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Abstract. We show that a junction of three off-critical quantum Ising chains can be regarded as a quantum
spin chain realization of the two-channel spin-1/2 overscreened Kondo effect with two superconducting
leads. We prove that, as long as the Kondo temperature is larger than the superconducting gap, the
equivalent Kondo model flows towards the two channel Kondo fixed point. We argue that our system
provides the first controlled realization of two channel Kondo effect with superconducting leads. Besides
its theoretical interest, this result is of importance for potential applications to a number of contexts,
including the analysis of the quantum entanglement properties of a Kondo system.

1 Introduction

The Kondo effect [1] and superconductivity [2] are among
the most remarkable effects of many-body correlations
in condensed matter systems. Specifically, in the former
case itinerant electrons conspire to screen a localized mag-
netic impurity in a conducting media to an isolated spin
singlet; in the latter case, electrons pair in two-particle
Cooper pairs, and eventually condense in a collective or-
dered state, in which single-particle excitations are fully
gapped, with the dependence of the gap on the momentum
determined by the specific superconducting state which is
created. Remarkably, the simultaneous presence of the two
effects gives rise to an interesting competition: indeed, it
is well-known that Kondo effect is strictly related to low-
energy singularities in the single-fermion scattering am-
plitude of the magnetic impurities, close to the Fermi sur-
face. This clearly conflicts with the presence of an energy
gap in the single-fermion spectrum in the superconducting
phase, which makes the density of states in the vicinity of
the Fermi level equal to 0. Nevertheless, despite the gap,
Kondo effect is not necessarily suppressed by the onset
of superconductivity. This is due to the well-known result
that the fermions effectively screening the impurity are
the ones at energies (measured with respect to the Fermi
level) ranging from the half-bandwidth all the way down
to kBTK , with TK being the Kondo temperature and kB

the Boltzmann constant [3]. Therefore, Kondo effect is ex-
pected to persist even in a superconducting medium with
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gap Δ, provided kBTK � Δ, which makes the gap itself
immaterial for the screening of the magnetic impurity [4].

In the last two decades, the enormous progress in the
fabrication techniques of nanostructures made it possible
to realize Kondo effect in a controlled way in e.g. quan-
tum dots at Coulomb blockade [5,6] or in single magnetic
impurities [7] in contact with metallic leads. More gen-
erally, Kondo effect in low-dimensional systems has been
explored [8], especially in view of its relation to remarkable
many-body collective effects [9], such as, for instance the
electronic shake-up after a single-electron emission [10,11].
This motivated further proposals for studying the coex-
istence/competition between Kondo effect and supercon-
ductivity in a quantum dot coupled to superconducting
leads, also in a Josephson-junction arrangement (dot con-
nected to two superconducting leads at zero voltage bias
and fixed phase difference), which should be able to evi-
dence the crossover between π-junction (no Kondo effect)
and 0-junction (onset of the Kondo effect) [12–15]. On
the experimental side, a remarkable scaling law of the dc-
conductance, which results to be a universal function of
Δ/(kBTK), has been observed in a single quantum dot
contacted laterally to a superconducting reservoir [16].
While there is still some debate about nonuniversal fea-
tures, it is basically estabilished that the onset of Kondo
effect is effective whenever KBTK/Δ � 1 and that the
fixed point as T → 0 should correspond to the perfectly
screened Nozières fermi liquid [1]. Other issues which have
been studied using quantum dots connected to supercon-
ductors are, for instance, the interplay between Kondo ef-
fect and Andreev reflection in dots coupled to one normal
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and one superconducting lead [17], or in a dot coupled to
topological superconducting leads [18].

Recently, novel possible realizations of Kondo effect
have been proposed at junctions of interacting quantum
wires and topological superconductors [19–22], in an SNS-
junction made with topological superconductors (where it
should be detected by looking at the scaling of the current
with the system size) [23,24], or in junctions of quantum
spin chains [25–28]. In particular, the quantum spin chain
realization of the Kondo effect presents a number of the-
oretically interesting features, such as the possibility of
realizing in a “natural” way the symmetry between chan-
nels in the many-channel version of the effect [26] or, on
the theoretical side, the exact integrability of some specific
models [29,30]. On the applicative side, it appears partic-
ularly intriguing, due to the possibility of realizing in a
controlled way devices behaving as spin chains and/or as
junctions of spin chains by means, for instance, of perti-
nently engineered superconducting quantum wires [31], or
of quantum Josephson junction networks [32–34].

