=0 .

As usual, one can easily check the invariance of this system under the gauge transformation

δΦ = QΛ , (2.9)

where Λ is a ghost-number −1 parameter of the form

Λ(p, θ0, ξ, θ, θ̄) = θ̄Λ(p, ξ) , (2.10)

and hence

δΦ = p · ξ Λ(p, ξ) + θ0θ̄ (−p 2) Λ(p, ξ) + θθ̄ p · ∂ξ Λ(p, ξ) . (2.11)
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The nontrivial cohomology classes at ghost number 0 contain exactly the physical degrees

of freedom of a spin s, s−2 down to spin 1 or 0, respectively for odd or even s. The system

so far described is actually the triplet system [115–118] that can be recovered from the

tensionless limit of the free part of open String Field Theory, so that the supercoordinates

provide an off-shell completion of p 2. The next ingredient that we are going to introduce

is a pairing that is important to construct Lagrangians, and more generally singlets. A

pairing or contraction can be defined generalizing the ⋆-inner-product introduced in [63, 64]

and given by

⋆ :
(
Φ 1(p1 , ξ1) , Φ 2(p2 , ξ2)

)
→ Φ 1 ⋆ Φ 2 = exp

(
∂ξ1 · ∂ξ2

)
Φ 1(p1 , ξ1) Φ 2(p2 , ξ2)

∣∣∣
ξi =0

,

(2.12)

where ξ1 and ξ2 are only the bosonic symbols. The point here is to extend the contraction

operator in the exponent of (2.12), letting it act over the whole HS super phase-space H.

Actually, it is possible to define two extensions having this property, that we choose to

label respectively as ⋆ and ⋆̃. They are associated to different projections of the superfields

Φ ∈ Ω(H) with respect to the θ0 coordinate, and can be defined as

⋆̃ :
(
Φ 1(p1, θ

0
1, ξ1, θ1, θ̄1) , Φ 2(p2, θ

0
2, ξ2, θ2, θ̄2)

)
→ Φ 1 ⋆̃ Φ 2

= exp
(
∂ξ1·∂ξ2−∂θ1 ∂θ̄2+∂θ̄1 ∂θ2

)
Φ 1(p1, θ

0, ξ1, θ1, θ̄1) Φ 2(p2, θ
0, ξ2, θ2, θ̄2)

∣∣∣
ξi = θi = θ̄i =0

,

(2.13)

and

⋆ :
(
Φ 1(p1, θ

0
1, ξ1, θ1, θ̄1) , Φ 2(p2, θ

0
2, ξ2, θ2, θ̄2)

)
→ Φ 1 ⋆ Φ 2 =

∫
dθ0 [Φ 1 ⋆̃ Φ 2] θ

0 ,

(2.14)

where by convention

p 1 + p 2 = 0 , (2.15)

and both reduce to eq. (2.12) if one restricts the attention to the bosonic coordinates

and ghost-number zero super-fields Φ i. Let us mention for completeness that the afore-

mentioned ⋆-operations encode the usual Hermitian products on the Fock spaces for the

corresponding oscillators. To conclude this section we anticipate that the inner-product ⋆

will play a role in the off-shell framework while the inner-product ⋆̃ will play a role in the

computation of scattering amplitudes, and more generally of n-point functions. To reiter-

ate, this formalism provides a natural framework to move back and forth between these

two ways of formulating the problem, exploiting both the FDA structure that appears off-

shell and the simplifications that are present in the gauge-fixed theory. Nonetheless, the

latter represents by itself a well defined system in which the problem of finding consistent

deformations of the free theory is well posed. In the next sections we are going to consider,

from a purely field theoretical point of view, the problem of constructing consistent gauge-

invariant Lagrangians and covariant equations of motion for HS fields, studying in detail

the Noether procedure and reinterpreting it in terms of FDA.
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3 Structure of the interactions

In this section, following and extending various ideas that have appeared in the literature

on the subject including [65, 129, 143–145], we are going to analyze and reformulate the

Noether procedure, translating it in terms of a Free Differential Algebra (FDA) [130–137].

This kind of formalism has been somehow a source of inspiration for this work but we want

to stress that the results that we are going to present can be in principle recast in other

off-shell frameworks.

3.1 HS covariant equations and gauge transformations

We begin here describing the formal setup along the lines of [129], then considering in the

next subsections its explicit realization. In order to construct a consistent HS gauge field

theory we are going to work within the HS super phase-space H introduced in section 2.

There is, indeed, a very general construction that can be realized in principle whenever

one is able to define an identically nilpotent operator Q. Following ideas and techniques

that are involved in the construction of Free Differential Algebras (FDA) or in general

L∞-algebras [130–137], one can try and define HS equations of motion of the general form

R(Φ) = QΦ + G(Φ) = 0 , (3.1)

with G(Φ) a ghost-number one function of the type

G(Φ) =
1

2!
[Φ,Φ] +

1

3!
[Φ,Φ,Φ] + . . . . (3.2)

Here one could also add, in principle, a linear term that could be regarded as a deformation

of the BRST charge Q, while the ellipsis in eq. (3.2) indicate higher-order contributions in

the HS superfield Φ given by n-ary totally symmetric multilinear products

[ · , . . . , ·︸ ︷︷ ︸
n

] : Ω(H) ⊗ . . . ⊗ Ω(H)︸ ︷︷ ︸
n

→ Ω(H) (3.3)

that generalize the standard structure constants fab1...bn of FDA’s. In order to streamline

the notation, we define two other different operations whose role is to encode the two

options that show up in multiplying brackets together. These are indicated respectively by

⋄ and ◦ and can be defined by7

[Φ 1, . . . ,Φn] ⋄ [Ψ 1, . . . ,Ψ q] ≡ [Φ 1, . . . ,Φn,Ψ 1, . . . ,Ψ q] , (3.7)

Ψ ◦ [Φ 1, . . . ,Φn] ≡ [Ψ,Φ 1, . . . ,Φn] , (3.8)

7Notice that in principle the ⋄-operation can be expressed totally in terms of ◦, making possible to

express formally all n-ary products starting from the identity:

[Φ1, . . . ,Φn] = (. . . (1 ◦ Φ1) ◦ . . .) ◦ Φn , (3.4)

while we will use the convention

([Ψ]) ◦ [Φ1, . . . ,Φn] = [[Ψ],Φ1, . . . ,Φn] , (3.5)

[Ψ] ◦ ([Φ1, . . . ,Φn]) = [Ψ, [Φ1, . . . ,Φn]] , (3.6)

in order to distinguish which of the terms plays the role of Ψ in eqs. (3.8) and (3.9).
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[Φ 1, . . . ,Φn] ◦ Ψ ≡ [Φ 1, . . . ,Φn,Ψ] , (3.9)

1 ◦ Ψ ≡ Ψ ◦ 1 ≡ [Ψ] , (3.10)

[Φ] ⋄ 1 = 1 ⋄ [Φ] ≡ [Φ] , (3.11)

while we do not require these definitions to extend to other cases that are not of the form

displayed in the latter equations. This kind of notation is used only in this section to

encode the formal structures here introduced as a notational device in order to keep track

of the bracket algebra. In terms of these operations eq. (3.1) takes the suggestive form

R(Φ) = e
[Φ]
⋄ − 1 = 0 , (3.12)

where the exponential sum the whole series in eq. (3.1) through the operation ⋄ and where

a single element bracket has been defined by

[Φ] ≡ QΦ . (3.13)

It is then possible to write down a non-linear gauge transformation given by

δΦ =

(
Λ ⋆

δ

δΦ

)
R(Φ) = Λ ◦ e

[Φ]
⋄ (3.14)

≡QΛ + [Λ,Φ] +
1

2!
[Λ,Φ,Φ] + . . . +

1

n!
[Λ,Φ, . . . ,Φ︸ ︷︷ ︸

n

] + . . . ,

under which eq. (3.12) transforms covariantly provided the condition

(
R(Φ) ⋆

δ

δΦ

)
R(Φ) =

(
e
[Φ]
⋄ − 1

)
◦ e

[Φ]
⋄ = 0 (3.15)

holds, where the notation is meant to stress that the object within the parenthesis should

be interpreted as the Ψ in eq. (3.8). We should emphasize that eq. (3.15) ought to be valid

identically, independently of the superfield Φ as a property of the brackets themselves.

Moreover, we have introduced a derivative with respect to the HS super-field Φ, given by

δ

δΦ(x1, θ01, ξ 1, θ 1, θ̄ 1)
Φ(x2, θ

0
2, ξ 2, θ 2, θ̄ 2)

= δ(x1 − x2) δ(θ
0
1 − θ02) exp

(
ξ1 · ξ2 − θ1θ̄2 + θ̄1θ2

)
, (3.16)

so that one is led, by convention, to
(
Λ ⋆

δ

δΦ

)
[Φ] = [Λ] , (3.17)

(
Λ ⋆

δ

δΦ

)
[ Φ, . . . ,Φ︸ ︷︷ ︸

n

] = n [Λ,Φ, . . . ,Φ︸ ︷︷ ︸
n−1

] . (3.18)

No distinction is needed between left and right derivatives, since the field Φ has ghost

number zero. At this point we have not said much about the brackets, aside from the

condition (3.15). Interestingly, it turns out that a nice algebraic structure, called in the
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mathematical literature homotopy associativity [135–137], is encoded in (3.15). In order

to make this structure manifest, it is convenient to expand (3.15) order by order in Φ,

obtaining the conditions

Q 2Φ = 0 , (3.19)

Q [Φ,Φ] + 2 [QΦ,Φ] = 0 , (3.20)

Q [Φ,Φ,Φ] + 3[QΦ,Φ,Φ] + 3[[Φ,Φ],Φ] = 0 , (3.21)

. . .

The first is automatically satisfied given the BRST operator (2.5) while the second, once

the BRST charge has been chosen, is an equation for the bilinear product [ · , · ], that

should be constructed so as to make the BRST charge Q a derivation. The third equation

relates the cubic term to the quadratic one by the condition that the failure of the BRST

charge to be a derivation at this order should be compensated by the possible failure of the

Jacobi identity for the quadratic product. One can keep going along these lines, studying

all other relations that, if solved consistently, give rise to full gauge covariant HS equations

of motion. Exploiting the consistency condition (3.15), one can also make a further step,

verifying the on-shell closure of the gauge algebra to all orders and computing, formally at

least, the HS algebra of gauge transformations that takes the form

[δΛ1 , δΛ2 ] Φ ≈ δF (Λ1,Λ2,Φ)Φ , (3.22)

where F (Λ1,Λ2,Φ) is some function encoding the structure constants of the HS, or more

generically, Field Theory algebra. Computing the commutator of two gauge transforma-

tions one indeed recovers

[δΛ1 , δΛ2 ] Φ =Λ [2 ◦
(
Λ 1] ◦ e

[Φ]
⋄

)
◦ e

[Φ]
⋄

=
(
Λ [1 ◦ e

[Φ]
⋄

)
◦ Λ 2] ◦ e

[Φ]
⋄ =

(
[Λ[1] ⋄ e

[Φ]
⋄

)
◦ [Λ2]] ⋄ e

[Φ]
⋄ , (3.23)

where we repeatedly used eq. (3.14) together with the fact that Λ 1 ◦ e
[Φ]
⋄ has vanishing

ghost-number and where we have used the notation
(
Λ 1 ◦ e

[Φ]
⋄

)
in order to make clear

that the object within the brackets has to be interpreted as Ψ in eq. (3.8). Eq. (3.23) can

be further simplified using (3.15). Hence, making use of the relation

0 =

(
Λ1 ⋆

δ

δΦ

)(
Λ2 ⋆

δ

δΦ

){(
e
[Φ]
⋄ − 1

)
◦ e

[Φ]
⋄

}
=
(
[Λ1,Λ2] ⋄ e

[Φ]
⋄

)
◦ e

[Φ]
⋄ (3.24)

+
(
[Λ[2] ⋄ e

[Φ]
⋄

)
◦ [Λ1]] ⋄ e

[Φ]
⋄ +

(
e
[Φ]
⋄ − 1

)
◦ [Λ1,Λ2] ⋄ e

[Φ]
⋄ ,

that can be recovered by taking into account the odd ghost number of Λi together with

the rules (3.17) and (3.18), one obtains

[δΛ1 , δΛ2 ] Φ ≈
(
[Λ1,Λ2] ⋄ e

[Φ]
⋄

)
◦ e

[Φ]
⋄ , (3.25)
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where we have used the on-shell EoM’s, so that
(
e
[Φ]
⋄ − 1

)
≈ 0.8 This implies that

F (Λ1,Λ2,Φ) = [Λ1,Λ2] ⋄ e
[Φ]
⋄ = [Λ1 ,Λ2] + O(Φ) . (3.28)

To reiterate what we have done so far, before going ahead and giving a more detailed

description of the actual n-ary products, we want to stress that this construction, together

with a choice of the BRST charge (2.5), is a very general setting from which field theories

originate. In particular, this is a formal translation of the Noether procedure and can deal

both with local and non-local field theories. We leave a further analysis on the important

issue of HS symmetries and HS geometry, especially in the light of the present discussion,

for future work.

3.2 Lagrangian form

Starting from the formal structure given above, let us now study a possible Lagrangian

formulation that is clearly important if one wants to quantize the theory, compute scattering

amplitudes or define a starting point to pursue the Batalin-Vilkovisky program [138–140].

This step can be actually addressed using the formalism developed so far, and indeed in

this setting9 it is straightforward to integrate eq. (3.12) to a full Lagrangian given by

L =

∫
dθ0

{
eΦ
}
, (3.29)

where by definition

{
Φn+1

}
≡ {Φ, . . . ,Φ︸ ︷︷ ︸

n+1

} = Φ ⋆̃ [ Φ, . . . ,Φ︸ ︷︷ ︸
n

] , (3.30)

with ⋆̃ defined in (2.13) and hence

{1} = 0 , {Φ} = 0 . (3.31)

At this point, having in mind this incarnation of the Noether procedure, it is worthwhile

for the ensuing discussion to give an explicit definition of the n-ary products (3.3) in terms

of some color-ordered kernels K12...n playing the role of generalized structure constants.

Here, we define

K12...n = K12...n

(
p i, ∂θ0i

; ξi, θi, θ̄i

)
, 1 ≤ i ≤ n , (3.32)

to be any Lorentz invariant function defined over H with ghost number equal to zero. To

be explicit, we have added ∂θ0i
as the ghost coordinate related to p i, or θi and θ̄i as the

8Notice that we can go on-shell after having computed the derivatives. Hence in our conventions on-shell

Ψ ◦
(

e
[Φ]
⋄ − 1

)

6= 0 , (3.26)

while
(

e
[Φ]
⋄ − 1

)

= 0 . (3.27)

9Analogous results can be obtained in other settings that are different from the triplet system, if the

corresponding pairing is constructed.
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ghost coordinates related to ξi. In particular, the building blocks of the bosonic part of

K12...n are10

ξi · ξj , p i · ξj , p i · p j , (3.33)

while the building blocks of the complete kernel defined over the whole super phase-space

H are the ghost-number zero terms (see also [65, 143–145])

ξi · ξj , p i · ξj , p i · p j , θi ∂θ0j
, θi θ̄j . (3.34)

One can then express the n-ary products in terms of the K12...n’s, writing

[Φ1, . . . ,Φn](Ξ) =
∑

σ

[
Φσ(1)

(
Ξσ(1)

)
. . .Φσ(n)

(
Ξσ(n)

)]

⋆ 1,...,n K 0σ(1)σ(2)...σ(n)

(
Ξ̂, Ξ̂1, . . . , Ξ̂n

)
θ0 , (3.35)

where the sum is over all permutations σ of the external legs and we have used the short-

hand notation

Ξi =
(
p i, θ

0
i , ξi, θi, θ̄i

)
, Ξ̂i =

(
p i, ∂θ0i

, ξi, θi, θ̄i

)
, (3.36)

for these collections of relevant variables. Let us stress that we have defined the n-ary

products in terms of color-ordered Kernels that, as such, are intimately related to open-

string-like couplings. In the following we will also discuss other types of Kernels that one

can call similarly of the closed-string-type in order to underline how string results actually

reflect interesting field theory properties that are still to be completely understood. As one

can expect, closed-string-like kernels also contribute, along similar lines, to the definition

of n-ary products, thus leading to distinguish two different kinds of couplings. We begin

in the next sections by addressing the problem of finding the structure of the K123’s and

K1234’s that is consistent with (3.15), discussing also some implications at the level of the

S-matrix. We shall see in practice the advantages of starting with the on-shell results

in a gauge-fixed system in order to recover eventually a consistent off-shell deformation.

Afterwards, describing in this field theory setting the results of [64], we shall turn to

analyze the problem of the trilinear product and its relation to a tree-level four-point S-

matrix, recognizing along lines that are actually in the spirit of the previous work [112] the

role of non-localities whenever HS fields are taken into account and analyzing the nature

of the difficulties that are to be faced when addressing this problem.

3.3 Binary product

As we have seen in the previous section, a fully consistent binary product is bound to

satisfy the condition

Q [Φ1(Ξ1),Φ2(Ξ2)](Ξ) + [Q1Φ1(Ξ1),Φ2(Ξ2)](Ξ) + [Φ1(Ξ1), Q2Φ2(Ξ2)](Ξ) = 0 . (3.37)

10In this paper we choose to not consider terms proportional to the Levi-Civita tensor ǫµ1...µD
that, for

any fixed number of legs in K12...n, can give rise to non-trivial contributions only for some lower dimensions.