In a junction of quantum spin chains the magnetic im-
purity is determined by the coupling between the chains.
Formally, this is evidenced by extending to the junc-
tion the Jordan-Wigner transformation [35], by means of
which one realizes quantum spin-1/2 operators in terms
of lattice spinless fermion operators (and vice versa).
When applied to a junction of more than two chains, the
Jordan-Wigner tranformation requires introducing ancil-
lary fermionic degrees of freedom, to preserve the correct
commutation relations between corresponding operators.
At a three-chain junction, this determines an effective
spin-1/2 magnetic impurity which is topological, due to
the nonlocal character of the ancillary degrees of free-
dom [25]. The Jordan-Wigner fermion can, therefore, act
to realize Kondo effect by screening this effective mag-
netic impurity. Along this correspondence, in order to
recover a gapless single-fermion spectrum, an important
requisite is that the chains forming the junction are all
tuned at a quantum critical point, either corresponding
to the paramagnetic-ferromagnetic phase transition in the
quantum-Ising chains [26,27] or in the XY quantum spin
chains [28], or belonging to a critical line of gapless points,
such as in the junction of quantum XX spin chains [25].

In this paper we rather focus onto the Kondo effect
at a junction of three off-critical (on either the param-
agnetic, or the ferromagnetic side) quantum Ising chains,
with a nonzero gap in the single-fermion spectrum. Specif-
ically, by going through a rigorous mapping between the
off-critical junction of Ising chains and the model for a
spin-1/2 magnetic impurity interacting with two super-
conducting baths, we prove that our system can be re-
garded as a model for two-channel Kondo effect with su-
perconducting leads.

A first important feature of the system we consider
is that it hosts a remarkable realization of overscreened,
spin-1/2 two-channel Kondo effect with superconducting
electronic baths which, so far, has never emerged in real-
istic devices based on e.g. quantum dots with supercon-
ducting leads. Moreover, our system naturally presents

a symmetry between channels, which is typically hard
to recover in “standard” condensed matter-based many-
channel Kondo systems [26,36]. Finally, the very fact that
our system is based on a junction of spin chains makes it
possible to use it for potentially countless numerically- and
analitically-based applications, such as, for instance, prob-
ing the effects of superconductivity on the entanglement
structure of the system [37] and, more generally, verify-
ing how the Kondo interaction affects the entanglement
of the spin chains close to their “bulk” quantum critical
point [38,39].

The paper is organized as follows:

– in Section 2, we introduce the model Hamiltonian
for the junction of three quantum spin chains and
map it onto a pertinent fermionic Hamiltonian by em-
ploying an adapted version [25] of the Jordan-Wigner
transformation;

– in Section 3, we rigorously trace out the mapping be-
tween the Jordan-Wigner fermionic representation of
the junction Hamiltonian and a model for a quantum
spin-1/2 impurity interacting with two superconduct-
ing baths (“channels”);

– in Section 4, we analyze the onset of Kondo regime
by means of a pertinently adapted version [28] of poor
man’s renormalization group approach to Kondo prob-
lem [3], finding the necessary conditions to which the
Kondo coupling and the single-fermion energy gap
must obey, in order to actually recover the Kondo
effect;

– in Section 5, we discuss whether, and how, Majorana-
fermion-like excitations arising at the endpoints of the
chains in the magnetically ordered phase affect the
Kondo effect, proving that their are basically irrele-
vant for what concerns Kondo physics;

– in Section 6, we describe the strongly coupled Kondo
fixed point of the system using a variational ap-
proach [15,40], adapted to the specific case of gapped
leads. We conclude that the gap does not substantially
affect the structure of the Kondo fixed point, provided
the conditions for the onset of Kondo regime are met;

– in Section 7, we provide our main conclusions, together
with a discussion of possible further developments of
our work;

– in the Appendix, we present mathematical details
about the exact solution of a quantum Ising chain with
open boundary conditions in terms of Jordan-Wigner
fermions.

2 The model Hamiltonian for the junction

The possibility of realizing two-channel Kondo (2CK) ef-
fect at a junction of three critical ferromagnetic quan-
tum Ising chains (QIC)s was originally put forward by
Tsvelik [26] who, later on, also proved the exact solvabil-
ity of the model, taken in the continuum limit [29]. Here,
we consider the generic situation of a junction of three,
non (necessarily) critical QICs. Following Tsvelik’s con-
struction, we focus onto a junction of three equal chains,
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each one consisting of � sites. The three (disconnected)
chains are described by the model Hamiltonian

HChain =
3∑

λ=1

{
−J

�−1∑

j=1

Sx
j+1,λSx

j,λ + h

�∑

j=1

Sz
j,λ

}
. (1)

In equation (1), Sx
j,λ and Sz

j,λ are quantum, spin-1/2 op-
erators acting on site-j of chain-λ, J (>0) is the fer-
romagnetic exchange strength between spins on nearest
neighboring sites, h is the applied magnetic field in the
z-direction. With the normalization we chose in equa-
tion (1), the chains become quantum critical at J =
±h/2 [41]. The junction is constructed by connecting the
three spins at the endpoints of the three chains by means
of a ferromagnetic coupling JΔ < J . The corresponding
boundary Hamiltonian is therefore given by:

HΔ = −JΔ

3∑

λ=1

Sx
1,λ+1S

x
1,λ, (2)

with periodicity in the index λ understood, that is,
Sx

1,λ+3 = Sx
1,λ. The whole system is described by the

model Hamiltonian H = HChains + HΔ. The mapping
of the spin-chain junction onto a fermionic Kondo-like
Hamiltonian is based onto a generalization of the Jordan-
Wigner (JW) fermionization procedure for a single chain
with open boundary conditions, which we review in the
Appendix. Specifically, in order to preserve the cor-
rect (anti)commutation relations between operators act-
ing on different chains, one has to introduce a set of
Jordan-Wigner spinless lattice fermions per each chain,
{aj,λ, a†

j,λ}, in analogy to what is tipically done for a sin-
gle chain (see the Appendix for details) and, in addition,
three real-fermionic Klein factors (KF)’s σλ, one per each
chain [25]. By definition, each σλ anticommutes with all
the aj,λ′ , a†

j,λ′ . On introducing the KFs, the JW transfor-
mations in equation (A.2) of the Appendix are generalized
to [25,26,28]

S+
j,λ = ia†

j,λeiπ
∑ j−1

r=1 a†
r,λar,λσλ

S−
j,λ = iaj,λeiπ

∑ j−1
r=1 a†

r,λar,λσλ

Sz
j,λ = a†

j,λaj,λ − 1
2
. (3)

Due to the identity (σλ)2 = 1, it is easy to check that,
when inserting equation (3) into equation (1), the KFs
fully disappear from HChain and that, accordingly, one
obtains

HChain =
3∑

λ=1

{
−J

4

�−1∑

j=1

{a†
j,λaj+1,λ + a†

j+1,λaj,λ}

− J

4

�−1∑

j=1

{aj,λaj+1,λ + a†
j+1,λa†

j,λ}

+ h

�∑

j=1

a†
j,λaj,λ

}
. (4)

At variance, the KFs do explicitly appear in HΔ, which
takes the form

HΔ =
3∑

λ=1

T λΣλ
1 , (5)

with

Σλ
j = − i

2

∑

λ′,λ′′
ελ,λ′,λ

′′
[a†

j,λ′ + aj,λ′ ][a†
j,λ′′ + aj,λ′′ ], (6)

and the effective spin-1/2 operator T being given by:

T λ = − i

2

∑

λ′,λ′′
ελ,λ′,λ

′′
σλ′

σλ
′′
. (7)

The operator T typically arises when employing the gen-
eralized JW fermionization procedure at a junction of
three quantum spin chains [25,26,28]: it is regarded as a
topological spin-1/2 operator because of its nonlocal char-
acter in both the chain and the site index, despite the fact
that it only appears in the boundary Hamiltonian HΔ,
which is “concentrated” at the common boundary (the
junction) at j = 1 [19,42]. As highlighted in the Appendix,
HChain in equation (4) can be regarded as the sum of three
Kitaev Hamiltonians for a one-dimensional p-wave super-
conductor: on this analogy we will ground most of the
following discussion on our system.

3 Mapping onto the two-channel Kondo
model with superconducting leads

We are now going to rigorously show that a junction of
three off-critical quantum Ising chains can be mapped
onto the Kondo problem for a spin-1/2 impurity in con-
tact with two superconducting baths (“channels”). Specif-
ically, we adapt to our problem the mapping procedure
derived and discussed in reference [36] in the case of nor-
mal leads. The key step is to go through the expression
of the boundary Hamiltonian in terms of Bogoliubov op-
erators for a quasiparticle with energy ε, {Γε}. This can
be done by inverting equations (A.5) of the Appendix and
by considering that, in a spinless superconductor, one has
the particle-hole correspondence encoded in the relation
Γ−ε = Γ †

ε , which can be explicitly checked from equa-
tions (A.5), (A.9) and (A.11) of the Appendix. Looking at
the explicit formulas for the quasiparticle wavefunctions,
equations (A.9) and (A.11), one therefore obtains

a†
1 + a1 =

∑

ε �=0

[
sin(k + ϕk)√

� + 1

]
[Γε + Γ †

ε ]

+

[√
2J2 − 8h2

J

]
Γ0,L, (8)

Γ0,L is the mode operator for the Majorana mode lo-
calized at the left-hand endpoint of the chain: the cor-
responding term in the mode expansion of equation (8)
only appears in the topological phase of the Kitaev-like
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Hamiltonian, corresponding to the magnetically ordered
phase of the quantum Ising chain. As we discuss in the
following, whether a term ∝Γ0,L is present in the mode
expansion of equation (8), or not, does not substantially
affect the Kondo physics of the system. Thus, in the fol-
lowing of this section we shall just disregard it and accord-
ingly truncate the mode expansion of a†

1 + a1 to the first
term at the right-hand side of equation (8). As a result,
we eventually obtain

a†
1 + a1 =

√
2

� + 1

∑

ε

[
sin(k + ϕk)[Γεk

+ Γ †
εk

]
]
. (9)

By means of an appropriate and straightforward general-
ization of equation (9), we therefore rewrite Σλ

1 in equa-
tion (7) as

Σλ
1 = − i

(� + 1)

∑

λ′,λ′′

∑

ε′,ε′′
ελ,λ′,λ

′′
[

h2 sin(k′) sin(k
′′
)

εk′εk′′

]

× [Γεk′ ,λ′ + Γ †
εk′ ,λ′ ][Γε

k
′′ ,λ′′ + Γ †

ε
k
′′ ,λ′′ ]. (10)

The “bulk” of the chains is instead described by the simple
quadratic Hamiltonian given by:

HChain =
3∑

λ=1

∑

ε

εΓ †
ε,λΓε,λ. (11)

As we are now going to show, by following the main
recipe presented in reference [36], it is possible to read-
ily recover the total Hamiltonian H = HChain + HΔ in
terms of an appropriate model Hamiltonian for two su-
perconducting quasiparticle baths undergoing an appro-
priate Kondo-like interaction with the spin T of an iso-
lated spin-1/2 impurity. To do so, let us introduce two
sets of quasiparticle annihilation and creation operators,
{γε,a, γ

†
ε,a}, with a = 1, 2, obeying the anticommutation

algebra {γε,a, γ
†
ε′,a′} = δε,ε′δa,a′ . Also, we choose the en-

ergy levels ε to cohincide with the eigenvalues of the
single-chain Hamiltonian in equation (A.4), so that the
Hamiltonian for the γ-modes is given by:

Hγ =
∑

ε

∑

a

εγ†
ε,aγε,a. (12)

Next, we define real-space lattice fermion operators
{dj,a} as

dj,1 =
∑

ε

{uε
jγε,1 − vε

jγ
†
ε,2}

dj,2 =
∑

ε

{uε
jγε,2 + vε

jγ
†
ε,1}, (13)

with the wavefunctions uε
j, v

ε
j given in equations (A.9)

and (A.11). Now, we notice that, going backwards to a
possible lattice Hamiltonian formulation of our construc-
tion, we may construct the γε,a-operators as eigenmodes of

the superconducting lattice Hamiltonian HEff , defined as:

HEff = −J

4

∑

a=1,2

�−1∑

j=1

{d†j,adj+1,a + d†j+1,adj,a}

− J

4

�−1∑

j=1

{dj,1dj+1,2 − dj,2dj+1,1 + d†j+1,2d
†
j,1

− d†j+1,1d
†
j,2} + h

∑

a=1,2

�∑

j=1

d†j,adj,a. (14)

As proposed in reference [36], we now use the modes of
HEff two define two independent lattice isospin operators,
Sj and Tj , respectively given by:

Sj =
1
2

⎡

⎢⎢⎣

d†j,1dj,2 + d†j,2dj,1

−i(d†j,1dj,2 − d†j,2dj,1)

d†j,1dj,1 − d†j,2dj,2

⎤

⎥⎥⎦ , (15)

and by

Tj =

⎡

⎢⎢⎣

d†j,1d
†
j,2 + dj,2dj,1

−i(d†j,1d
†
j,2 − dj,2dj,1)

d†j,1dj,1 + d†j,2dj,2 − 1

⎤

⎥⎥⎦ . (16)

Any component of Sj commutes with any component of
Tj : therefore, the two of them can be regarded as two in-
dependent spin-1/2 lattice density operators. Using them
as independent channels to screen an isolated spin-1/2 im-
purity with spin T , coupled to the site j = 1 by means of
the antiferromagnetic Kondo coupling JK , we may write
the corresponding boundary Kondo Hamiltonian as

HK = JK

3∑

λ=1

{[Sλ
1 + T λ

1 ]T λ}

= − iJK

2
[i(d†1,1 − d1,1)][d

†
1,2 + d1,2]T 1

+ [d†1,2 + d1,2][d
†
1,1 + d1,1]T 2

+ [d†1,1d1,1][i(d
†
1,1 − d1,1)]T 3}. (17)

From equation (17) and from the tranformations from the
γ- to the d-modes in equations (13), one eventually recov-
ers the Hamiltonian HΔ, once the following identifications
are performed

Γε,1 + Γ †
ε,1 ↔ d†1,1 + d1,1

Γε,2 + Γ †
ε,2 ↔ i(d†1,1 − d1,1)