It would be interesting to analyze this kind of options for D = 3.
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In terms of the kernel K123

(
Ξ̂1, Ξ̂2, Ξ̂3

)
this equation translates into

(Q1 + Q2 + Q3) K123

(
Ξ̂1, Ξ̂2, Ξ̂3

)
θ01 θ

0
2 θ

0
3 = 0 , (3.38)

and, in order to find a solution to (3.38) one can exploit the results obtained in [62, 64] where

a kernel K123 was presented in the on-shell gauge-fixed form, as a consistent deformation

of the universal quadratic action proportional to p 2 of eq. (1.9), and then extended off-

shell.11 Hence, in the on-shell gauge-fixed form of [64], the binary product so far considered

becomes

[φ 2 , φ 3 ](p 1, ξ1) =
∑

σ

[
φσ(2)

(
pσ(2), ξσ(2)

)
φσ(3)

(
pσ(3), ξσ(3)

) ]
⋆ 2,3 exp

(
G1σ(2)σ(3)

)
,

(3.39)

where φ 2 and φ 3 are matrix valued, the sum is over the two permutations of the set {2, 3},

G123(p i, ξi) =

√
α ′

2

[
(ξ 1 ·ξ 2 + 1) ξ 3 ·p 12 + (ξ 2 ·ξ 3 + 1) ξ 1 ·p 23 + (ξ 3 ·ξ 1 + 1) ξ 2 ·p 31

]
, (3.40)

and by definition

p ij = p i − p j . (3.41)

The complete off-shell result can then be recovered also in the formalism presented here,

completing (3.40) on the whole H. This step can be afforded with standard techniques [20,

122], and the result is of the form

G off-shell
123

(
Ξ̂ i

)
= g

(1)
ijkl ξi · ξj ξk · p l + g

(2)
ijkl θiθ̄j ξk · p l + g

(3)
ijkl ξi · ξj θk∂ θ0

l
+ g

(4)
ijkl θiθ̄j θk∂ θ0

l

+ g
(1)
ij ξi · p j + g

(2)
ij θi∂ θ0j

+ g
(3)
ij θiθ̄j + g

(4)
ij ξi · ξj , (3.42)

where all terms of G in eq. (3.40) have been supplemented with corresponding partners in

the full H, so that the coefficients satisfy the symmetry relations

g
(1)
ijkl = g

(1)
jikl , g

(3)
ijkl = g

(3)
jikl , g

(4)
ijkl = g

(4)
kjil , (3.43)

together with a cyclicity property with respect to the external legs. The condition of

eq. (3.38) fixes all the remaining coefficients of the expansion (3.42), so that after some

algebra, one is led to the general solution

G off-shell
123

(
Ξ̂ i

)

=A

(
g
(1)
ijkl ξi · ξj ξk · p l + g

(2)
ijkl θiθ̄j ξk · p l + g

(3)
ijkl ξi · ξj θk∂ θ0

l
+ g

(4)
ijkl θiθ̄j θk∂ θ0

l

)

+ B

(
ξ1 · p 23 + ξ2 · p 31 + ξ3 · p 12 − θ1∂ θ023

− θ2∂ θ031
− θ3∂ θ012

)

+ C

(
θ1θ̄1 + θ2θ̄2 + θ3θ̄3 +

1

2
(ξ1 · ξ1 + ξ2 · ξ2 + ξ3 · ξ3)

)
, (3.44)

where A, B and C are free relative coefficients that cannot be fixed simply from (3.38), while

the coefficients g
(l)
ijkl can be read in table 1. Here, for generality, we have also considered

11For a brief review of this results see appendix D.
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Index combination g(1) g(2) g(3) g(4)

1231 1 -2 -1 1

1232 -1 0 1 -1

1233 0 0 0 1

1211 0 0 1 0

1212 -1 2 0 0

1213 -1 2 0 0

1221 1 -2 0 -4

1222 0 0 -1 1

1223 1 0 0 -1

1111 0 0 0 0

1112 -1 -2 1 0

1113 1 2 -1 0

1121 -2 -4 1 1

1122 -6 -12 -5 -4

1123 0 -2 -1 -1

1131 2 4 -1 -1

1132 0 2 1 1

1133 6 12 5 4

2131 0

2132 2

2133 0

2111 0

2112 2

2113 0

2121 -2

2122 0

2123 -2

Table 1. Coefficients entering the solution of (3.38). The empty entries can be recovered from the

ones given using cyclicity property of the indices.

the additional gauge-invariant term proportional to C that on-shell is non-zero only for

reducible fields, and in this framework can be considered as a further mixing term among

the components of the various triplets. We stress that one needs to consider the whole

expression for G off-shell as given in (3.44), choosing12

A = B , (3.45)

if one wants to reproduce after gauge fixing the same G of eq. (3.40). Moreover, at least in

principle, it should be possible to decompose the vertex related to (3.44) into the Fronsdal

vertices given in [62, 64] for irreducible fields, although ST is naturally formulated in this

12The coefficient C does not play any role on-shell for reducible fields.
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picture that, as we can see, bears also a simpler relation to a FDA. Anyway, we have to say

that any other off-shell completion would be at this stage equally meaningful, as we discuss

in appendix C and D. Both the three-point off-shell vertices and the on-shell amplitudes

thus take the form

A 3 =
∑

σ

Tr
[
φ 1 (p 1, ξ1) φσ(2)

(
pσ(2), ξσ(2)

)
φσ(3)

(
pσ(3), ξσ(3)

) ]
⋆ 1,2,3 exp

(
G1σ(2)σ(3)

)
,

(3.46)

with G given by eq. (3.40) or by eq. (3.42), respectively. We emphasize here that the

operator G123 encodes the tensor structures that one could recover at the cubic level in any

HS theory and indeed, apart from any specific case, the most general kernel K123 that is

consistent with gauge invariance and does not contain traces, is13

K123(p i, ξi) = a
(
G
(0,1)
123 , G

(0,2)
123 , G

(0,3)
123 , G

(1)
123

)
, (3.47)

where a(z1, z2, z3, w) is an arbitrary function symmetric under exchange of the zi’s, that

encodes the overall relative coefficients between the various couplings, while both the G
(0,i)
123 ’s

and G
(1)
123, after a complete on-shell gauge fixing, reduce to

G
(0,1)
123 =

√
α ′

2
ξ 1 · p 23 , G

(0,2)
123 =

√
α ′

2
ξ 2 · p 31 , G

(0,3)
123 =

√
α ′

2
ξ 3 · p 12 , (3.48)

G
(1)
123 =

√
α ′

2

[
ξ 1 · ξ 2 ξ 3 · p 12 + ξ 2 · ξ 3 ξ 1 · p 23 + ξ 3 · ξ 1 ξ 2 · p 31

]
, (3.49)

and satisfy individually the conditions

p i · ∂ξi G
(i,k)
123 ≈ 0 , (3.50)

where ≈ means on-shell and modulo divergence terms. We stress that these equations

implement, at the level of the 3-point functions, the linearized part of the gauge trans-

formations of the fields related to the free system and to the physical requirement of

decoupling unphysical degrees of freedom. In principle, as we have done in (3.44), one

could also consider more complicated functions of three additional totally cyclic arguments

depending on

θiθ̄i +
1

2
ξi · ξi , i = 1 , 2 , 3 , (3.51)

that, being proportional to traces, vanish identically on-shell for irreducible fields. Apart

from terms proportional to traces, the four terms in which G off-shell
123 splits are of order one

and three in the ξi’s, and their complete expressions can be easily read off from eq. (3.44).

In the following, in order to simplify the discussion we shall concentrate on a particular

exponential generating function in terms of the single operator (3.44), keeping in mind

however, the possibility of playing with relative coefficients. The important issue of con-

straining the coupling function at this order and the spectrum by purely field theoretic

arguments is left for future work.

13For a on-shell proof of this statement see appendix B.
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Figure 2. Cubic couplings for scalars and gauge boson corresponding to the pieces in which

G123 splits.

Finally, we would like to emphasize the simple form of (3.48) and (3.49) and their link

with the cubic tree-level Feynman rules of a theory containing a gauge boson and a scalar

field. It is indeed true that the expressions (3.48) and (3.49) coincide with the corresponding

tree-level expressions for the color-stripped three-point amplitudes of figure 2, where we

have also considered, for generality, a three-scalar amplitude that is just a constant overall

factor and does not affect gauge invariance by definition. Here, ξ1, ξ2 and ξ3 are the

polarization tensors of the gauge boson while the scalar wavefunction is conventionally

set to one. This observation will be important in the following, when we shall generalize

the construction to higher orders. Moreover, since G123 is totally antisymmetric under

permutations of the external legs

G123 = −G132 , (3.52)

the same is true for any odd power of them. As a result, in this case the sum in (3.46)

will generate the group theory factors that are appropriate, at odd levels, for the classical

groups for which the T a’s belong to the fundamental representation. In this construction, of

course, the levels reflect the spins of the states, rather than their masses as in String Theory.

On the other hand, even powers of G123 are totally symmetric under permutations of the

external legs, and this suffices to generate the group theory factors that are appropriate at

even levels.

3.4 Ternary product

In this section we analyze eq. (3.21) in order to recover the general form of a consis-

tent ternary product. As in the previous case, it can be of use to exploit the full super

phase-space H in which the picture provided by the FDA is available. As we have antici-

pated, we consider a kernel representation of the ternary product given by some function

K1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)
, whose labels {1 , 2 , 3 , 4} are meant to emphasize that we are re-

stricting the attention to color-ordered kernels, thus splitting eq. (3.21) into independent

color-ordered contributions. Restricting the attention to one of these, eq. (3.21) takes
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the form

[
(Q1 + Q2 + Q3 + Q4) K1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)]
θ01 θ

0
2 θ

0
3 θ

0
4

= −
[
K(12|a

(
Ξ̂1, Ξ̂2, Ξ̂a

)
θ0a ⋆a Kã|34)

(
Ξ̂ã, Ξ̂3, Ξ̂4

)]
θ01 θ

0
2 θ

0
3 θ

0
4 , (3.53)

where we have adopted the notation

K(12|aKa|34) = K12aKa34 + K23aKa14 , (3.54)

in order to recover a cyclic quantity under permutations of the external legs. It is now

relatively simple to work out a particular solution of this equation as for instance

K1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)

= −

(∫
dθ0aK(12|a

(
Ξ̂1, Ξ̂2, Ξ̂a

)
θ0a

)
⋆̃a
p 2
a

(∫
dθ0ã Kã|34)

(
Ξ̂ã, Ξ̂3, Ξ̂4

)
θ0ã

)
. (3.55)

This statement can be proved observing that, acting with Q1 + Q2 on K12a, one can

exploit (3.38) obtaining

Q1 + Q2 → −Qa , (3.56)

while acting with Q3 + Q4 on Ka34 one can similarly obtain

Q3 + Q4 → −Qã . (3.57)

Now, since by definition

p a + p ã = 0 , (3.58)

one is finally led to

Q1 + Q2 + Q3 + Q4 → −
(
θ0a + θ0ã

)
p 2
a , (3.59)

which cancels the non-locality and yields after few manipulations the right-hand side

of (3.53). The solution so far obtained to the Noether procedure was recognized already

in [64] by standard on-shell techniques, but it is only a particular solution of the non-

homogeneous equation (3.53) and still leaves some freedom that, as we shall see, is closely

related to the possibility of recovering a non-vanishing four-point S-matrix amplitude. In-

deed, one can always add to this solution another contribution that solves identically the

homogeneous equation

(Q1 + Q2 + Q3 + Q4) K̃1234 = 0 . (3.60)

Summarizing, the most general form of the solution to (3.53), and hence to the Noether

procedure at this order, is

K1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)

= −

(∫
dθ0a K(12|a

(
Ξ̂1, Ξ̂2, Ξ̂a

)
θ0a

)
⋆̃a
p 2
a

(∫
dθ0ã Kã|34)

(
Ξ̂ã, Ξ̂3, Ξ̂4

)
θ0ã

)

+ K̃1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)
. (3.61)
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This form manifests the relation between K1234, the current exchange part and simpler

quantities like K̃1234 that solve homogeneous equations and entail the linearized gauge

symmetries (tantamount to Ward identities) of the free system (1.9). In this form the

Lagrangian coupling can be, in principle, both local and non-local and in the next sections

we shall analyze its properties. Before going ahead, let us concentrate on four-point S-

matrix amplitudes, that have been over the years a key obstruction to building a consistent

theory of massless HS particles in flat space. The following section is meant to clarify the

meaning of K̃1234 and its relation to an S-matrix amplitude.

4 Four-point scattering amplitudes

In this section we recover the Feynman rules from the Lagrangian (3.29), computing the

four-point S-matrix amplitudes and clarifying the role of the kernel K̃1234 introduced in

the previous section. In order to recover the Feynman rules for the theory (3.29), one

should begin by choosing an appropriate gauge. In analogy with String Field Theory it

is natural to choose the Feynman-Siegel gauge for the superfields Φ in (2.6), that in our

notation reads

∂θ0 Φ(Ξ) = 0 , (4.1)

and sets to zero all components of Φ proportional to θ0 (C = 0). The propagator then

simplifies, since the kinetic term takes the diagonal form

L(2) = Φ ⋆̃ (−p 2)Φ , (4.2)

and one obtains the propagator

P =
⋆̃

p 2
, (4.3)

that is nicely expressed in terms of the contraction ⋆̃ in (2.13). The color-ordered Feynman

rules for the cubic and quartic interactions associated to the color-ordered kernels so far

considered can be recovered integrating the Lagrangian vertices over the θ0 coordinates,

and read

V
(3)
123 =

∫
dθ01dθ

0
2dθ

0
3 K123

(
Ξ̂1, Ξ̂2, Ξ̂3

)
θ01 θ

0
2 θ

0
3 , (4.4)

V
(4)
1234 = −

∫ 4∏

i=1

dθ0i

×

(∫
dθ0a K(12|a

(
Ξ̂1, Ξ̂2, Ξ̂a

)
θ0a

)
⋆̃a
p 2
a

(∫
dθ0ã Kã|34)

(
Ξ̂ã, Ξ̂3, Ξ̂4

)
θ0ã

)
θ01 θ

0
2 θ

0
3 θ

0
4

+

∫ 4∏

i=1

dθ0i K̃1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)
θ01 θ

0
2 θ

0
3 θ

0
4 . (4.5)
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One can now compute the HS four-point amplitudes, ending up with

A4 =
∑

σ

Tr
(
Φ1(Ξ1) Φσ(2)(Ξσ(2)) Φσ(3)(Ξσ(3)) Φ4(Ξσ(4))

)

⋆ 1,2,3,4

∫ 4∏

i=1

dθ0i K̃1σ(2)σ(3)σ(4)

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)
θ01 θ

0
2 θ

0
3 θ

0
4 , (4.6)

where the trace is over the color indices and where only the contribution coming from K̃1234

is still present, while the contribution given by the current exchanges is completely canceled

by the first contribution to the quartic coupling. In some sense what we have recovered

here is the equivalence between the Noether procedure at the Lagrangian level, together

with its links to a non-abelian deformation of the gauge symmetries, and the decoupling

of unphysical states at the S-matrix level that is intrinsically related to the linearized part

of the gauge symmetry. Moreover, this construction clarifies the role of K̃1234 that, indeed,

coincides on-shell, after a complete gauge fixing, with the four-point amplitude generating

function. In the following we shall provide the general tree-level form for K̃1234, both in the

framework of the on-shell gauge-fixed system (1.9) and off-shell, extracting the Lagrangian

couplings and commenting on the issue of non-localities, also in relation to the content of

Weinberg’s theorem of [110]. Let us emphasize that we have split the quartic Lagrangian

couplings into portions that are generically non-local, putting on more general grounds

their form along lines that are actually in the spirit of [112]. From this point of view the

quartic couplings are to be regarded as counterterms canceling the non-vanishing linearized

gauge variation of the current exchange amplitude and can be in principle non-local as well,

canceling in this case the portion of the current exchange whose gauge variation cannot be

compensated by local terms. K1234 is indeed explicitly non-local if K̃1234 does not contain

all current exchanges with the correct overall coefficients.

Having relaxed the standard locality hypothesis as we have done so far we need to find

some physical alternative that has to give a rationale for the possibly non-local answer.