Γε,3 + Γ †
ε,3 ↔ d†1,2 + d1,2, (18)

and, of course, JK ↔ JΔ. The correspondence rules
in equations (18) complete the mapping procedure be-
tween the lattice two-channel superconducting-Kondo
Hamiltonian HEff + HK and the model Hamiltonian for
a junction of three quantum Ising chains. A remarkable
feature of our mapping procedure is that it relies on the
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construction of the spin densities for the two independent
channels as in equations (16) and (17). As extensively dis-
cussed in reference [36], constructing the spin densities in
this way implies that, if a site j contains a total spin-
1/2 of the Sj-operator, than it must be a singlet of the
Tj -operator, with corresponding spin equal to 0, and vice
versa. In the “classical” two-channel Kondo problem, this
is a crucial point to build an effective theory for the sys-
tem at the 2CK-fixed point which, in this regularization
scheme, is pushed all the way down to strong coupling,
such as in the 1CK-problem [36,40]. In the following, we
will make use of this properties to get insights of the nature
of the fixed point toward which our system is attracted
along the Kondo renormalization group trajectory.

4 Perturbative renormalizazion group analysis
of the Kondo interaction

In this section, we derive the perturbative renormalization
group (RG) equations for the running coupling JΔ. As
stated above, for the time being, we disregard the zero-
mode Majorana modes in the expansion of a†

1,λ + a1,λ:
we will come back to a discussion of their effects in the
next section. To work out the perturbative renormaliza-
tion of JΔ, we resort to the imaginary time path-integral
formalism, by introducing the Euclidean bulk action for
the chains, SChain, given by:

SChain =
∫

dτ

⎧
⎨

⎩

3∑

λ=1

�∑

j=1

a†
j,λ(τ)∂τ aj,λ(τ) + HChain(τ)

⎫
⎬

⎭,

(19)
as well as the boundary action SΔ, which is given by:

SΔ = JΔ

∫
dτ

3∑

λ=1

T λ(τ)Σλ
1 (τ). (20)

Using HChain as noninteracting Hamiltonian, in the corre-
sponding interaction representation one may present the
partition function for the junction, Z, as:

Z = Z0〈Tτ exp[−SΔ]〉, (21)

with Z0 being the partition function for the system at
JΔ = 0, SΔ being the boundary action in the interaction
representation, and Tτ being the imaginary time order-
ing operator. Following the standard poor man’s recipe to
recover the RG equation [1,3], we now resort to the fre-
quency domain and explicitly cutoff the integration over
frequencies at a scale D, so that SΔ can be rewritten as:

SΔ =
∫ D

−D

dΩ

2π

3∑

λ=1

T λ(Ω)Σλ
1 (−Ω), (22)

with T λ(Ω) and Σλ
1 (Ω) being the Fourier transform of re-

spectively T λ(τ) and Σλ
1 (τ). To derive the RG equations

for the running coupling, we rescale the cutoff from D to

D/κ, with 0 < κ−1 	 1 and, accordingly, we split the in-
tegral in equation (22) into an integral over [−D/κ, D/κ]
plus integrals over values of Ω within [D/κ, D] and within
[−D,−D/κ]. Leaving aside the two latter integral, as they
just provide a correction to the total free energy. We there-
fore obtain, in analogy to [28]

SΔ →
∫ D

κ

−D
κ

dΩ

2π

3∑

λ=1

T λ(Ω)Σλ
1 (−Ω)

=
1
κ

∫ D

−D

dΩ

2π

3∑

λ=1

T λ

(
Ω

κ

)
Σλ

1

(
−Ω

κ

)
, (23)

which, since SΔ must be scale invariant, implies [28]∑3
λ=1 T λ(Ω

κ )Σλ
1 (−Ω

κ ) = κ
∑3

λ=1 T λ(Ω)Σλ
1 (−Ω). There-

fore, JΔ takes no corrections to first order in the boundary
coupling. At variance, to second order one finds a nonzero
correction, arising from summing over intermediate states
with energies within [D/κ, D] and within [−D,−D/κ].
Performing the integration, one eventually obtains that,
to leading order in JΔ (corresponding to one-loop order
in the expansion of the action in SΔ), SΔ is corrected
according to SΔ → SΔ + δS

(2)
Δ , with [28]

δS
(2)
Δ = J2

Δ

∫ D

−D

3∑

λ=1

dΩ

2π
T λ(Ω)Σλ

1 (−Ω)

× [Γ (D) + Γ (−D)]D(1 − κ−1). (24)

The function Γ (Ω) in equation (24) is defined to be
the Fourier-Matsubara transform of Γ (τ) = G(τ)g(τ),
with g(τ) = sgn(τ) being the σ-fermion Green’s function
g(τ) = 〈Tτ [σ(τ)σ(0)]〉 and G(τ) being the imaginary time
ordered Green’s function (effectively independent of λ, due
to the equivalence between the three chains)

G(τ) = −〈Tτ{[a†
1,λ(τ)+a1,λ(τ)][a†

1,λ(0)+a1,λ(0)]}〉. (25)

From equations (24) and (25) one may eventually derive
the RG equations for the running coupling JΔ(D) in the
form

dJΔ(D)
d ln

(
D0
D

) = J2
Δ(D)ρ(D), (26)

with, in the specific system we are focusing on, ρ(D) being
given by:

ρ(D) =
16

πJ2

∫ W

Δw

dε

[
D2

(ε2 + D2)2

]√
(ε2 − Δ2

w)(W 2 − ε2).

(27)
In equation (27), we used Δw to denote the single-fermion
excitation gap, as discussed in Appendix, while W =
J
2 +|h| is the energy at the band edge in the single-fermion
spectrum and D0 is a O(W ) high-energy reference cut-
off. On integrating equation (27), one may therefore in-
fer whether the system crosses over towards the Kondo
regime, despite the presence of a nonzero gap Δw in the
spectrum, and, if that is the case, what is the correspond-
ing (Kondo) temperature scale at which the crossover
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JΔ
c /W

WΔ /W

 0.0

 1.0

 2.0

 3.0

 0.0  0.2  0.4  0.6

Fig. 1. The critical coupling Jc
Δ(Δw) as defined in equa-

tion (28), as a function of Δw for 0 ≤ Δw ≤ 0.6 (in units
of the bandwidth W ). As discussed in the text, the region in
which Kondo regime can take place corresponds to values of
Jc

Δ/W < 1, that is, the part of the plot lying below the dashed
line, corresponding to Jc

Δ/W = 1.

takes place. To analyze the onset of the Kondo regime, we
follow the technique highlighted in [8]. Specifically, we in-
troduce the (Δw-dependent) “critical coupling” Jc

Δ(Δw),
defined as:

Jc
Δ(Δw) =

{∫ D0

0

ρ(x)
dx

x

}−1

(28)

(note that, in the definition of Jc
Δ, we stressed the de-

pendence on the gap Δw. This is a basic feature of our
“off-critical” model, which makes the main difference be-
tween the case we investigate here and the critical limit,
extensively discussed in Refs. [26,28]). Having introduced
the critical coupling, the solution to equation (26) can be
rewritten as

JΔ(D)=
JΔ(D0)Jc

Δ(Δw)

JΔ(D0)−Jc
Δ(Δw)+JΔ(D0)Jc

Δ(Δw)
∫D

0
ρ(x)dx

x

.

(29)
Within standard poor man’s approach to Kondo prob-
lem, the onset of the Kondo regime is signaled by the
appearance of a scale DK at which JΔ(D) diverges. At
D = DK , therefore, the denominator of the expression
at the right-hand side of equation (29) must be equal
to 0, which is only possible if JΔ(D0) ≥ Jc

Δ(Δw). This
observation implies that Kondo effect does definitely not
take place whenever Jc

Δ(Δw)/W > 1. At variance, for
Jc

Δ(Δw)/W < 1 the crossover to Kondo regime can take
place within an appropriate range of values of JΔ(D0),
provided the Kondo crossover scale DK , though substan-
tially lower than W , is still >Δw, so to have a nonzero
fermion density screening the isolated magnetic impurity
at the scale DK [12–15]. In Figure 1, we plot Jc

Δ(Δw)/W
as a function of Δw. The dashed horizontal line marks
the set of points corresponding to Jc

Δ/W = 1. Consis-
tently with what we discuss before, we expect that Kondo
regime is fully suppressed by the gap in the single-fermion
spectrum throughout all the region with Jc

Δ/W > 1, that
is, for Δw > Δ∗

w ≈ 0.5W . To check the consistency
between the RG flow of the running coupling and equa-
tion (29), we numerically compute JΔ(D) vs. D by inte-
grating equation (26) for different values of Δw. We re-
port the corresponding curves in Figure 2a: specifically,
we find that, for Δw = 0.3 (that is, much lower than Δ∗

w),
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Fig. 2. Renormalization Group flow of JΔ(D) vs. D for dif-
ferent values of the gap Δw: (a) the curves are obtained at
Δw/W = 0.3 and for JΔ(D0)/W = 0.6 (blue solid curve) and
JΔ(D0)/W = 0.2 (red dot-dashed curve). In this case Δw <
Δ∗

w and Jc
Δ(Δw)/W = 0.5: accordingly, JΔ(D) flows towards

strong coupling for JΔ(D0)/W = 0.6 (>Jc
Δ(Δw)), while it is

barely renormalized by the interaction when JΔ(D0)/W = 0.2
(<Jc

Δ(Δw); (b) the curves are obtained at Δw/W = 0.6 and
for JΔ(D0)/W = 0.6 (blue solid curve) and JΔ(D0)/W = 0.2
(red dot-dashed curve). Since now Δw > Δ∗

w, in neither case
JΔ(D) flows towards the strongly coupled regime.