This is what we call minimal scheme. It is defined via a number of constraints on the

couplings, and hence on the cubic coupling function together with the spectrum of the

theory, that have to satisfy altogether the following prescriptions:

• any particle propagating in some exchange gives rise to non-vanishing four-point

amplitudes where it plays the role of an external state,14

• any quartic coupling does not contain portions that are identically gauge invariant

under the linearized gauge variation,15

14With this constraint we ensure that the S-matrix be non trivial and that all current exchanges be built

from states present in the spectrum constraining both the latter and the coupling functions of the theory.
15With this requirement we avoid for simplicity local quartic couplings that are proportional to the

amplitude itself multiplied with Mandelstam variables in order to get a local object. This requirement is

not so strict and can be eliminated in the most general case.
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• all exchanges generated that admit a gauge invariant completion (possibly non-local)

whose form does not spoil the initial exchange, have to admit a local gauge invariant

completion to a non-vanishing four-point scattering amplitude,16

• only those non-vanishing current exchanges that do not admit a gauge invariant

completion preserving the initial exchange have to be removed by non-local quar-

tic couplings.17

At the end only the current exchanges of the latter type, if any, will not contribute to the

amplitudes while any residue present in a given scattering amplitude will be associated

with one of the propagating degrees of freedom present in the spectrum. This iterative

procedure fixes the non-vanishing entries of the cubic coupling function and in principle also

the relative coefficients between different cubic couplings and enforces constraints on the

possible spectra playing the same job of locality in the lower-spin cases. Other possibilities

are related to quartic local couplings that are gauge invariant under the linearized gauge

variation. This types of couplings are proportional to K̃1234 but contain a sufficient number

of Mandelstam variables in the numerator in order to give rise to a local object. Any

coupling of this type can give in principle a consistent local field theory with no cubic

coupling but since the tensorial structure is the same of K̃1234, these kinds of options are

clearly encoded into choices of the relative functions of the Mandelstam variables that

weight each different contribution to K̃1234. In the following, we shall restrict our attention

to the minimal scheme and pursuing this kind of program, that entails the usual Noether

procedure, we are going to explore in which sense the usual notion of local field theory may

be overcome leaving though a systematic analysis of those constraints and of their solutions

for the future.18 Moreover, we want to mention that some solutions that comply to the

minimal scheme explicitly clash with many commonly accepted ideas about the structure

of the S-matrix for massless particles. However, given the enormous difficulties present on

this subject related to various assumptions whose origin cannot be proved in a rigorous

sense starting from the usual causality and unitarity hypothesis [147], we make the choice

of exploring the minimal setting that can give rise to non-trivial HS interactions trying to

understand in which sense their non-triviality makes them different from their lower-spin

counterparts and having always in mind their deformation to non-zero constant curvature

backgrounds and to massive theories. We also leave for the future the important question

of clarifying wheatear the minimal scheme here proposed is sufficient to imply consistent

global symmetries of higher spin, as it does for their lower-spin counterparts.

4.1 The Yang-Mills example

In the previous sections we have obtained the general form of the quartic coupling working

in the framework of FDA and stressing the role of linearized gauge symmetries related to

16This is equivalent to considering the maximal set of gauge invariant amplitudes enforcing a correspon-

dence between residues and the propagating particles present in the spectrum. More in detail if a residue

is present, its coefficient cannot be different from that of the corresponding current exchange.
17Non-localities should never touch the correspondence between residues and exchanges.
18It can be useful to stress that for the lower-spin cases the solutions to the minimal scheme are all local.
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the free system. In order to make the construction explicit let us apply these techniques to

the familiar case of Yang-Mills theory coupled to scalar fields in the adjoint representation.

In order to study this problem, it is instructive to restrict momentarily the attention to

the on-shell gauge-fixed part of the kernel and to begin by finding a solution for K̃1234 up

to divergences and mass-shell conditions for the external states. In this framework the

gauge-fixed part of the kernel K̃1234 can be recovered solving the equations

p i · ∂ξ i
K̃1234(p j , ξ j) ≈ 0 , (4.7)

where ≈ means that the result is to hold on-shell for the external states and up to terms

proportional to divergences. Actually, the physical meaning of (4.7), and more generally

of (3.60), amounts to the decoupling condition for unphysical polarizations (Ward identi-

ties) at the level of the S-matrix, that has the form of the linearized gauge symmetry of the

free system. We emphasize here the analogy between these constraints and those satisfied

by the Kernels (3.48) and (3.49). The only difference is that the solution of the decoupling

condition is no more, in general, a Lagrangian coupling, simply because from the quartic

order Lagrangian couplings do not coincide with S-matrix amplitudes but rather differ from

them in the current exchange parts. What happens in the three-point case is actually an

accident from this point of view, and it is actually simpler to solve homogeneous equations

like (3.60) rather than (3.53). Following our strategy, one can start from the current ex-

change amplitude that can be constructed from the cubic Feynman rules encoded in (3.40),

and restricting the attention to a single color-ordered contribution, one is left with

A
(exch.)
1234 = −

1

s
G12a ⋆ a Ga34 −

1

u
G41a ⋆ a Ga23 , (4.8)

where only the s and u channels contribute, we use the bosonic ⋆ of eq. (2.12), and the

Mandelstam variables are

s = − (p 1 + p 2)
2 , t = − (p 1 + p 3)

2 , u = − (p 1 + p 4)
2 , (4.9)

with all ingoing momenta. This current exchange (4.8) is not gauge invariant, and its

linearized gauge variation reads

δ4A
(c.e.)
1234 = p 4 · ∂ξ4 A

(c.e.)
1234 (4.10)

= − 2ξ2 · p4 + ξ1 · p4 + ξ3 · p4 − 2ξ1 · ξ3ξ2 · p4 + ξ1 · ξ2ξ3 · p4 + ξ2 · ξ3ξ1 · p4,

so that the whole point of the Noether procedure, as we have stressed, is to produce

a local, or possibly non-local, counterterm whose linearized gauge variation cancels this

contribution. The totally cyclic counterterm can be worked out relatively easily in this

case: it is local, and is given by

VYM
1234 =2 ξ1 · ξ3 ξ2 · ξ4 − ξ1 · ξ4 ξ2 · ξ3 − ξ1 · ξ2 ξ3 · ξ4 (4.11)

+ 2 (ξ1 · ξ3 + ξ2 · ξ4) − ξ1 · ξ2 − ξ2 · ξ3 − ξ3 · ξ4 − ξ4 · ξ1 ,

so that it coincides precisely with the corresponding color-ordered contribution to the

Yang-Mills quartic coupling generating function that can be deduced from the Yang-Mills

Lagrangian coupled to scalar fields.
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Returning to our discussion, we would like to reiterate that we have recovered the

Yang-Mills quartic Lagrangian generating function V YM
1234 following the strategy outlined

in the previous section and imposing the decoupling condition of unphysical degrees of

freedom at the level of the amplitude, that coincides with the linearized gauge invariance

of the free system. One then recovers the full generating function of Yang-Mills four-point

amplitudes in color-ordered form, given by

G1234(p i, ξ i) = −
1

s
G12a ⋆ a Ga34 −

1

u
G41a ⋆ a Ga23 + V YM

1234 , (4.12)

that is actually a solution for K̃1234(p i, ξ i). In a similar fashion, any Lagrangian vertex can

be recovered as a counterterm that guarantees the gauge invariance property of the corre-

sponding amplitude while, as pointed out in the previous section, the key physical content

of the Noether procedure is to produce amplitudes that decouple unphysical degrees of

freedom and encode in principle consistent non-abelian deformations of the gauge symme-

try. Moreover, we want to underline, as also stressed in [112], that from Noether procedure

alone there is no general argument forcing to choose local counterterms for V1234. It is then

interesting at least in principle to analyze the most general quartic coupling, studying also

non-local solutions in this simple toy model. In this case, for instance, we can conceive to

define the kernel as

K̃1234 = λG1234 , (4.13)

with λ an overall coefficient that does not affect the defining property of eq. (4.7). This

choice would led to a non-local quartic Lagrangian coupling of the form

V
(4)
1234(p i, ξ i) = −

λ − 1

s
G12a ⋆ a Ga34 −

λ − 1

u
G41a ⋆ a Ga23 + λV YM

1234 , (4.14)

where we have subtracted the current exchange contribution in eq. (4.8). Similarly, one

could have also started from a more general current exchange of the form

A
(exch.)
1234 = −

α

s
G12a ⋆ a Ga34 −

β

u
G41a ⋆ a Ga23 , (4.15)

weighted by different constants α and β, that can be interpreted as parameterizing a

violation of the Jacobi identity, and yielding to the non-local Lagrangian quartic coupling

V
(4)
1234(p i, ξ i) = −

λ − α

s
G12a ⋆ a Ga34 −

λ − β

u
G41a ⋆ a Ga23 + λV YM

1234 . (4.16)

The meaning, if any, of these class of solutions, that manifest themselves in this setting

creates a sort of ambiguity related to the various choices for the parameters λ, α and β, so

much so that if one wants to relax the locality constraint one clearly needs to replace it with

something else. Our observations move from the fact that, whatever the choice for these

coefficients, the amplitude that one recovers at the end is always given by eq. (4.13), whose

residues have a fixed form matching the current exchange part only if λ = α = β. Hence,

we are led again to the conclusion that the only choice leading to a physically meaningful

setting is exactly α = β = λ, in which the current exchange contributions extracted

from (4.13) can be entirely related to the cubic part of the theory via the current exchanges,

– 27 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

as the minimal scheme requires, while all other choices violate it.19 An opposite situation

presents itself when the theory possesses cubic couplings leading to current exchanges

whose violation of gauge invariance leads to amplitudes that cannot factorize on the initial

exchanges. In such cases the quartic coupling becomes intrinsically non-local, as we shall

see in the next sections,20 and either the cubic couplings cannot be pursued to a consistent

theory because non-localities create further inconsistencies or one needs to resort to the

minimal scheme or to other similar frameworks.

The full amplitude generating function is then obtained summing over all color order-

ings as

A(Φ1,Φ2,Φ3,Φ4) = T
∑

σ

Tr
[
Φ1(ξ1) Φσ(2)(ξσ(2)) Φσ(3)(ξσ(3)) Φσ(4)(ξσ(4))

]

⋆ 1234 G1σ(2)σ(3)σ(4)(p i, ξ i) , (4.17)

where we consider a matrix valued generating function

Φ(p, ξ) = φ(p) + A(p) · ξ , (4.18)

encoding both the scalar wave-function and the polarization tensor of gauge bosons. The

sum is over all permutations of three elements, in order to recover the usual group theo-

retical factors

fabef cde ∼ Tr
(
[T a, T b][T c, T d]

)
, (4.19)

together with a sum over the non-cyclic permutations of the external legs. Moreover, we

have also expressed the amplitude in terms of the bosonic contraction (2.12) acting on the

ξi’s. It is interesting to observe that the kernel G1234 satisfies some simple relations like

G1234 + G2134 + G2314 = 0 , G1234 = G4321 , (4.20)

that, together with the cyclicity in the external legs, leave two independent objects, say

for instance

G1234 , G1243 . (4.21)

This is to be confronted with the case of three-point functions, where a single independent

ordering of the external legs

G123 , (4.22)

was available. Analyzing more in detail what we have gained, as for three-point amplitudes,

one can look more closely at the various contributions to G1234, distinguishing them by their

19Whenever a finite number of degrees of freedom were to contribute to the residue, arbitrary choices

of α, β and λ would clearly result in violations of tree-level unitarity, since the residue would not match

the current exchange contribution of eq. (4.15) that takes into account the correct degrees of freedom that

ought to be propagating. The situation may well be different if an infinite number of degrees of freedom

contributes to the same residue.
20Notice that in the YM case just presented as well as in all standard low-spin examples, including

classical gravity, the minimal scheme implies locality.
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order in the symbols ξi’s. In this case, for each of the independent terms G1234 and G1243,

one can extract three different contributions of order 0, 2 and 4 in the symbols, given by

a−1(s, t, u)G
(−1)
1234 (p i) = −

(
2 t − 2

s u

t

)
G
(−1)
1234 (p i)

=G1234(p i, λ ξi)
∣∣∣
λ=0

=
t − u

s
+
t − s

u
, (4.23)

G
(1)
1234(p i, ξi) =

(
d

dλ

) 2

[G1234(p i, λ ξi)]
∣∣∣
λ=0

, (4.24)

G
(2)
1234(p i, ξi) =

(
d

dλ

) 4

[G1234(p i, λ ξi)]
∣∣∣
λ=0

. (4.25)

The first is a function of the Mandelstam variables that is related to the four-scalar am-

plitude. Here, by convention we have defined G
(−1)
1234 as the factorized contribution with a

scalar exchange, encoding in the function

a−1(s, t, u) = −

(
2 t − 2

s u

t

)
, (4.26)

the residue of the spin-1 exchange. On the other hand, the other two G
(i)
1234’s are related,

respectively, to the two scalar — two gauge boson amplitude and to the four gauge boson

amplitude, whose structure has been recovered here enforcing linearized gauge invariance.

To summarize, we have recovered the analogs of the three-point G
(0)
123 and G

(1)
123.

They are:

G
(1)
1234(p i, ξi) , G

(2)
1234(p i, ξi) , G

(1)
1243(p i, ξi) , G

(2)
1243(p i, ξi) , (4.27)

and can be related to the tree-level S-matrix amplitudes as

A(φ 1, φ 2, A3, A4) =
∑

σ

Tr
[
φ 1 φσ(2)Aσ(3) · ξσ(3)Aσ(4) · ξσ(4)

]
⋆ 1234 G

(1)
1σ(2)σ(3)σ(4)(p i, ξ i) ,

(4.28)

A(A1, A2, A3, A4) =
∑

σ

Tr
[
A1 · ξ1Aσ(2) · ξσ(2)Aσ(3) · ξσ(3)Aσ(4) · ξσ(4)

]

⋆ 1234 G
(2)
1σ(2)σ(3)σ(4)(p i, ξ i) . (4.29)

The role of the overall constant factor, that at the cubic level corresponds to the three-scalar

coupling, is played here by the basic building block of a four-scalar amplitude given by

G
(−1)
1234 (p i) = −

1

s
−

1

u
=

t

s u
. (4.30)

The other G
(i)
1234’s are on the contrary color-ordered amplitudes for the processes involving

two or four gauge bosons. Explicitly

G
(1)
1234(p i, ξi) = −

[
1

s

(
G
(0)
12a ⋆a G

(1)
a34 + G

(1)
12a ⋆a G

(0)
a34 + G

(0)
12a G

(0)
a34

∣∣∣
ξa =0

)

+
1

u

(
G
(0)
41a ⋆a G

(1)
23a + G

(1)
41a ⋆a G

(0)
23a + G

(0)
12a G

(0)
a34

∣∣∣
ξa =0

)]

+ 2 (ξ1 · ξ3 + ξ2 · ξ4) − ξ1 · ξ2 − ξ2 · ξ3 − ξ3 · ξ4 − ξ4 · ξ1 , (4.31)
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and

G
(2)
1234(p i, ξi) = −

[
1

s
G
(1)
12a ⋆a G

(1)
a34 +

1

u
G
(1)
41a ⋆a G

(1)
23a

]
(4.32)

+ 2 ξ1 · ξ3 ξ2 · ξ4 − ξ1 · ξ4 ξ2 · ξ3 − ξ1 · ξ2 ξ3 · ξ4 .

The Kernels G
(i)
1234 that we have found here can be used to find the most general solution for

a kernel K̃1234 satisfying (4.7) in a theory with scalars and gauge bosons that is compatible

with the cubic couplings in figure 2. The corresponding solution reads

K̃1234 = a−1(s, t, u)G
(−1)
1234 + a0(s, t, u)G

(0)
1234 + a1(s, t, u)G

(1)
1234 + a2(s, t, u)G

(2)
1234, (4.33)

where the ai(s, t, u) are functions of the Mandelstam variables that do not introduce higher-

order poles with respect to the G
(i)
1234’s, laying the freedom left by Noether procedure in

building a consistent theory. They encode the residues of the various processes as well as

further local quartic couplings that are gauge invariant under the linearized gauge sym-

metry. In this case, by consistency, K̃1234 does not contain exchanges with spin greater

than one, while the G
(i)
1234’s are defined in eqs. (4.30), (4.31) and (4.32). Moreover, one

can see the reason why we have left a free slot for G
(0)
1234, since we can consider a further

contribution linear in the symbols ξi and defined as

G
(0)
1234 = −

1

s
(ξ1 · p 2a + ξ2 · p a1 + ξ3 · p 4ã + ξ4 · p ã3) (4.34)

−
1

u

(
ξ1 · p b4 + ξ2 · p 3b̃ + ξ3 · p b̃2 + ξ4 · p 1b

)
,

where by convention

p a = − p 1 − p 2 , p ã = − p a , p b = − p 1 − p 4 , p b̃ = − p b . (4.35)

Hence, the Yang-Mills plus scalar example is finally recovered with the choice

K̃YM
1234 = −

(
2 t −

s u

t

)
G
(−1)
1234 + G

(1)
1234 + G

(2)
1234 . (4.36)

Other non-standard examples related to a theory with gauge bosons and scalars can arise

whenever one takes into account the corresponding quartic amplitudes that can be ex-

tracted from the kernel [
G

(1)
1234

] 2
. (4.37)

In this case one can recover the local quartic couplings that are linked to the highest-

derivative cubic couplings involving two or three gauge bosons21 that in generating function

form read

ξ1 · p 23 ξ2 · p31 + cyclic , ξ1 · p 23 ξ2 · p31 ξ3 · p 12 . (4.38)

21The analogous term of the form
[

G
(0)
1234

] 4

cannot be considered here, since it gives rise to amplitudes

that propagate HS fields.
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In the following we shall keep always in mind that these amplitudes arise as particular

combinations of powers of the building blocks so far considered. In general one could also

choose, admitting some redundancy in the description, to consider generating functions of

these derived amplitudes together with the previous ones.

To conclude this section, we want to emphasize the role of the scattering amplitudes in

comparison with the Lagrangian couplings as we have recovered in (3.61). As we have seen,

it is possible to work directly at the amplitude level, where the gauge symmetry is realized

linearly, extracting the quartic couplings as counterterms needed in order to guarantee the

linearized gauge invariance. We want to emphasize here that, although the decoupling

condition for the unphysical polarizations does not fix the relative functional coefficients

between G
(0)
1234, G

(1)
1234 and G

(2)
1234, these can be completely fixed requiring either locality or

that all current exchanges contained in K̃1234 match the corresponding ones built from the

cubic couplings and viceversa whenever possible.22 In the following we will push forward

these observations, generalizing the results to HS gauge fields, with special attention to the

nature of the four-point Lagrangian couplings that for gauge bosons can be local, but in

this approach result explicitly from subtractions between different non-local objects and

can be, in general, non-local as well.