JΔ(D) either flows towards the strongly coupled regime,
or not, according to whether JΔ(D0) > Jc

Δ(Δw) (≈0.51),
or JΔ(D0) < Jc

Δ(Δw). At variance, as it clearly appears
in Figure 2b, for Δw > Δ∗

w, JΔ(D) is barely renormalized
by the Kondo interaction and shows no evidence of non-
perturbative flow towards strong coupling. Once the con-
ditions under which the onset of the Kondo regime take
place, it becomes important to infer the dependence of
the corresponding Kondo temperature scale TK on both
JΔ(D0) and Δw. By definition, one sets TK = DK/kB,
where kB is the Boltzmann constant and DK is the scale
at which the denominator of equation (29) becomes equal
to 0. Then, DK is formally given by the equation

1 + JΔ(D0)

⎡

⎣ 32

π
(
1 + Δ2

w

W 2

)

⎤

⎦

×
∫ 1

Δw
W

du

√
u2 − Δ2

w

W 2

√
1 − u2

[
1

u2 + 1
− 1

u2 + D2
K

W 2

]
= 0.

(30)

As stated before, in order for the Kondo regime to take
place, it is important that the condition DK/ΔW � 1
is satisfied. Within such an hypothesis, we can therefore

simply approximate the factor
√

u2 − Δ2
w

W 2 in equation (30)
with u. In addition, as Kondo physics is mostly a low-
energy effect, we may also approximate

√
1 − u2 simply

with 1. As a result, we eventually obtain

TK [JΔ(D0); Δw] ≈ D0 exp

[
−

π
(
W 2 + Δ2

w

)

32WJΔ(D0)

]
, (31)

with the cutoff D0 ∼ W . As Δw → 0, equation (31)
gives back the result for the Ising limit, once the
proper correspondence between the various parameters
has been traced out [28]. As a general result, equa-
tion (31) encodes a remarkable “Kondo temperature
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Fig. 3. Full plot of the Kondo temperature as a function of
Δw at fixed JΔ(D0), and of JΔ(D0) at fixed Δw: (a) TK/W
vs. Δw/W at JΔ(D0)/W = 0.35; (b) TK/W vs. JΔ(D0)/W at
Δw/W = 0.2.

renormalizazion”, namely, on increasing Δw, one sees a
reduction of TK , which is consistent with the expected
competition between Kondo physics and gapped spec-
trum [12–15]. Specifically, equation (31) is expected to
apply to the regime in which a nonzero Δw does not sup-
press Kondo effect, that is, for DK/Δw � 1. The sup-
pression of Kondo effect with increasing Δw can instead
be numerically derived, by using the integrated RG flow
in equation (29) to estimate TK vs. Δw at fixed JΔ(D0)
and TK vs. JΔ(D0) at fixed Δw. As a result, one obtains
plots such as the ones we show in Figure 3 at the system
parameters chosen as discussed in the caption. In partic-
ular, the suppression of Kondo effect either on increasing
Δw at fixed JΔ(D0), or on decreasing JΔ(D0) at fixed Δw

is evidenced by the fact that the curve TK [JΔ(D0); Δw]
becomes constantly zero above (below) a critical value of
Δw (JΔ(D0)) at fixed JΔ(D0) (Δw).

5 Majorana modes and onset of the Kondo
regime

In this section we extend the perturbative RG analysis to
additional terms in HΔ which arise due to emergence of
Majorana modes (MM)s at the endpoints of the chain. In
particular, we show that, under the required assumptions
for recovering Kondo effect, these terms do not affect the
onset of Kondo physics. As a starting point, we note that,
on including the zero-mode MM in the mode expansion of
a1,λ + a†

1,λ, equation (10) for Σλ
1 is modified to

Σλ
1 = ρ2Rλ + ρωλ

1 + Σ̄λ
1 , (32)

with Σ̄λ
1 contributed by nonzero modes and given by

the mode expansion in equation (10), ρ =
√

2J2−8h2

J =
2
√

2
√

ΔwW
J , and

Rλ = − i

2

∑

λ′,λ′′
ελ,λ′,λ

′′
Γ λ′

0,LΓ λ
′′

0,L

ωλ
1 = −i

∑

λ′,λ′′
ελ,λ′,λ

′′
Γ λ

′′

0,L

×
[
∑

ε

(
h sin(k)

εk

)
[Γεk,λ′ + Γ †

εk,λ′ ]

]
. (33)

On inserting equation (32) into the expression of HΔ, one
eventually finds

HΔ = H
(0)
Δ + H

(1)
Δ + H̄Δ, (34)

with

H
(0)
Δ = J0

3∑

λ=1

T λRλ

H
(1)
Δ = J1

3∑

λ=1

T λωλ
1

H̄Δ = J̄

3∑

λ=1

T λΣ̄λ
1 . (35)