4.2 The HS case

In this section we are going to consider the general case of HS four-point couplings, extend-

ing the ideas of the previous section. In order to arrive at a systematic description of HS

four-point amplitudes, we proceed as before, considering the gauge-fixed theory of eq. (1.9)

in which all fields are transverse and carry, for simplicity, an irreducible representation of

the Lorentz group. At the end, we shall comment on the Lagrangian couplings that arise

after subtracting the current exchange portions. In order to achieve this goal we need to

exhibit the general kernel K̃1234 satisfying

(Q1 + Q2 + Q3 + Q4) K̃1234 = 0 , (4.39)

that is equivalent on-shell to the simpler condition

p i · ∂ξ i
K̃1234(pj , ξj) ≈ 0 . (4.40)

Actually, one can construct a general ansatz for a solution to eq. (4.40) starting from the

results obtained in the previous section and generalizing what happens in the three-point

case where, as we have discussed, the HS couplings are related to the gauge-boson ones.

Focusing on a generating function, it suffices to exponentiate the kernels obtained in the

22We are referring here, in particular, to our minimal scheme and to the portion of the correlation function

related to the current exchanges, leaving aside any local quartic coupling that is gauge invariant under the

linearized gauge transformations and is hence proportional to the amplitude itself.
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previous section, so that a solution to eq. (4.40) can be given by23

K̃1234(p j , ξ j) = −
1

su
exp

[
− su

(
G
(0)
1234 + G

(1)
1234 + G

(2)
1234

)]
. (4.41)

In general, admitting some redundancy as anticipated in the previous section, we could

also add to the exponent all other planar four-point amplitudes G
(n>2)
1234 that can be built

from the higher derivative cubic couplings involving two or three gauge bosons in eq. (4.38).

We could call this result with a little abuse of language, of the open-string-type since it is

planar and hence is naturally associated to Chan-Paton factors [148–152]. Moreover, K̃1234

should be considered modulo arbitrary relative functions of the Mandelstam variables, that

are not constrained by eq. (4.40) and play the role of relative weights between the various

totally cyclic terms in the expansion of (4.41), while we have considered a fixed ordering

1234 of the external legs so that only the G
(i)
1234’s enter and contribute to the correct channels

reproducing the HS exchanges. The full amplitude, that we can call again of the open-

string-type, is recovered as usual by

A(Φ1,Φ2,Φ3,Φ4) =
∑

σ

Tr
[
Φ1(ξ1) Φσ(2)(ξσ(2)) Φσ(3)(ξσ(3)) Φσ(4)(ξσ(4))

]

⋆ 1234 K̃1σ(2)σ(3)σ(4)(p i, ξ i) , (4.42)

where now Φi(ξi) is an arbitrary matrix valued generating function containing all totally

symmetric HS polarization tensors, while the trace is over the color indices. We clearly

recover the results of the previous section as soon as we restrict the attention to the linear

part in the G
(i)
1234’s. Going ahead, we have chosen a dependence as

suG
(i)
1234(p i, ξ i) , (4.43)

multiplying with (su) the kernels, in order to avoid higher-order poles as soon as one

considers HS fields. For instance, the form of a four-point scattering amplitude of the

open-string-type in the case of four spin-2 fields becomes here

K̃1234 ∼ −
1

su

∑

α+2β+4γ=8

aα,β,γ(s, t, u)
[
− suG

(0)
1234

]α [
− suG

(1)
1234

]β [
− suG

(2)
1234

]γ
,

(4.44)

where the aα,β,γ(s, t, u)’s are some functions that do not introduce additional poles in the

Mandelstam variables and that are to be fixed, in our minimal scheme, confronting them

with the corresponding current exchange amplitudes, and hence relating them to the cubic

coupling function, whose arbitrariness is in turn constrained by the minimal scheme itself.

The on-shell form of the quartic coupling generating function, or on-shell trilinear product

kernel, can be now extracted exploiting the on-shell version of eq. (3.61) that reads here

K1234 = −K(12|a ⋆a
P(ξa, ξã)

p 2
a

⋆ã Kã|34) + K̃1234 , (4.45)

23Notice that taking into account the total number of Lorentz invariant quantities available at this order

and counting the number of constraints put by gauge invariance one can see that the solution in eq. (4.41)

is constructed in terms of a sufficient number of color ordered independent building blocks. In general,

considering all possible four-point gauge-boson amplitudes one would end up with a redundant but possibly

more transparent description.
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where P(ξa, ξã) is the propagator numerator, all kernels are considered to be on-shell and,

in order to be explicit,

K̃1234 = −
1

su

∑

α, β, γ

aα,β,γ(s, t, u)
[
− suG

(0)
1234

]α [
− suG

(1)
1234

]β [
− suG

(2)
1234

]γ
. (4.46)

This form, as in the spin-1 case, encodes in principle also non-minimal choices, which reflect

some freedom left by Noether procedure, related to local quartic couplings that are gauge

invariant under the linearized gauge variation and whose tensorial structure is exactly

as in the amplitude, but multiplied by a sufficient number of Mandelstam variables that

suffice to eliminate all poles. Moreover, although (4.44) is a generic planar color-ordered

expression consistent with gauge invariance that one can write for four spin-2 fields it does

not exhaust all the possibilities, as it was the case for the cubic couplings. Indeed, we have

at our disposal two independent kernels G1234 and G1243 and another available option is to

combine them together using G1243 in place of the color factor. One ends up, in this way,

with the following type of derived kernel

K(ξ i , ξ
′
i) =

(
∑

σ

K̃1σ(2)σ(3)σ(4)(p i, ξ i) K̃1σ(2)σ(4)σ(3)(p i, ξ
′
i)

)
, (4.47)

whose contributions of the form

[G1243]
α [G1243]

β , (4.48)

with neither α = 0 nor β = 0, could be called, with a little abuse of language, closed-

string-like amplitudes.24 Here we have literally replaced the Chan-Paton contribution in

eq. (4.42) with the kernel K̃1243, again defined in eq. (4.41), so that for tree-level scattering

amplitudes involving totally symmetric fields, one recovers the generating function

A(ξ1, ξ2, ξ3, ξ4) =
1

stu

∑

σ

e
− s1σ(2)s1σ(3)

(

G
(0)
1σ(2)σ(4)σ(3)

(ξ i)+G
(1)
1σ(2)σ(4)σ(3)

(ξ i)+G
(2)
1σ(2)σ(4)σ(3)

(ξ i)
)

×e
− s1σ(2)s1σ(4)

(

G
(0)
1σ(2)σ(3)σ(4)

(ξ i)+G
(1)
1σ(2)σ(3)σ(4)

(ξ i)+G
(2)
1σ(2)σ(3)σ(4)

(ξ i)
)

.

(4.49)

Here by definition

sij = − (p i + p j)
2 , (4.50)

the sum is over all permutation of the three elements {234} and one has, again, the freedom

to multiply each totally cyclic gauge-invariant term in the expansion of (4.49) with arbitrary

relative functions ai(s, t, u) of the Mandelstam variables that give rise to amplitude with

single poles at most (see e.g. eq. (4.46)). Moreover:

24To be precise, we can call in this way only the contributions with α = β. The other contributions,

that show up starting from spin-3, do not satisfy the analog of level matching but are not ruled out here

by gauge invariance. We cannot exclude at this stage that they are not ruled out by other arguments, but

we leave a more detailed analysis of these potentially interesting options for the future.
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• one can in principle constrain these functions relating any current exchange contri-

bution belonging to K̃ to the corresponding contribution obtained from the cubic

couplings of the theory via the minimal scheme,

• the only non-local contributions to the quartic Lagrangian coupling are those related

to the exchanged particles that cannot be made gauge invariant with the addition of

a local counterterms and that, for this reason, can never belong to K̃.

We leave a more detailed analysis of these issues related to non-local field theories for the

future, trying to understand their eventual geometric rationale and eventually in which

sense, if any, they can be consistent with unitarity, even though they clash with commonly

accepted ideas about the structure of S-matrix poles like factorization.

Before going on with our discussion, it can be of interest to comment more in details

on the nature of the couplings that we have obtained for spin-2 external particles as a

toy model of more general cases, extracting the current exchange part and identifying the

cubic couplings involved. It is also important to discuss the difference between the open-

string-like couplings of eq. (4.41) and the closed-string-like ones of eq. (4.49). Let us begin

considering the coupling in eq. (4.49) associated to

A(ξ1, ξ2, ξ3, ξ4) = . . . +
1

stu

∑

σ

s 21σ(2)s1σ(3)s1σ(4) G
(2)
1σ(2)σ(4)σ(3) G

(2)
1σ(2)σ(3)σ(4) + . . . , (4.51)

and contributing to the four spin-2 scattering amplitude. Explicitly this contribution is

given by

A(ξ1, ξ2, ξ3, ξ4) = −
∑

σ

[
s

(
1

s
G

(1)
12a ⋆ a G

(1)
a34 +

1

u
G

(1)
41a ⋆ a G

(1)
a23 − V YM

1234

)

×

(
1

s
G

(1)
12a ⋆ a G

(1)
a34 +

1

t
G

(1)
13a ⋆ a G

(1)
a24 + V YM

1243

)]
, (4.52)

so that one recovers, as expected, a non-planar amplitude and the various contributions

conspire after some algebra to yield

A1234 = −
1

s

(
G

(1)
12a

) 2
⋆ a

(
G

(1)
a34

)2
−

1

t

(
G

(1)
13a

) 2
⋆ a

(
G

(1)
a42

)2
−

1

u

(
G

(1)
14a

) 2
⋆ a

(
G

(1)
a23

)2
+ . . . ,

(4.53)

where the ellipses represent local terms and where the current exchange amplitude have

been completely reconstructed so that one can manifestly observe a four-point function

involving the minimal coupling of two spin-2 fields with a propagating spin-2, since the

number of derivatives entering the current exchange is precisely 4. This result resonates

with the fact that this particular four-point function (4.52) is exactly the standard “four-

graviton” four-point function, written in a form analogous to that obtained in the field

theory limit in [154]. On the contrary, let us now consider the open-string-like amplitude

A1234 = −
1

su

(
− s uG

(2)
1234

)2
, (4.54)
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that can be recovered from eq. (4.44). In this case we see a different structure that is given

explicitly by

A1234 = − s u

(
1

s
G

(1)
12a ⋆ a G

(1)
a34 +

1

u
G

(1)
41a ⋆ a G

(1)
a23 − V YM

1234

)2

, (4.55)

so that, extracting the pole part in order to read off the current exchange contribution,

one recovers

A1234 = −
u

s

(
G

(1)
12a

) 2
⋆ a

(
G

(1)
a34

) 2
−

s

u

(
G

(1)
41a

) 2
⋆ a

(
G

(1)
a23

) 2
+ . . . . (4.56)

Here as before the ellipsis represent local terms while, using functions ai(s, t, u) that do not

introduce higher-order poles, one can only increase the power of the additional Mandelstam

variables in the numerator that are actually necessary in order to guarantee both the right

pole structure and the decoupling of transverse unphysical polarizations. This translates

into the fact that the coupling in which the current exchange factorizes this time involves

the exchange of a spin-3 excitation and is of the form

V3 ∼
[
G

(1)
ijk

] 2 [
G

(0)
ijk

]
, (4.57)

as one can see looking at the residue, that is of order six in the momenta. In principle, one

could go ahead, considering higher powers of the Mandelstam variables that are associated

with HS exchanges building a full overall function a(s, t, u) that does not introduce addi-

tional poles. For instance, one possibility could be the following gauge-invariant amplitude

A1234 = −
1

s u
e−t

(
u G12a ⋆ a Ga34 + s G41a ⋆ a Ga23 − s uV YM

1234

)2

+ . . . , (4.58)

where the exponential of t accounts for an infinite number of exchanges, or more com-

plicated examples related to the results in [64, 88, 89], while the ellipsis stand for terms

containing also powers of G
(1)
1234 as in eqs. (4.41) and (4.44) whose relative functions can be

fixed employing the minimal scheme. In principle, this kind of structure is needed if one

wants to construct a consistent quartic amplitude that factorizes into an infinite number

of exchanges. However, let us stress that here only spins strictly higher than two propa-

gate, even if a coupling to lower-spin fields does in principle exist and in contrast to the

previous case where the exchange of a spin-2 field was present. The counterpart of this

peculiar aspect turns out to be non-localities at the Lagrangian level, as expected from the

result of [99], since some of the corresponding lower-spin exchanges do not admit any local

gauge-invariant completion. Moreover, this means that:

• a massless colored spin-2 field can have a charge of spin strictly higher than 2,

• a full theory producing such four-point functions has to contain an infinite tower of

HS fields.

The latter can be inferred since, by requiring that any propagating HS particle brings

non-trivial interactions, as soon as a spin-3, say, propagates one can look at processes
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with also spin-3 external particles recovering again a propagating particle of higher spin

and so on. Other possibilities are then available, since one can in principle consider also

powers of G
(0)
1234 recovering exchanges where no minimal coupling is present but at the

price of increasing the exchanged particle minimum spin or even other options related to

the other derived kernels G
(n>2)
1234 but recovering in the four spin-2 case consistent abelian

self-interactions. It is important to point out that, from this perspective, potential clashes

with tree-level unitarity need to be analyzed taking into account that an infinite number

of exchanges is present. For instance, it is no more clear in this case how to disentangle all

contributing residues outside the radius of convergence of the series of exchanges. Things

would have been clearly different if only a finite number of exchanges had contributed

to any given pole of the tree-level amplitude. Certainly, a deeper understanding of non-

local field theories is needed in order to clarify such peculiar features that actually may be

considered as the counterpart of an infinite number of higher and higher-derivative cubic

couplings contributing to the same residue and might well led to an inconsistent answer

in a Minkowski background. The latter implications could be appreciated deforming these

results to (A)dS backgrounds or to massive fields where concrete examples of this kind are

available or studying the tensionless limit of ST at the quartic order, from which one can

expect to recover similar types of results. More information can also come solving for the

most general theory that is consistent with the minimal scheme, and we plan to address

these problems in the future.

The planar spin-2 example may also clarify the role of the spin-2 excitation present in

the Vasiliev system, that in principle can be dressed with Chan-Paton factors making its

interpretation debatable. For some time the relation of such spin-2 excitation with gravity

and/or with the massive spin-2 excitation present in open string theory was somehow

unclear, as pointed out in [38]. Indeed, it was argued that although the cubic coupling

of two massive open-string spin-2 excitations with a graviton is forbidden by momentum

conservation, this is not true in the tensionless limit, whenever one reaches a regime where

the massive open string spin-2 becomes massless. This observation implies a potential

mixing that can be already appreciated from the results of [63, 64]. In fact, among the

limiting cubic couplings of the massive spin-2, the lowest derivative one is exactly the

same as that of the graviton. Our present discussion puts on clearer grounds these issues,

since at the quartic order two different possibilities show up distinguishing two options.

One of these, given in eq. (4.44), is naturally endowed with Chan-Paton factors while the

other, eq. (4.49), is closely related to gravity. They coexist in the amplitude of four spin-2

excitations and hence one is led to conclude that in the massless case the two options for

spin-2 can give rise indeed to a Cabibbo-like mixing between the combination of spin-2

fields that interacts as gravity and the singlet component interacting with open-string-

like four-point amplitudes, as anticipated in [38]. From this perspective, we can imagine

that the quartic couplings of the Vasiliev system with trivial O(1) Chan-Paton factors, is

of the form in eq. (4.47), up to the usual overall functions ai(s, t, u) that are needed for

consistency to match an infinite number of exchanges. We see, indeed, that expanding

eq. (4.47) we can explicitly recognize the presence of both open-string-like and closed-

string-like couplings both in the spin-2 case and for HS fields. Obviously, the mixing so far
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considered is expected to disappear whenever the theory breaks the HS-symmetry. In this

case, the colored spin-2 field, that brings about non-localities, becomes massive, while a

combination of the massless spin-2 fields remains massless, playing the role of the graviton.

Again, it is tempting to believe that behind the string structure of the interactions there

are some field theory properties that have to be understood and that may be intimately

related to HS theories.

4.3 Off-shell ternary product

Although the on-shell results contain the essential physical information about HS four-

point functions for completeness it is interesting to discuss also the off-shell extension. In

order to solve this problem one can use various off-shell frameworks and in the following

we concentrate on the super phase-space H while other off-shell completions in Fronsdal’s

and other settings will be briefly considered in appendix C and in appendix D. Here, in

analogy with section 3.3, we can simply write the extension of (4.11) over H, recovering

the off-shell structure

V YM off-shell
1234 = f

(1)
ijklξi ·ξj ξk ·ξl+f

(2)
ijklξi ·ξjθkθ̄l+f

(3)
ijkl θiθ̄j θkθ̄l+f

(1)
ij ξi ·ξj+f

(2)
ij θiθ̄j , (4.59)

where one can see the two contributions that are quartic and quadratic in the symbols ξ’s

and θ’s. The coefficients can be uniquely fixed by eq. (3.53), that in this case reads

{
(Q1 + Q2 + Q3 + Q4)V

off-shell
1234 +

[
G off-shell
(12|a θ0a ⋆a G off-shell

a|34)

]}
θ01θ

0
3θ

0
3θ

0
4 = 0 , (4.60)

together with the useful boundary condition for V1234 that is given up to traces and diver-

gences by eq. (4.11). Hence, eq. (4.59) differs from eq. (4.11) only by trace terms and one

can straightforwardly relate the coefficients f
(n)
ijkl and f

(n)
ij to those in the table 1. In terms

of eq. (4.59) it is relatively easy to write down the kernel K1234 associated to the ternary

product of the theory as

K1234 =

{
−

(∫
dθ0a K

off-shell
(12|a

(
Ξ̂1, Ξ̂2, Ξ̂a

)
θ0a

)
⋆̃a
p 2
a

(∫
dθ0ãK

off-shell
ã|34)

(
Ξ̂ã, Ξ̂3, Ξ̂4

)
θ0ã

)

+ K̃ off-shell
1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)}
θ01 θ

0
2 θ

0
3 θ

0
4 , (4.61)

where K off-shell
123 is the off-shell cubic coupling of section 3.3, while K̃ off-shell

1234 takes the form

K̃ off-shell
1234 = −

1

su

∞∑

ni=0

1

n0!n1!n2!
an0,n1,n2(s, t, u)

[
− s uG

(0) off-shell
1234

]n0

(4.62)

×
[
− s uG

(1) off-shell
1234

]n1
[
− s uG

(2) off-shell
1234

]n2

.

Here, the G
(i) off-shell
1234 ’s are defined to be the corresponding off-shell completions of the G

(i)
1234’s

in the previous section and can be extracted from the following kernel

G off-shell
1234 = −

1

s
G off-shell
12a ⋆ a G

off-shell
a34 −

1

u
G off-shell
41a ⋆ a G

off-shell
a23 + V YM off-shell

1234 , (4.63)
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distinguishing quadratic and quartic terms in the symbols. Instead G off-shell
123 is given in

eq. (3.44) and finally,

− s uG
(0) off-shell
1234 =u (ξ1 · p 2a + ξ2 · p a1 + ξ3 · p 4ã + ξ4 · p ã3)

− u
(
θ1∂θ02 − θ2∂θ01 + θ3∂θ04 − θ4∂θ03

)

+ s
(
ξ1 · p b4 + ξ2 · p 3b̃ + ξ3 · p b̃2 + ξ4 · p 1b

)

− s
(
−θ1∂θ04 + θ4∂θ01 − θ3∂θ02 + θ2∂θ03

)
, (4.64)

where by definition

p a = − p 1 − p 2 , p ã = − p a , p b = − p 1 − p 4 , p b̃ = − p b . (4.65)

Analogous equations can be recovered also for closed-string-like couplings along the lines of

the previous discussion so that the definition25 of K̃ is slightly changed, the color-ordering

prescription is not used, and one sums over all channels in the current exchange part.

4.4 Weinberg’s theorem revisited

In this section we take a closer look, in light of the previous discussion, at a key no-go

theorem on the subject, in order to understand as much as possible its assumptions and

in which sense one can go beyond them, clarifying hopefully the meaning of the results

proposed so far. Indeed, one of the strongest arguments that has been presented over

the years is Weinberg’s 1964 Theorem of [110] (see e.g. [111] for a review and also for

an interesting discussion of its interpretation). It is an S-matrix argument based on the

analysis of a would be S-matrix element with N external particles with momenta p i, i =

1, . . . , N and a massless spin-s particle of momentum q and polarization tensor φµ1...µs(q).

In the following we shall review this argument explicitly in the case with arbitrary massless

particles entering the process and restricting the attention to the consistent cubic vertices

studied in section 3.3. The idea is to analyze the case in which the momentum q of one of

the particles participating in the scattering process tends to zero, called also soft limit. This

limit encodes the long distance behavior, if any, of the interactions, which is dominated

by the pole part, and it is very interesting since it gives constraints coming from very

general and model independent infrared (IR) properties. The dominant pole generates

in this limit a resonance, so that one can factorize the amplitude, eliminating any local

contact interaction and leaving only the contribution associated to the current exchange.26

Actually, this is the contribution on which Weinberg concentrated in order to develop his

argument, and in the following we shall study precisely the same contribution in our explicit

25We write K without the label (1234) in order to stress that a closed-string-like kernel is not any more

color-ordered and planar.
26We depart here from the original Weinberg proof that has been given in the S-matrix language assum-

ing some commonly accepted ideas about the pole structure of the S-matrix. In this respect, the usual

factorization property translates here into perturbative locality of the corresponding Lagrangian theory in

its on-shell form.
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setting recognizing what vertices contribute to long-distances and what vertices give instead

a vanishing contribution in the same limit and reinterpreting Weinberg’s conclusions. The

explicit form of the S-matrix amplitude becomes in this limit

S(p 1, φ 1; . . . ; pN , φN ; q, φ) ≈
N∑

i=1

S(p 1, φ 1; . . . ; p i + q, ξ̃i; . . . ; pN , φN )

⋆ i
P̂(ξ̃i, ζ1)

2p i · q
⋆ 1

[
exp

(
G123(ζ1, ζ2, ζ3)

)
⋆ 2,3 φ i(−p i, ζ2)φ(−q, ζ3)

]
, (4.66)

where P(ξ̃i, ζ1) is the propagator numerator and, apart from the pole factor, the dependence

on q has been completely factorized solely into G123. Using for the momenta of the particles

participating to the factorized scattering process the parametrization

p 1 = p i + q , p 2 = −p i , p 3 = −q , (4.67)

one then recovers

G123 = 2 (1 + ζ1 · ζ2) ζ3 · p i + (1 + ζ2 · ζ3) ζ1 · (q − p i) − 2 (1 + ζ3 · ζ1) ζ2 · q , (4.68)

where we have made use of momentum conservation together with the transversality

constraint

p i · ζi = 0 . (4.69)

First of all, from this form one can immediately conclude that for s > 3 the relevant tensor

structure contributing at long distances, whenever present, is always given by

(ζ3 · pi)
s

2pi · q
. (4.70)

Second, we are now in a position to see whether or not the amplitude that we are recovering

in this limit decouples the unphysical degrees of freedom and what are the cubic couplings

that contribute. This physical requirement, as we have shown in section 3.4, is precisely the

content of the Noether procedure from a Lagrangian point of view. Hence, let us perform

a linearized gauge transformation for the HS particle φ whose momentum q goes to zero.

The unphysical polarizations are given by

δφ(−q, ζ3) = −q · ζ3 Λ(−q, ζ3) , (4.71)

and performing this substitution in (4.66) one finally ends up with

δ S(p 1, φ 1; . . . ; pN , φN ; q,Λ) ≈
N∑

i=1

S(p 1, φ 1; . . . ; p i + q, ξ̃i; . . . ; pN , ξN )

⋆ i P̂(ξ̃i, ζ1) ⋆ 1

[
(1 + ζ1 · ζ2) exp

(
G123(ζ1, ζ2, ζ3)

)
⋆ 2,3 φ i(−p i, ζ2) Λ(−q, ζ3)

]
, (4.72)

where the offending pole has been canceled by the terms proportional to momentum squared

produced by the ⋆-contraction of q ·ζ3 with G123. We can recognize here the most dangerous
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contribution27 in the limit q → 0, that is given by

δ S(q = 0) ∼
∑

i

S̃i(ζi) ⋆ i

∑

αi,βi

{(
2 ζ3 · p i

)αi

[
1 + ζi · ζ2

(
2 ζi · ζ2 ζ3 · p i

)βi

]
(4.73)

⋆ 2,3φ i(−p i, ζ2) Λ(−q, ζ3)

}
,

where αi ≥ −1 and βi ≥ −1 are some integers,28 we have called S̃(ζi) the leftover part

of the S-matrix together with the propagator numerator, and where the sum over αi and

βi runs over all admissible values that are associated to consistent HS cubic couplings that

can be generated from (4.72). This contribution is dangerous since it does not tend to

zero when q → 0, and hence must vanish identically. Restricting the attention to the case

in which all external fields but one are scalars and only one HS field φ(−q, ξ) is present

only the scalar exchange contributes to (4.73) and there is only one possible value for β,

β = −1. Thus, in order to set to zero (4.73), one recovers a non-trivial constraint given by

∑

i

gi p i
µ1
. . . p i

µs−1
= 0 , (4.74)

where the gi’s are the corresponding coupling constants. As pointed out by Weinberg, this

equation does not admit non-trivial solutions unless in general s = 1, and eq. (4.74) reduces

to charge conservation ∑

i

gi = 0 , (4.75)

or s = 2, so that eq. (4.74) reduces to g i = κ for any i since, by momentum conservation

∑

i

p i
µ ≡ 0 . (4.76)

We then arrive at a potential inconsistency for HS interactions, since the argument ex-

plained so far forces

g i = 0 (4.77)

for spin grater than 2. Actually, considering a more general HS theory and referring again

to (4.73), we see that as soon as an insertion of a scalar field is present in the amplitude

there can be similar obstructions. This happens since one can reiterate this argument,

concentrating on the factorized amplitude in which a scalar field is exchanged and in which

φ i in eq. (4.73) is one of the scalar fields participating to the process. This conclusion has

actually a deeper meaning, since it forbids the possibility of having an s − 0 − 0 coupling

whenever s is greater than 2 within the framework of local field theories. This can be

understood simply observing that as soon as such cubic couplings are present one generates

automatically dangerous contributions to some current exchange amplitude. However this

27It is important to stress that in the limit q → 0 we recover only the order zero contribution in q while,

by consistency, all contributions have to cancel identically. This underlines the no-go character of this

argument from which one can only extract information about possible obstructions.
28For αi = −1 or βi = −1 we simply define the corresponding contribution to be zero.
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conclusion is true unless, by some mechanism, these dangerous exchanges are eliminated

whenever they give rise to this kind of problems. Hence, the only possible way out is

related to the fact that we have considered in the q → 0 limit only the current exchange

contribution, so that one is led to a clash with perturbative locality on the Lagrangian side

or with commonly accepted S-matrix properties like factorization on the S-matrix side.

These anyway are possibly stronger statements than the fundamental unitarity property,

and a closer look to them is potentially interesting in view of a better understanding of the

tensionless limit of ST.

Let us now turn to see the implications of Weinberg’s argument in more general exam-

ples. Concentrating on eq. (4.73), let us consider an external particle with arbitrary spin

si. The factorization of the amplitude can give rise to problems in the soft limit only if a

sufficient number of ζ2 is contained in (4.73), otherwise this offending contribution vanishes

identically. Hence, we conclude that a dangerous term of the form (4.73) can be generated

only if

βi ≥ si − 1 . (4.78)

In order to analyze the most general case let us restrict the attention to a factorized process

in which, referring to (4.73), φ i is a spin-s i particle. If si > s non-vanishing contributions

cannot be generated and so, without loss of generality, we can concentrate on the cases in

which si ≤ s. In this case we recover a non-vanishing contribution to (4.73) whenever the

bound (4.78) is satisfied, but we also see that as soon as

− 1 ≤ βi < si − 1 , (4.79)

no contribution can be generated, so that no inconsistency follows by this argument. More-

over, since for βi ≥ si one gets simply zero in (4.73), there is only one dangerous contri-

bution given by βi = si − 1 that is associated to an exchanged particle with spin

s exchanged = si . (4.80)

We clearly recover the simplest case of before when si = 0, since in this case there is no

solution for βi, and as soon as si ≥ 1 one begins to recover non-trivial solutions to (4.79).

Summarizing, one can convince oneself that the only possibly dangerous contributions

come in this limit whenever one considers a current exchange built from a coupling of

the form si − si − s with s derivatives when s ≥ si and the exchanged particle with

spin si. As concluded by Weinberg, this argument poses strict restrictions on the long

distance behavior of HS fields, that hence cannot interact at zero frequency. In particular

all long-range couplings given by the minimal ones, can be ruled out in a local field theory

while other multipolar couplings are not yet forbidden. The former actually entail exactly

the leading contribution related to long distance physics on which Weinberg concentrated

in [110]. Moreover, since for s < si the number of derivatives for these couplings is given by

2si − s > s , (4.81)

we have explicitly shown that the content of Weinberg’s argument together with the clas-

sification of all consistent cubic couplings completely forbids the minimal coupling for HS
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particles within the framework of local field theories. It is now interesting to compare

this result with the scattering amplitudes constructed in the previous sections. As we

have remarked a possible solution to the problem can arise resorting to non-local quartic

couplings whose job is to cancel the dangerous exchanges contributing in principle to the

amplitudes29 but without setting to zero all non-abelian cubic couplings. This circum-

stances of course would possibly violate unitarity but at present we are not able to come

up with a definite conclusion on this issue and we believe that more effort is needed in

order to clarify the situation. Let us end this section with a simple observation about the

consequences of our results. If we concentrate on String Theory we see that all these mini-

mal couplings are indeed generated in the tension-less limit starting from the simplest one

that concerns two scalars [63, 64]. Hence, we see here a very severe obstruction if we insist

to use the framework of local field theories or the usual factorization properties at the level

of the S-matrix in order to describe a would be tensionless string. Similar considerations

apply to the leading contribution of Fradkin-Vasiliev vertices, as observed in [98]. Hence,

one can argue that if a background independent underlying theory exists it has to include

non-local couplings or, possibly, non-local degrees of freedom, which motivate a closer look

at unitarity and its general implications.

5 Non-local field theories?

In this section we are going to combine and summarize the results obtained so far on

the explicit construction of four-point amplitudes and Weinberg’s argument analyzing in

detail the form of the non-localities in a particular example. We shall concentrate on the

simplest toy-model of open-string-like amplitudes built solely from G
(0)
1234 in eq. (4.64) just

to describe the generic setup, even though this example is perhaps a bit too simple. At

any rate, starting from the cubic vertex

K123 = exp
(
ξ1 · p 23 + ξ2 · p 31 + ξ3 · p 12 − θ1∂θ023 − θ2∂θ031 − θ3∂θ012

)
, (5.1)

we can extract the Lagrangian quartic coupling generating function, or ternary product

kernel, from

K1234 = −

(∫
dθ0aK(12|a

(
Ξ̂1, Ξ̂2, Ξ̂a

)
θ0a

)
⋆̃a
p 2
a

(∫
dθ0ã Kã|34)

(
Ξ̂ã, Ξ̂3, Ξ̂4

)
θ0ã

)
(5.2)

+ K̃1234

(
Ξ̂1, Ξ̂2, Ξ̂3, Ξ̂4

)
,

where

K̃1234 = −
1

su

∞∑

n=0

an(s, t, u)
[
−suG

(0) off-shell
1234

]n
(5.3)

and where the relative functions an(s, t, u) of each single term in K̃1234 are to be chosen in

such a way that the non-local contributions present in K̃1234 are canceled and factorization

29It is interesting to comment that as for what concerns the long-distance behavior of HS interactions

Weinberg conclusions are still valid also if non-localities are introduced and one can easily check that the

general solution to the Noether procedure that we have exhibited satisfies this property.
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of the corresponding amplitude holds, albeit on a (infinite) subset of all spins. We can

see explicitly in this example how this physical requirement allows one to fix, up to local

and gauge-invariant quartic couplings under the linearized gauge symmetry, all relative

functions in K̃1234. For example, the coefficient of the linear term in G
(0)
1234 of eq. (4.64)

must be

a 1(s, t, u) = e−2t + . . . , (5.4)

while going to the term quadratic in G
(0)
1234 one should choose

a 2(s, t, u) = −
1

t
e−2t + . . . , (5.5)

and so on, where the ellipsis stand for terms proportional to s u that kill the pole contribu-

tion and give rise to local quartic couplings that are gauge-invariant under the linearized

gauge symmetry and that reflect the freedom left by Noether procedure in building a con-

sistent theory. However, we can see that if we want to cancel the non-local contribution

given by the scalar exchange we need to introduce an additional pole term proportional to

1

t
(5.6)

in the four-point functions (5.3). Interestingly, had one chosen functions a i(s, t, u) with no

poles in the Mandelstam variables, like for instance

a 2(s, t, u) = −
1

t

(
e−2t − 1

)
+ . . . , (5.7)

and so on for the other a i(s, t, u)’s, not all non-local contributions in (5.2) would have been

canceled, starting from the scalar exchange given by30

K1234 ∼
1

s
exp (ξ1 · p 2a + ξ2 · p a1 + ξ3 · p 4ã + ξ4 · p ã3) (5.8)

+
1

u
exp

(
ξ1 · p b4 + ξ2 · p 3b̃ + ξ3 · p b̃2 + ξ4 · p 1b

)
,

and so on, considering higher powers of G
(0)
1234. Both possibilities reflect the fact that lower-

spin exchanges with respect to the external particles participating in the process can be

problematic, as was already discussed in the analysis in section (4.4). This is manifest

here, since one is either forced to introduce higher-order poles in the Mandelstam variables

at the level of the four-point amplitude, ruining causality, or alternatively one needs to

consider quartic Lagrangian couplings containing explicit non-localities thus affecting the

factorization property of the corresponding S-matrix amplitude. Since we want to preserve

causality, we choose to avoid seemingly unphysical higher-order poles. Hence, we are led to

believe that the amplitude still factorizes but on a subset of all available spins, such that the

current exchanges admit local completions that make them gauge-invariant. Non-localities

of this kind at the Lagrangian level are actually a mechanism to avoid the dangerous

30To be precise only part of this non-local coupling is required by the minimal scheme since for instance

amplitudes built from abelian non-deforming cubic couplings can be made gauge invariant without any

quartic coupling up to field redefinitions.
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Figure 3. Decoupling condition for unphysical polarizations at the level of the amplitude.

contributions that have been pointed out in Weinberg’s argument, and represent, together

with our minimal scheme, the mildest form of non-locality that one can choose in order

to recover a gauge-invariant result also at the four-point level. Of course we stress that

one has to exercise some care when talking about non-local field theories whose properties

and systematics are still completely unknown. Turning briefly to the case involving also

G
(1)
1234 and G

(2)
1234, one can give a lower bound for the lowest spin propagating into a process

described by a single monomial31

K̃1234 ∼ −
1

su

[
− suG

(0)
1234

]α [
− suG

(1)
1234

]β [
− suG

(2)
1234

]γ
, (5.9)

where the external particles have spin s1, s2, s3 and s4. Indeed it contains current exchanges

among which the lowest propagating spin present is

smin = α + β + 2γ − 1 , (5.10)

so that considering a four-point amplitude with external spin-s1, s2, s3 and s4 particles

one has

4 γ + 2β + α = s1 + s2 + s3 + s4 , (5.11)

and hence, generically,

smin =
1

2
(s1 + s2 + s3 + s4) +

α

2
− κ ≥

1

2
(s1 + s2 + s3 + s4) − κ , (5.12)

where κ = 1 for open-string-like amplitudes while κ = 2 for closed-string-like amplitudes.

Then, as expected since four-point functions encode the fusion rules of the HS algebra, one

can prove that an infinite tower of HS fields is required, if the theory involves non-trivial HS-

excitations. In fact, considering a four-point amplitude with four external spin-s particles

we recover exchanged particles of spin higher than s unless s = 1 for open-string-like

amplitudes, or s = 2 for closed-string-like ones. To reiterate, the key difference between

local and non-local couplings is that the latter modify in a dramatic way the residue of

31Other options related to the possible derived kernels introduced in the previous sections should be

considered in the most general case.

– 44 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

2

4

3

2

4

3 =

2

3

4

Figure 4. The decoupling condition can be read as an associator equation in which the cubic

coupling is considered as a product and the quartic coupling as a trilinear product.

the current exchange restricting the sum over all propagating spins to a given (infinite)

subset. This means that the kind of non-local couplings discussed here can be somehow

eliminated translating the information that they carry into a choice of an (infinite) subset

of the exchanges in which scattering amplitudes factorize. Finally and most importantly,

potential clashes with unitarity need to be analyzed taking into account that an infinite

number of degrees of freedom ought to contribute to the same residue. We leave further

discussions on this important feature, that is intimately related to the still unexplored realm

of non-local QFT, for the future awaiting for a better understanding of these problems and

of the deformations to (A)dS backgrounds, although we can expect that the corresponding

flat limit presents difficulties similar to those encountered here.

In light of these observations, let us analyze diagrammatically the requirement of de-

coupling of the unphysical states at the level of the four-point amplitude. The cubic

coupling generating function can be interpreted in full generality as an on-shell bi-product

and the decoupling conditions of unphysical states translate into the diagrammatic equa-

tion in figure 3. Evaluating the gauge variation of the amplitude in a diagrammatic form,

figure 3 becomes equivalent to the diagrammatic equation in figure 4, that has a key phys-

ical meaning since it relates amplitudes in different channels and computes the associator

related to the on-shell bi-product encoded by the cubic coupling. If we now consider the

Britto-Cachazo-Feng-Witten (BCFW) recursion relations [155–159], relating the n-point

S-matrix to three-point functions, we can reinterpret, in view of the present discussion, the

constructibility criterion

A(1,2)(0) = A(1,4)(0) (5.13)

where the label in the amplitudes identifies what momenta and particles are deformed into

the complex plane. Indeed, it is very tempting to interpret again this crossing equality

as an associator equation pointing out this time an associative nature of the on-shell bi-

product encoded into the on-shell cubic coupling (figure 5). It is suggestive to interpret

the non-localities found here as violations of this criterion that translate into an intrinsic

non-associative nature of the latter bi-product. This is associated to the fact that HS

cubic couplings contain higher derivatives and require, somehow, to select a subset of the

available spins that can be exchanged in the four-point amplitude, with the end result that

– 45 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

2

4

3

2

4

3 = 0

Figure 5. Associative bi-product.

one recovers in this way again a constructible theory but in a different sense. Moreover, it

is also tempting to say that local four-point couplings can be reabsorbed, somehow, into

the current exchange part, and taken care by the BCFW recursion relations, while the

non-local contributions have, in some sense, a different meaning. This reasoning actually

justifies the special role of gravity and Yang Mills theory as constructible local theories,

while HS theories, as we have seen, are constructible only in a generalized sense. This

puts on totally different grounds local and non-local quartic couplings, although we stress

that also the latter turn out to be related to the current exchange amplitudes and hence

to the cubic couplings, since their role is to compensate some of them. In conclusion, the

graphic interpretation that we have presented may give us a view of non localities in terms

of associative or non-associative bi-products. Along this line we can wonder wether the

non-associative behavior that one can observe for HS external particles may be related to

a possible pole at infinity in the recursion relations recently studied in [160].

6 Conclusions

In this paper we have studied the Noether procedure drawing some inspiration from the

structure encoded into the theory of FDA. We propose to relax the locality hypothesis usu-

ally considered in all standard settings in favor of the minimal scheme defined in section 4

along lines that are actually in the spirit of the previous work [112]. Reversing the usual

perspective of focusing on four-point Lagrangian couplings, we have recovered directly a

class of 4-point functions32 involving massless HS fields as well as low-spin fields from the

linearized gauge invariance of the free system. Our key result is perhaps the construction

of an infinite class of HS 4-point functions that are related in a relatively simple way to

powers of the standard 4-point functions in a theory with a scalar, a spin-1/2 fermion

and a gauge boson. This generalizes the construction of [64], making it possible to define

similar color-ordered kernels in the general case that include, as a particular example, the

32See the appendix A for the extension of the classification to n-points, fermions and mixed symme-

try fields.
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simpler G123 kernel from which all cubic couplings originate. One is then able to extract,

subtracting the current exchange parts, four-point and in general n-point couplings. These,

together with the fully non-linear deformation of the linearized gauge symmetries, contain

as a special case the familiar low-spin examples as well as an infinite set of local couplings,

but manifest also a non-local nature as soon as one considers more exotic cases, as for

instance a colored spin-2, or more generally HS fields. The non-local nature so far ob-

served has an interesting and peculiar structure of the form pointed out in the appendix

of [64], although the meaning of non-localities is here to restrict the spins propagating

within the amplitude to those whose violation of gauge invariance can be compensated by

local counterterms. This fact entails the key obstruction that has been recognized long ago

by Weinberg in [110], as well as other inconsistencies at the level of Jacobi identity and

so on [79–82], that disappear as soon higher-derivative and explicitly non-local couplings

are considered, as already noticed in [112]. Of course a non-local solution to the problem,

even if explicit, cannot be satisfactory without a full understanding of its implications and

in particular of the status of the minimal scheme proposed here. In this respect the only

thing we can say is that it is conceivable that potential clashes with the standard form of

tree-level unitarity, that can come together with non-localities, do not materialize as soon

as an infinite number of degrees of freedom are present. Even considering the case in which

the latter option does not hold, it can be interesting to extract from the classification just

presented its deformation to constant curvature backgrounds and we leave this for the near

future. Nonetheless, let us stress that any residue of the set of amplitudes so far recovered

can be related to lower-point couplings via exchange amplitudes if the minimal scheme is

enforced in place of the stronger locality constraint. In this respect it can be interesting

to ask what plays the role of locality in constant curvature backgrounds and whether the

solution will still contain similar non-localties even if controlled by some expansion param-

eter, thinking to push forward our analysis in order to understand more clearly the possible

need of resorting to this kind of picture. Finally, a deeper understanding of the peculiar

features involved by HS interactions that seem to imply a clash with commonly accepted

ideas about the pole-structure of the S-matrix, can be hopefully related to the difficulties

that are encountered in the definition of an S-matrix, and we believe that they deserve a

better understanding motivated at least by their appearance within ST in its tension-less

limit or within the Vasiliev system in its flat limit [98].

Although the subject of non-local field theories is still a completely unexplored arena,

the aforementioned properties of the amplitudes may open the way to a deeper under-

standing of Field Theory. In this respect, ST appears to contain the seed for interesting

generalizations, and hides, in our opinion, some key field theory properties that have sur-

faced in this work. To wit, the remarkable construction of Closed String Field Theory

in [129] is very general in its starting point, but the mechanical model definition of the

interactions hides somehow their non-local nature that has long been felt to be related to a

broken phase of the HS symmetry. The mechanical model may hide somehow the non-local

features that we have presented here linking them to the string tension.33 A similar kind of

33See e.g. [162–178] where other examples in which the mechanical model appears to provide an incomplete

description are discussed.
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situation may arise in the Vasiliev system, whose spectrum contains a massless spin-2 field

whose interpretation in terms of gravity has been debated, since it can be dressed with

Chan-Paton factors in a much closer analogy with the massive spin-2 excitation present in

the open string. Indeed, the intrinsic non-local form of the couplings of a colored spin-2

exhibited here may shed some light on the non-local nature of Vasiliev’s system, that seems

to be obscured by the presence of the cosmological constant Λ, whose role is similar to that

of the string tension in ST and provides an expansion of local terms in which operators

like 1
�

could split in terms of Λ.

Other questions then arise in order to attain a meaningful quantization of systems of

this kind, that at any rate can be naturally formulated in terms of the Batalin-Vilkoviski

formalism [138–140] or in terms of a usual loop expansion. Those can be recovered from

the Feynman rules here considered or, alternatively, from recursion relations techniques.

Other issues regard the freedom in building a theory of massless HS that we have recursively

related to the freedom of choosing a consistent cubic coupling function with what we have

called minimal scheme. We leave this as well as other questions, like the extension of these

resulte to constant curvature backgrounds, that can be naturally addressed in our setting,

for future works.
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A Comments on N-point functions, fermions and mixed symmetry fields

In this appendix we would like to extend the analysis carried out in previous sections to the

n-point functions and to theories with fermions and mixed-symmetry fields. We shall see

that the construction done so far at the level of four-point functions suffice to understand

at least in principle how the same problem can be addressed to all orders. The basic idea

is again to underline the key role of gauge-invariant amplitudes together with the technical

trick of identifying simple objects that are capable of encoding the physical information

about the interactions. We first describe how to generalize the previous discussion to n-

point functions and then we turn to consider the most general theory containing fermions

and mixed-symmetry fields, leaving for the future a more detailed discussion of the coupling

functions and spectra that are consistent with the minimal scheme.

A.1 n-point functions

In order to construct n-point functions a key observation concerns the form of both three-

and four-point amplitudes for HS fields here proposed. Indeed both K̃123 and K̃1234 can be
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Figure 6. Cubic building blocks for G12...n.

Figure 7. Quartic tree-level diagrams associated to the G
(i)
1234.

related to the color-ordered cubic and quartic amplitudes in a theory with a scalar and a

gauge boson. This simple fact suggests an interesting generalization to n-points, described

here by n-ary products associated to color-ordered kernels K12...n. Indeed, one can classify

for any n all possible color-ordered n-point functions that can be constructed from the

cubic couplings in figure 6, where the first diagram is just a trivial constant coupling and

needs to be considered since it gives non-trivial contributions starting from the quartic

order. As we have noticed in section 4.1 one can identify G
(0)
1234, G

(1)
1234 and G

(2)
1234 by the

S-matrix diagrams in figure 7, where the polarization tensor of the gauge boson has to

be replaced by corresponding symbols ξi and where one is able to recover automatically

the quartic contact terms by requiring gauge invariance of the corresponding color-ordered

current exchanges. For instance, one can extend this result to the fifth order, considering

analogous objects that we call G
(0)
12345, G

(1)
12345, G

(2)
12345 and G

(3)
12345, defined to be respectively

the scattering amplitudes of figure 8, where the polarization tensor of the gauge bosons

have been again replaced by the corresponding symbols ξi’s so that one recovers again a

kernel generating function exponentiating the G
(i)
12345’s as

K̃12345 = −
1

s12 s23 s34 s45 s51
× (A.1)

× exp
[
− s12 s23 s34 s45 s51

(
G

(0)
12345 + G

(1)
12345 + G

(2)
12345 + G

(3)
12345

)]
.

Here we have used five independent Mandelstam-like invariants that enter as poles into each

G
(i)
12345 in order to recover at the exponential a pole-less object. In this form, in analogy

– 49 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

Figure 8. Quintic tree-level diagrams associated to the G
(i)
12345.

with the four-point case, we have still to multiply each totally cyclic combination of the ξi’s

with functions of all Mandelstam-like invariants that do not introduce higher-order poles

and that can be constrained, in our minimal scheme, in order to recover factorization on

an infinite subset of all the exchanges matching those exchanges that are built from lower-

point amplitudes. This fact implies, in general, that even at this order non-local quintic

interactions can come into play since, as soon as one considers spins higher than one, in

the case of open-string-like amplitudes, or higher than two, in the case of closed-string-like

amplitudes, higher powers of the Mandelstam-like invariants arise, which accompany higher

and higher propagating spins with respect to the ones propagating at the quartic order.

In general, one is thus forced to select different infinite subsets in which the amplitudes

factorize at each order. Leaving aside the n-scalar exchange, that is just a function of

the Mandelstam-like invariants, at n-points we have n − 1 different color-ordered G
(i)
12...n’s

associated respectively to amplitudes with n, n−2, n−3 down to 1 gauge bosons while the

others are scalars.34 The formal expression for the color-ordered kernel generating function

K̃12...n is then

K̃12...n = −
1

ρ(Pij)
exp

[
− ρ(Pij)

(
G
(0)
12...n + G

(1)
12...n + . . . + G

(n−2)
12...n

)]
, (A.2)

where the general form of an exchanged momentum is

Pij = (p i + . . . + p j)
2 , i < j , (A.3)

34Admitting further redundancies one can also consider amplitudes built from the higher derivative

couplings of two gauge bosons and one scalar and three gauge bosons in eq. (4.38).
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while ρ(Pij) is defined to be a product of all possible exchanged momenta, in which a

color-ordered G12...n factorizes, containing the minimum number of them that eliminates

all poles from the G
(i)
12...n’s. Within this setting, the only freedom left is a choice of relative

functions of the Mandelstam-like invariants that do not introduce unphysical poles playing

here the role of some arbitrary generalized relative coefficients. For instance, from eq. (A.2)

one recovers objects of the form

K̃12...n = −
1

ρ(Pij)
aα1...αn−2 ({sij} , {sijk} , . . .)

n−2∏

l=0

1

αl!

[
− ρ(Pij) G

(l)
12...n

]αl

, (A.4)

where we have explicitly considered a function aα1...αn−2 ({sij} , {sijk} , . . .) of all

Mandelstam-like invariants for any available choice of the αl’s. We stress again that, apart

from local n-point couplings that are gauge invariant under the linearized gauge transfor-

mations and that arise whenever the relative functions of the Mandelstam-like invariants

cancel the pole factor, the minimal scheme continue to impose constraints on the propa-

gating spins and on the consistent coupling-functions that have to be chosen accordingly.

Indeed, at higher points all the functions of the Mandelstam-like invariants that weight the

various gauge invariant contributions can be recursively related to the exchanges involving

lower-point functions, enforcing factorization on the available exchanges and associating the

missing residues, that cannot belong to a K̃, to the presence of non-local n-point couplings.

Before concluding this section we want to point out that further interesting options, that

can be considered as a kind of generalized closed-string-like kernels, show up from the fifth

order, since more than two permutations with respect to the external legs of the kernels

G12...n are independent. The result has, in general, the following structure

K̃(ξ1i , . . . , ξ
m
i ) =

(
∑

perm

∏

α∈I

K̃σα(1)σα(2)σα(3)...σα(n)(p i, ξ
α
i )

)
, (A.5)

where the first sum over the permutations of the external legs is the usual sum that give

rise to a non-planar kernel (see e.g. the sum over σ in eqs. (1.21) and (4.47)) while the

product over α encodes the possible independent G12...n’s associated to some non-cyclic

permutations of {1, 2 . . . , n}. We leave a more detailed analysis of these kind of potentially

interesting options for the future.

A.2 Fermions

In order to address the fermionic case it is very instructive to analyze the structure of the

three-point couplings of two fermions and one boson recovered in [64]. One can naturally

generalize the kernels K12...n adding γ-matrix contributions in order to deal also with

fermions without changing the formal structure discussed in this paper. In the following

we shall concentrate mostly on the on-shell gauge-fixed results, involving irreducible γ-

traceless tensor-spinors, since the off-shell extension works exactly as in the bosonic case

and all physical information is encoded already at this simpler level. Actually, the fermionic

cubic couplings recovered in [64] can be translated in the generating function

K123 = (1 + /ξ1 + /ξ2 + /ξ3) e
G123 , (A.6)
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Figure 9. Cubic couplings respectively related to G
(0) f
123 and G

(1) f
123 .

where the fermionic indices are left implicit, G123 is defined in eq. (3.40) and where one

is free, at this level, to choose arbitrary relative coefficients between the various totally

cyclic contributions.35 The form of these on-shell gauge-fixed couplings is again relatively

simple, and one recovers two different kinds of structures. One is directly related to the

bosonic couplings discussed previously, and is obtained contracting together the fermionic

indices with a Kronecker δ. In this way one ends simply with a generalization of the Pauli

coupling, that on-shell takes the form

A 3 · p 12 ψ̄ 1 ψ 2 . (A.7)

The second type, on the contrary, generalizes the Yang-Mills minimal coupling

ψ̄ 1 /A 3 ψ 2 , (A.8)

and is related to the term proportional to

/ξ1 + /ξ2 + /ξ3 . (A.9)

It is actually possible to reduce on-shell to this form any other combination of γ-matrices,

so that there are no other options at the cubic order. The crucial observation is now to

insist with the same idea of the bosonic case noticing that the cubic coupling kernel is

nothing but

K123 =
(
G

(0) f
123 + G

(1) f
123

)
eG

b
123 =

(
G

(0) f
123 + G

(1) f
123

)
Kb

123 , (A.10)

where we have defined G
(0) f
123 and G

(1) f
123 to be respectively the cubic couplings of one scalar

field with two fermions and of one gauge boson with two fermions drawn in figure 9,

while labeling with a “b” the bosonic ones, that are respectively drawn in figure 2 and

are encoded in G b
123. We observe here a peculiar feature of fermionic amplitudes: they

cannot be exponentiated, since the non-commutative nature of γ-matrices would lead to

violations of gauge invariance, and hence eq. (A.10) exhausts all the possibilities. Starting

from eq. (A.10) one can now generalize the cubic results just presented to the most general

35See appendix B for more details on the most general form for this result.
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Figure 10. Quartic amplitudes respectively related to G
(0) f
1234 and G

(1) f
1234 . We have not displayed here

the amplitudes without a gauge boson insertion whose tensorial structure contains only δ-functions

contracting the fermionic indices.

tree-level n-point functions containing also massless HS fermionic fields. The result can

be expressed again, in analogy with the bosonic case, in terms of some G
(i) f
12...n’s that by

definition are linked with the color-ordered scattering amplitudes of a theory with scalars,

fermions and gauge bosons and that can be constructed combining the cubic couplings in

figure 2 and figure 9 and completing the result with possible quartic terms. For instance,

eliminating redundant pieces, for four-point functions we recover the following result

K̃ f
1234 =

(
G

(0) f
1234 + G

(1) f
1234

)
K̃ b

1234 . (A.11)

Here K̃ b
1234 is exactly the bosonic generating function given in eq. (4.41), while G

(0) f
1234

and G
(1) f
1234 can be related to the four-point amplitudes in figure 10, and can be

computed obtaining36

(
G

(0) f
1234

)
= −

1

s u
(δ12 + δ23 + δ34 + δ41 + δ12 δ34 + δ13 δ24 + δ14 δ23) , (A.12)

where the δij contracts the fermionic indices between the fields ψ i and ψ j , and

(
G

(1) f
1234

)
(p i, ξi) = −

[
1

s

(
G

(1) f
12a ⋆a G

(1) b
a34 + G

(1) b
12a ⋆a G

(1) f
a34 + G

(1) f
12a G

(1) f
a34

∣∣∣
ξa =0

)
(A.13)

+
1

u

(
G

(1) f
41a ⋆a G

(1) b
23a + G

(1) b
41a ⋆a G

(1) f
23a + G

(1) f
12a G

(1) f
a34

∣∣∣
ξa =0

)]
,

with the bosonic G b
123 given in section (3.3), the fermionic ones G f

123 defined in this section

and where, by convention, a contraction between the left-over fermionic indices in the four-

fermion case is understood. To conclude, in the general case of n-point functions one is led

36The contribution of the amplitude with two fermions, one gauge boson and one scalar turns out to be

automatically produced by the combination of G
(0) f
1234 together with G

(0) b
1234 coming from the bosonic part of

the kernel.
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to the Bose-Fermi kernel

K̃12...n (Ξi) = −
1

ρ(Pij)

[
1 − ρ(Pij)

∑

c∈F

G
(c) fermi
12...n (Ξi)

]
exp

[
− ρ(Pij)

∑

d∈B

G
(d) bose
12...n (Ξi)

]
,

(A.14)

where the sums run over all possible structures related to some n-point function in a theory

containing a scalar a spin-1/2 and a gauge boson, the terms proportional to 1 within the

first parenthesis entail the purely bosonic case already discussed in the previous section,

while all the other ingredients have been defined in previous sections. Again, we consider

this object as a generalized generating function whose relative coefficients are arbitrary

functions of the Mandelstam-like invariants that do not introduce additional higher-order

poles. For instance, a generic portion that one can recover from eq. (A.14) is of the form

K̃12...n = −
1

ρ(Pij)
ac;α1...αn−2 ({sij} , {sijk} , . . .) (A.15)

×
[
− ρ(Pij) G

(c) fermi
12...n (Ξi)

] n−2∏

l=0

1

αl!

[
− ρ(Pij) G

(l) bose
12...n (Ξi)

]αl

.

The discussion then extends to (generalized) closed-string-like amplitudes along similar

lines as in the bosonic case.

A.3 Mixed-symmetry fields

Let us conclude this discussion mentioning the generalization of these results to the case

of mixed-symmetry fields. A mixed-symmetry field is a Lorentz tensor of the form

φµ1...µs1 ;ν1...νs2 ;...
, (A.16)

where each index family (say (µ1 . . . µs)) is totally symmetrized and no definite symmetriza-

tion is enforced between different families in the reducible case, or a projection into some

Young tableaux is enforced in the irreducible case. Here, for simplicity, we restrict the

attention to reducible mixed-symmetry fields leaving open the option of choosing later a

Young projection. The symbol calculus that we have developed so far extends naturally to

the mixed-symmetry case simply defining more sets of variables

Ξm
i = (p i , ξ

m
i , ∂θ0i

, θmi , θ̄mi ) , (A.17)

as discussed in [20, 122, 161]. Here the label m identifies the index family to whom the

symbol is related. We then define analogous generating functions, whose purely bosonic

part is given by

φ i(p i , ξ
m
i ) =

∑

s1 s2 ...

1

s1!s2! . . .
φi µ1...µs1 ;ν1...νs2 ;...

ξ1µ1
i . . . ξ

1µs1
i ξ2 ν1i . . . ξ

2 νs2
i . . . , (A.18)

together with related ghost parts, in the FDA framework. The corresponding BRST charge

extends to

Q = θ 0p 2 + θn p · ∂ξn + ∂θ̄n
p · ξn − θn ∂θ̄n

∂θ 0 , (A.19)

– 54 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

with an implicit sum over n, while the various ⋆-contractions become

⋆ :
(
Φ 1(p 1 , ξ

m
1 ) , Φ 2(p 2 , ξ

m
2 )
)

→

Φ 1 ⋆ Φ 2 = exp
(∑

m

∂ξm1 · ∂ξm2

)
Φ 1(p1 , ξ

m
1 ) Φ 2(p2 , ξ

m
2 )
∣∣∣
ξmi =0

, (A.20)

where ξm1 and ξm2 are only the commuting symbols, or, in the FDA framework,

⋆̃ :
(
Φ 1(p 1, θ

0
1, ξ

m
1 , θ

m
1 , θ̄

m
1 ) , Φ 2(p 2, θ

0
2, ξ

m
2 , θ

m
2 , θ̄

m
2 )
)

→

Φ 1 ⋆̃ Φ 2 = exp
(
∂ξm1 · ∂ξm2 − ∂θm1 ∂θ̄m2 + ∂θ̄m1 ∂θ

m
2

)

× Φ 1(p1, θ
0, ξm1 , θ

m
1 , θ̄

m
1 ) Φ 2(p2, θ

0, ξm2 , θ
m
2 , θ̄

m
2 )
∣∣∣
ξmi ,θmi ,θ̄mi =0

, (A.21)

and

⋆ :
(
Φ 1(p 1, θ

0
1, ξ

m
1 , θ

m
1 , θ̄

m
1 ) , Φ 2(p 2, θ

0
2, ξ

m
2 , θ

m
2 , θ̄

m
2 )
)

→ Φ 1 ⋆ Φ 2 =

∫
dθ0 [Φ 1 ⋆̃ Φ 2] θ

0 ,

(A.22)

where by convention

p 1 + p 2 = 0 . (A.23)

The two latter contractions over the super phase-space H for mixed-symmetry fields reduce

then to eq. (A.20) if one restricts the attention to the bosonic coordinates and ghost-number

zero super-fields. Remarkably, it turns out that with a trick it is possible to extract mixed-

symmetry color-ordered kernels K̃12...n from the totally symmetric ones. In the case of

mixed-symmetry (spinor-)tensors one is then able to obtain the result

K̃12...n

(
Ξk
i

)
= −

1

ρ(Pij)


1 − ρ(Pij)

∑

ki

∑

c∈F

G
(c) fermi

1k12k2 ...nkn

(
Ξki
i

)

 (A.24)

× exp


− ρ(Pij)

∑

kj

∑

d∈B

G
(d) bose

1k12k2 ...nkn

(
Ξ
kj
j

)

 ,

where the following generalized building blocks

Gij...z
12...n ≡ G12...n(Ξ

i
1, Ξ

j
2, . . . ,Ξ

z
n) , (A.25)

have been used.37 In this way we avoid a manifest symmetrization that is intrinsic in the

definition of the kernel for totally symmetric fields, recovering the possibility to extract

mixed-symmetry components from the generating function. Moreover, as before, the gen-

erating function needs to be interpreted in a generalized fashion modulo arbitrary relative

37I want to thank Euihun Joung and Luca Lopez for discussions on this point.
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functions of the Mandelstam-like invariants. The generic portion of K̃12...n reads

K̃12...n

(
Ξk
i

)
∼ −

1

ρ(Pij)
a ({sij , sijk , . . .})

×
[
− ρ(Pij) G

(c) fermi

1k12k2 ...nkn

(
Ξki
i

)] ∏

lj

n−2∏

d=0

1

αd,l!

[
− ρ(Pij) G

(d) bose

1l12l2 ...nln

(
Ξ
lj
j

)]αd,l

,

(A.26)

where the a ({sij , sijk , . . .}) are functions of all Mandelstam-like invariants that do not in-

troduce higher-order poles and encode both local n-point couplings that are gauge invariant

under the linearized gauge transformations and the exchanges built from lower-point am-

plitudes so that, in our minimal scheme, are constrained once a consistent choice for the

cubic coupling function has been found accordingly.

B Cubic couplings for bosonic and fermionic totally symmetric fields

In this appendix we describe briefly the results of [64] from a field theory perspective.38

From this point of view we analyze the constraints that Lorentz invariance, together with

gauge invariance, impose on the generic on-shell and gauge-fixed generating function of

bosonic and fermionic cubic couplings for totally symmetric (spinor-)tensors. We exploit

the simplification of the on-shell gauge-fixed system that we describe in more detail in the

following appendices in order to recognize simple objects that are actually the building

blocks of any HS three-point function and contain the main physical information about cu-

bic interactions. Considering irreducible HS bosonic fields and leaving aside the possibility

of using the totally anti-symmetric tensor ǫµ1...µD
that gives non-trivial options only for

lower dimensions, at three points the most general kernel that one can write down requiring

Lorentz symmetry is given by

K b
123 = A (ξ1 · p 23 , ξ2 · p 31 , ξ3 · p 12 , ξ1 · ξ2 , ξ2 · ξ3 , ξ3 · ξ1) . (B.1)

Here we have enforced the transversality and traceless constraints by

ξi · ξi = 0 , ξi · p i = 0 , (B.2)

while

A(z1, z2, z3; y1, y2, y3) , (B.3)

is a function such that K b
123 is totally cyclic under permutations of the labels {1, 2, 3}.

Gauge invariance then puts constraints on the dependence on y1, y2 and y3 since the

on-shell equations

p i · ∂ξi K
b
123 ≈ 0 , (B.4)

are nothing but the differential equations

p i · ∂ξi A (ξ1 · p 23 , ξ2 · p 31 , ξ3 · p 12 , ξ1 · ξ2 , ξ2 · ξ3 , ξ3 · ξ1) ≈ 0 , i = 1, 2, 3 , (B.5)

38I wish to thank Euihun Joung for very useful discussions and comments on the content of the first part

of this appendix.
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that actually, by cyclic symmetry, reduce to 2 independent conditions on

A(z1, z2, z3; y1, y2, y3). Hence, considering the following useful change of variable

A (ξ1 · p 23 , ξ2 · p 31 , ξ3 · p 12 , ξ1 · ξ2 , ξ2 · ξ3 , ξ3 · ξ1)

= Ã (ξ1 · p 23 , ξ2 · p 31 , ξ3 · p 12 , ξ1 · ξ2 ξ3 · p 12 , ξ2 · ξ3 ξ1 · p 23 , ξ3 · ξ1 ξ2 · p 31) , (B.6)

one ends up with the following differential equations for Ã(z1, z2, z3; y1, y2, y3):

∂ y ij
Ã(z1, z2, z3; y1, y2, y3) = 0 , (B.7)

where, as usual

∂ y ij
= ∂ y i

− ∂ y j
. (B.8)

The solution is then shown to be

Ã(z1, z2, z3; y1, y2, y3) = a(z1, z2, z3; y1 + y2 + y3) , (B.9)

where a(z1, z2, z3;w) is the coupling function that was introduced in section 3.3, and where

the term y1 + y2 + y3 gives rise to the object that we call G
(1)
123 in eq. (3.49).

Turning now to the fermionic case we need to study the general gauge-invariant object

containing at least one γ-matrix. The basic additional ingredients are then

/p i
, /ξi , (B.10)

so that labeling the two tensor-spinors with indices 1 and 2 we can use momentum conser-

vation in order to reduce the number of building blocks to

/p 1
, /p 2

, /ξ i . (B.11)

Exploiting the standard relations

/a/b + /b/a = 2 a · b , (B.12)

one can easily convince that any monomial of the form

ψ̄ 1

(
. . . /p 1

. . .
)
ψ 2 , (B.13)

will generate terms proportional to p 12 · ξ3 or p 31 · ξ2 while all other being zero by mass-

shell condition of the three external states. Iteratively we are then able to eliminate all

/p i
’s leaving out only the /ξi’s. Among those, we are again able to eliminate all terms

proportional to /ξ1 and /ξ2 since we can anticommute them till they act on the polarization

spinor-tensors giving zero by the γ-traceless constraint but leaving out terms of the form

ξi · ξj that we have dealt with previously, in the bosonic case. To reiterate, we are actually

left only with a single possible object given by

(1 + λ /ξ3)
12 , (B.14)
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with λ a constant, that exhausts all the possibilities for cubic fermionic couplings described

in section A.2 once combined with the terms of the form ξi · p jk and ξi · ξj that have to

satisfy the same equations discussed for bosons before. Hence,
(
K f

123

)
= (1 + /ξ1 + /ξ2 + /ξ3) K

b
123 , (B.15)

where we have written the result in a totally cyclic form. We have thus recovered that the

most general gauge-invariant cubic HS coupling is built from those of a gauge boson, a spin

1/2 fermion and a scalar. Similar arguments can be used to construct the results for the

higher correlation functions that we have found in this work.

C “Off-shell” theory vs. “on-shell” theory: quadratic level

This appendix is devoted to clarifying the relation between the on-shell gauge-fixed theory

and the various off-shell completion one can in principle consider, revisiting the construc-

tions so far known [31, 32, 34–37, 46, 47] as well as other possible options and putting them

on the same footing. For brevity, we consider only the bosonic case while we expect similar

considerations to be possible for fermions and mixed-symmetry fields. In order to try and

be general and to clarify the basic viewpoint of the present paper, our starting point is

Lorentz invariance. It is indeed well known that any massive bosonic totally symmetric

and unitary representation of the Poincarè group can be described by the Fierz system
(
p 2 + m 2

)
φ(p , ξ) = 0 ,

p · ∂ξ φ(p , ξ) = 0 ,
(C.1)

where φ(p , ξ) is a generating function, the first equation selects the value of the Casimir

operator p 2 and the second enforces the cancelation of ghosts projecting the various polar-

ization tensors into their positive definite components. We stress that these two equations

encode the physical requirements needed to select a generic massive bosonic representation

of the Poincarè group. To this system one usually adds, starting from the works of Fierz

and others [23–28], the third algebraic equation

∂ξ · ∂ξ φ(p , ξ) = 0 , (C.2)

that is meant to select an irreducible representation, and hence has a slightly different

origin than the first two. If one insists in using a covariant formalism also in the massless

case, subtleties will soon arise since a Lorentz transformation Λµ
ν for massless fields will

generate transverse components to the polarization tensors

φ(p , ξ) → e(ξ·Λ·∂ξ) φ(p , ξ) − p · ξ Λ(p , ξ) , (C.3)

so that in general the covariance, that one would like to preserve when using a tensorial

representation, is lost unless one requires on-shell gauge invariance. The on-shell description

of a massless HS particle can then be carried out considering the analogous Fierz system

p 2 φ(p , ξ) = 0 ,

p · ∂ξ φ(p , ξ) = 0 ,
(C.4)
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where the field has to be considered as an equivalence class defined by the relation

φ(p , ξ) ∼ φ(p , ξ) + p · ξ Λ(p , ξ) . (C.5)

In this fashion one is able to recover manifest covariance for the transformation properties

of tensors in terms of their equivalence classes. By consistency with gauge invariance one

then recovers an analogous Fierz system for the gauge parameter Λ(p , ξ) given by

p 2 Λ(p , ξ) = 0 ,

p · ∂ξ Λ(p , ξ) = 0 .
(C.6)

Moreover, any constraint added to the system, selecting some particular representation of

the Poincarè group, will propagate to the gauge parameter as well selecting the needed

degrees of freedom that serve in order to maintain covariance of the representation. For

instance, if we choose to impose the traceless constraint (C.2) this automatically propagates

over the gauge parameter that is to be chosen in a way that preserves such constraint.

Hence, one is led to consider a constrained gauge parameter

∂ξ · ∂ξ Λ(p , ξ) = 0 . (C.7)

We want to stress that, starting from an on-shell system together with a choice of the

propagating degrees of freedom gives a completely meaningful setting to address the prob-

lem of consistent deformations, that acquires in this way its simplest covariant form. One

should then address the tedious issue of off-shell completion, that here we refer to as the

procedure of relaxing the transversality constraint on φ(p , ξ) as well as other possible con-

straints depending on the particular representation that has been considered and also on

the kind of off-shell completion. Hence, we decide to start from the Lagrangian

L =
1

2
φ(−p , ξ 1) ⋆ p

2 φ(p , ξ 2) , (C.8)

written in terms of the bosonic ⋆ of eq. (2.12) and that is gauge invariant if the transversality

constraint

p · ∂ξ φ(p , ξ) = 0 , (C.9)

is enforced. Additional constraints like

∂ξ · ∂ξ φ(p , ξ) = 0 , (C.10)

that select irreducible representations are not required here by gauge invariance and will

be considered in detail in the following depending on the off-shell completion. We begin

by analyzing the standard cases of spin-1 and spin-2 fields before going on to consider the

most general case of arbitrary spin.

In the spin-1 case the quadratic action reads

L =
1

2
Aµ (p

2)Aµ , (C.11)

– 59 –



J
H
E
P
0
4
(
2
0
1
2
)
0
2
9

where now we want to relax the constraint p · A = 0. In order to complete this action to

a fully gauge-invariant one we can start computing its gauge variation under δAµ = pµ Λ

recovering

δL = Aµ p
2 pµ Λ . (C.12)

This term can nonetheless be compensated adding a divergence that now is non-vanishing

and whose gauge variation produces

δ(p ·A) = p 2 Λ . (C.13)

To reiterate, a counter-term proportional to the divergence of Aµ cancels the unwanted

non-zero gauge variation (C.12) and leads off-shell to

L =
1

2

[
Aµ (p

2)Aµ + (p ·A)µ (p ·A)
µ
]
. (C.14)

In a similar fashion for spin-2 the starting point is

L =
1

2
hµν (p

2)hµν , (C.15)

where hµν is a transverse polarization tensor, and we would like to relax this constraint.

Computing as before the gauge variation of (C.15), under the gauge transformation

δ hµν = pµ Λ ν + pν Λµ , (C.16)

one obtains the result

δL = 2hµν (p
2) pµ Λ ν . (C.17)

In order to cancel again the unwanted gauge variation, one can proceed as in the spin-1

case, constructing a tensor proportional in general to traces and divergences that maintains

the useful gauge transformation (C.13), but now for a spin two field. Hence, it is convenient

to define a generalized de Donder tensor D by the condition

δD = p 2 Λ(p) , (C.18)

with the ansatz

Dµ = p · hµ + pµA(h) , (C.19)

so that eq. (C.18) translates into the equivalent condition

δAµ(h) = − p · Λ(p) , (C.20)

and hence the full gauge-invariant Lagrangian is given in a manifestly self-adjoint form by

L =
1

2
hµν (p

2)hµν + DµD
µ −

1

2
A(h) p 2A(h) . (C.21)

This is a very general form for the Lagrangian and A(h) can in principle depend also on

additional auxiliary fields. Solving now equation (C.20) for spin-2 one has various options.
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If one chooses to describe a reducible spin-2 field, the hµν would not be constrained on-

shell by

h ′ = 0 , (C.22)

and this means that one is not allowed to introduce traces in order to solve for A. If

one insists not adding auxiliary fields, one can easily convince oneself that the solution is

non-local and is given by

D(1)
µ = (p · h)µ −

1

2

pµ

p 2
(p · p · h) ,

A(1) = −
1

2

1

p 2
(p · p · h) .

(C.23)

On the other hand, if one chooses to describe an irreducible spin-2 field the previous

solution is still admissible, since one can excite only the spin-2 components with a further

projection, but since terms proportional to the trace can now be considered in the solution

for Dµ, other solutions show up like, for instance

D(2)
µ = (p · h)µ −

1

2
pµ h

′ ,

A(2) = −
1

2
h ′ .

(C.24)

The latter, if substituted into (C.21) give rise to the standard linearized Einstein-Hilbert

Lagrangian whose equations of motion can be expressed in the usual form

Rµν −
1

2
ηµν R

′ = 0 , (C.25)

where Rµν is the linearized Ricci tensor.

The spin-2 discussion generalizes directly to the HS case, so that starting from the con-

strained system identified by the Lagrangian (C.8) one recovers the full off-shell Lagrangian

L =
1

2

[
φ 1(p 1 , ξ 1) ⋆ p

2
2 φ 2(p 2 , ξ 2) + D1(p 1 , ξ1) ⋆ D2(p 2 , ξ2) (C.26)

− A 1(p 1 , ξ1) ⋆ p
2
2A 2(p 2 , ξ2)

]
,

where by convention

p 1 + p 2 = 0 , (C.27)

that is gauge invariant without requiring any transversality constraint on the field or on

the gauge parameter if D(p , ξ) and A(p , ξ) satisfy

D(p , ξ) = (p · ∂ξ)φ(p , ξ) + p · ξA(p , ξ) , δA(p , ξ) = − p · ∂ξ Λ(p , ξ) , (C.28)

and where A is needed in order to relax the on-shell constraint

p · ∂ξ Λ(p , ξ) = 0 . (C.29)
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At this point we have recovered a general form for a quadratic manifestly self-adjoint and

gauge-invariant Lagrangian in terms of two objects D and A that can depend on the field

φ(p , ξ) as well as other auxiliary fields. The next step is to solve eqs. (C.28), and in order

to do this one needs to specify as before whether one is restricting the attention to a single

irreducible HS tensor enforcing the traceless constraint on-shell or, alternatively, one is

describing a reducible representation containing, for instance, spin-s down to spin 1 or 0

polarizations respectively for s odd or even, or also other intermediate possibilities. The

second option, as for the spin-2 case, brings about non-localities since one is not allowed

to add to the completely gauge-fixed Lagrangian trace terms being them non-zero already

at the gauge-fixed level. Then, a solution to eqs. (C.28) can be given as

D(p , ξ) = : exp

[
1

p 2
(p · ξ) (p · ∂ ξ)

]
: (p · ∂ ξ)φ(p , ξ) ,

A(p , ξ) =

(
: exp

[
1

p 2
(p · ξ) (p · ∂ ξ)

]
: − 1

)
(p · ∂ ξ)φ(p , ξ) ,

(C.30)

that actually, when substituted into the Lagrangian (C.26), produces the result obtained

by Francia in [46, 47]

L = R1(p 1, ξ1) ⋆

(
1

p 2

)s−1

R2(p 2, ξ2) . (C.31)

The other option is to consider solutions for D(p , ξ) and A(p , ξ) containing single traces

together with divergences trying to address the case in which a single irreducible spin-s

polarization is propagated. A solution is in this case the usual de Donder term

D(p , ξ) =

[
(p · ∂ ξ) −

1

2
(p · ξ) ∂ ξ · ∂ ξ

]
φ(p , ξ) , (C.32)

together with

A(p , ξ) = −
1

2
∂ ξ · ∂ ξ φ(p , ξ) . (C.33)

Their gauge variation turns out to be

δD(p , ξ) = −
1

2
(p · ξ) 2 ∂ ξ · ∂ ξ Λ(p , ξ) ,

δA(p , ξ) = − p · ∂ξ Λ(p , ξ) −
1

2
p · ξ ∂ ξ · ∂ ξ Λ(p , ξ) ,

(C.34)

so that eq. (C.32) is a solution only for traceless gauge parameters. This reflects the

traceless constraint on the gauge parameter that we have discussed at the beginning of this

appendix, in eq. (C.6). Therefore, while the transversality constraints can be relaxed, this

is not true for the traceless constraint

∂ξ · ∂ξ Λ(p , ξ) = 0 , (C.35)

that has to be enforced also off-shell in order to maintain the same number of gauge

symmetries, while an additional number of them would spoil the original Fierz system if
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no auxiliary field is added. Then, having recovered a constrained gauge parameter, one

can also prove that the double trace of the field is gauge invariant, so that it is no more

possible in general39 to choose a gauge of the form

D(p , ξ) = 0 , (C.36)

to return to the on-shell system we started from. This actually reflects the fact that no

gauge-invariant massless field can carry a covariant tensorial representation of the Poincarè

group. Hence, to avoid inconsistencies, one is also forced to put in general the addi-

tional constraint

(∂ξ · ∂ξ)
2 φ(p , ξ) = 0 , (C.37)

that, from a more general point of view, serves here to recover an off-shell system that is

equivalent to the one we started from on-shell. We have seen here that the constraints on the

gauge parameters and on the fields originate already at the level of the Fierz system (C.4).

Hence, it is tempting to consider the on-shell system (C.8) as more most fundamental so

that if one wants to recover an unconstrained gauge symmetry one can think to address

the problem starting from the traceless constraint in the Fierz equations. One option is to

introduce compensators via a Stuckelberg shift so that the traceless constraint becomes

∂ξ · ∂ξ φ(p , ξ) = 0 → ∂ξ · ∂ξ φ(p , ξ) − p · ξ α(p , ξ) = 0 , (C.38)

with

δα(p , ξ) = ∂ξ · ∂ξ Λ(p , ξ) . (C.39)

With this choice one can eliminate the traceless constraint on the gauge parameter, recov-

ering a situation analogous to the first example. One can then eliminate the transversality

constraints with the Lagrangian (C.26) and we can solve for D(p , ξ) and A(p , ξ) recovering

now the solution

D(p , ξ) =

[
(p · ∂ ξ) −

1

2
(p · ξ) ∂ ξ · ∂ ξ

]
φ(p , ξ) +

1

2
(p · ξ) 2 α(p , ξ) ,

A(p , ξ) = −
1

2

(
∂ ξ · ∂ ξ φ(p , ξ) − (p · ξ)α(p , ξ)

)
,

(C.40)

that satisfy (C.28) without any constraint on the gauge parameter. Still there is a subtlety

that is related to the fact that there exists a completion of the double trace of the field that

is now gauge invariant so that in order to have the possibility of fixing the gauge recovering

the on-shell system we started from one still needs to add the constraint

∂ ξ · ∂ ξ

[
∂ ξ · ∂ ξ φ(p , ξ) − (p · ξ)α(p , ξ)

]
= 0 , (C.41)

that can be enforced with the addition of a Lagrange multiplier as in [34–37] and reduces

to the previous double-traceless constraint once the gauge symmetry is fixed in order to

eliminate the compensator α(p , ξ). To conclude this appendix, let us stress again the key

role of the on-shell system that actually is the common origin of any off-shell completion

39More explicitly when the double trace of the field is not a scalar.
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since even the BRST charge Q defined in (2.5) is a gauge-invariant completion of p 2

whose Lagrangian can be obtained along the same lines starting from the corresponding

Fierz system enlarged in order to contain the auxiliary fields C and D. We expect that

changing the constraints on the field φ one is able to recover, in principle, any kind of

theory propagating intermediate subset of the fields contained into a polarization tensor

of spin-s. The same logic that we have discussed at length in the relatively simple case

of the free Lagrangian is expected to apply also at the cubic and quartic level, so that

a consistent deformation of the on-shell system should be extendable off-shell. In this

work we have restricted the attention to the formalism associated to the super phase-space

H that has been, somehow, a source of inspiration, but any other off-shell completion

should be equally meaningful modulo the fact that some of them can be more convenient

to recover a covariant representation of HS gauge symmetry and for this reason deserve

a closer study. Analogous observations are expected to work for fermionic fields, as well

as for mixed-symmetry fields, of course, with different solutions for D and A, together

with different options depending on the kind of representation of the Lorentz group that

is being considered.

D “Off-shell” theory vs. “on-shell” theory: interactions

Considerations similar to those present in the previous appendix are expected to hold at

each order. Here, for brevity, we consider the general result for the cubic bosonic case

in the irreducible Fronsdal setting, while higher-order results as well as the extension to

the fermionic case can be recovered in a similar way starting from the deformations of the

on-shell system (1.9) that we have discussed or from the corresponding deformation of the

fermionic system (1.10). The on-shell n-point functions are solutions of eq. (4.40) that we

can rewrite in the following form40

[
K̃12...n(ξi → ∂ξi) , p i · ξi

]
≈ 0 , (D.1)

where the symbol ≈ means that the equation is satisfied in the on-shell system (1.9). In

order to go off-shell one is to relax the transversality constraint so that eq. (D.1) holds

modulo the full off-shell EoM’s. The procedure is tedious but straightforward and rests on

finding the needed counterterms proportional to traces and divergences that compensate

the traces and divergences coming from the original on-shell result. Moreover, since any K̃

is recursively related to G123 in eq. (3.40), one can recognize the off-shell completion of the

former exploiting the off-shell completion of the latter paying attention to the fact that the

analog of the ⋆-contraction is off-shell the propagator numerator.

Restricting the attention to the off-shell completion of

K̃123 = exp (G123) , (D.2)

we can exploit the general setting of the previous appendix considering the

following identity

p 2φ(p , ξ) = −F(p , ξ) + p · ξD(p , ξ) , (D.3)

40In what follows for convenience we make the substitution ξi → ∂ξi in all the G(i)’s.
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where we may call F(p , ξ) generalized Fronsdal tensor and where the EoM’s coming from

the off-shell system are exactly

F(p , ξ) ≈ 0 . (D.4)

Hence, evaluating the linearized gauge variation of the vertex on-shell in the sense of

eq. (D.4) the following commutators show up

[G123 , p 1 · ξ 1]φ 1 φ 2 Λ 3 ≈ − p 2 · ξ 2

[
(∂ξ 3 · ∂ξ 2 + 1)D 2 + p 2 · ∂ξ 3 A2

]
φ 1 Λ 3

+ δ3

[
(∂ξ 2 · ∂ξ 3 + 1) D 3 + p 3 · ∂ξ 2 A3

]
φ 1 φ 2 ,

[G123 , p 2 · ξ 2]φ 1 φ 2 Λ 3 ≈ p 1 · ξ 1

[
(∂ξ 3 · ∂ξ 1 + 1)D 1 + p 1 · ∂ξ 3 A1

]
φ 2 Λ 3

− δ3

[
(∂ξ 1 · ∂ξ 3 + 1) D 3 + p 3 · ∂ξ 1 A3

]
φ 1 φ 2 ,

[G123 , p 3 · ξ 3]φ 1 φ 2 Λ 3 ≈ p 2 · ξ 2

[
(∂ξ 1 · ∂ξ 2 + 1)D 2 + p 2 · ∂ξ 1 A2

]
φ 1 Λ 3

− p 1 · ξ 1

[
(∂ξ 2 · ∂ξ 1 + 1)D 1 + p 1 · ∂ξ 2 A1

]
φ 2 Λ 3 ,

(D.5)

so that defining the tensor structure

Hij = (∂ξ i
· ∂ξ j

+ 1)D j + p j · ∂ξ i
Aj , (D.6)

one can determine recursively all totally cyclic counterterms whose gauge variations cancel

the contributions that are not proportional to the EoM’s. In the Fronsdal setting one then

ends up with the full off-shell result

K̃ off-shell
123 =

(
1 + /∂

23
ξ1

+ /∂
31
ξ2

+ /∂
12
ξ3

)
exp

(
G123

)

×

[
1 +

α ′

2
Ĥ 12 Ĥ 13 +

(
α ′

2

) 3
2

: Ĥ21 Ĥ 32 Ĥ 13 : + cyclic

]

+ exp
(
G123

) {
/∂
12
ξ1

[√
α ′

2
Ĥ 23 +

α ′

2
Ĥ 32 Ĥ 13

]

− /∂
12
ξ2

[√
α ′

2
Ĥ 13 −

α ′

2
Ĥ 31 Ĥ 23

]
+ cyclic

}
,

(D.7)

where we have considered also fermionic labels that give zero contribution in the purely

bosonic case, so that for instance /∂
ij

contracts the fermionic indices between the field ψ i

and ψ j while the 1 simply contracts the two fermionic indices together, whenever they are

present. Moreover, we have defined Ĥ ij by

H ij = Ĥ ij φ j , (D.8)

while, regarding the terms of order H̃ 3, an ordering prescription simplifies the expressions

in the appendix of [64]. Explicitly, in each term the de Donder operators are to be put

to the right, making them act directly on the generating function of the fields, so that

for instance,

: Di ∂ξi : = ∂ξi Di . (D.9)
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Similar results supplemented by eventual further terms should hold in all off-shell extensions

reviewed in the appendix C. In the n-point case analogous completions should be recovered

by a recursive procedure starting from the results so far presented in the main body of the

paper and exploiting eq. (D.7) and its generalizations.
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[67] R. Manvelyan, K. Mkrtchyan, W. Rühl and M. Tovmasyan, On nonlinear higher spin

curvature, Phys. Lett. B 699 (2011) 187 [arXiv:1102.0306] [INSPIRE].

[68] A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrary spin,

Nucl. Phys. B 227 (1983) 31 [INSPIRE].

[69] A.K. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended

supermultiplets, Nucl. Phys. B 227 (1983) 41 [INSPIRE].

[70] R. Metsaev, Cubic interaction vertices of totally symmetric and mixed symmetry massless

representations of the Poincaré group in D = 6 space-time, Phys. Lett. B 309 (1993) 39

[INSPIRE].

[71] R. Metsaev, Generating function for cubic interaction vertices of higher spin fields in any

dimension, Mod. Phys. Lett. A 8 (1993) 2413 [INSPIRE].

[72] E. Fradkin and R. Metsaev, Cubic scattering amplitudes for all massless representations of
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