J0, J1 and J̄ in equation (35) are three in principle inde-
pendent running couplings which, at the bare level, are
respectively given by J0 = ρ2JΔ, J1 = ρJΔ, and J̄ = JΔ.
H̄Δ in equation (35) is basically the same operator as
one gets in the absence of MMs. We have performed
the full perturbative RG analysis of the corresponding
running coupling strength J̄(D) in the previous section
and have concluded that, under appropriate conditions
on Δw and on J(D0), the system can develop Kondo ef-
fect, corresponding to a marginally relevant rise of J̄(D),
as D is lowered from D0 towards DK . H

(0)
Δ takes the

form of a “RKKY”-like coupling between two topologi-
cal spin-1/2 operators, T determined by the Klein factors
σλ, and R, determined by the MMs Γ λ

0,L as from equa-
tion (33). Based on dimensional counting arguments for
boundary interaction terms [43], one expects that, on low-
ering D, the corresponding running coupling J0(D) scales
as J0(D) = J0(D0)D0

D and, similarly, that J1(D) scales as

J1(D) = J1(D0)
(

D0
D

) 1
2 . Apparently, on lowering D, this

implies a rise of both J0(D) and J1(D) faster than J̄(D).
However, one has to recall that, by definition, the scaling
must be terminated at the scale D = DK . At such a scale,
one obtains

J0(DK) = ρ2JΔ
D0

DK
∼ W 2

J2

Δw

DK
JΔ. (36)

Within the magnetically ordered phase, the condition
|2h| < J implies |W |/J ≤ 1. Moreover, our assumption
on the onset of the Kondo regime implies Δw/DK 	 1,
which eventually yields J0(DK) 	 JΔ. By means of a sim-
ilar argument, one readily concludes that J1(DK) 	 JΔ,
as well. As a result, all the way down to D = DK , H

(0)
Δ

and H
(1)
Δ merely provide a perturbative, small additional

boundary interaction, which we neglect, against the rele-
vant Kondo-like interaction H̄Δ. It would be interesting to
analyze whether it is possible to modify the Hamiltonian
HΔ so to eventually make the RKKY-interaction to be
relevant, in the magnetically ordered phase. In fact, this
would provide a tool to monitor the emergence of MMs
in terms of pertinent modifications in the boundary phase
diagram associated to HΔ (suppression of Kondo effect).

http://www.epj.org
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This, however, lies outside the scope of this work, and we
plan to discuss it in a future publication. We thus conclude
that, at least down to the scale D = DK , the MMs do not
provide sensible modification to the Kondo RG flow of the
boundary coupling JΔ(D), which makes the discussion of
the previous section to be equally valid for the paramag-
netic, as well as for the ferromagnetic phase of the spin
chains.

6 Description of the strongly coupled Kondo
fixed point

In the previous sections we have shown that Kondo effect
in our system is recovered whenever, at a given value of
Δw, one has JΔ(D0) > Jc

Δ(Δw), implying a flow of the
boundary interaction towards the strongly coupled Kondo
fixed point (KFP). In this section, we provide a description
of the sytem at the KFP. To do so, we combine the for-
mal description of the KFP in the gapless case developed
in references [36,40] with a pertinently modified version
of the projection variational approach used to study the
single-channel KFP with superconducting leads [15]. The
starting point is the observation that the topological spin
T is only coupled to the total spin density at the site
j = 1. As a consequence of the properties of the two spin-
1/2 operators Sj and Tj introduced in Section 3, j = 1
hosts total spin-1/2 of S1 and total spin-0 of T1, or vice
versa. As a result, when coupled to both spins by means
of the 2CK-like interaction in equation (17), T can give
rise to either a total 0-spin spin singlet, or to a total spin-1
spin triplet state. In the noninteracting limit JΔ = 0, the
actual groundstate of the system is an equally-weighted
mixture of singlet- and triplet-states. As JΔ is turned on,
we expect that, the larger is JΔ, the higher is the relative
weight of the singlet states versus the triplet states [15]. To
formally ground this observation, we define the operator
Pg = I+ g

∑3
λ=1 T λΣλ

1 . For g = −4, Pg fully projects out
the localized triplet. To set the “optimal” value of g at a
given JΔ, one employs a variational procedure, consisting
in evaluating the average value of the total Hamiltonian
onto the projected out state at fixed g, E [JΔ; Δw; g], and,
at a given JΔ, in choosing g so to minimize E [JΔ; Δw; g].
This determines a curve g(JΔ), from which one can infer
what is the optimal state as JΔ → ∞ (KFP). We define
the projected state |Ψ〉g as:

|Ψ〉g =
Pg|GS;⇑〉√

〈GS;⇑ |P2
g |GS;⇑〉

, (37)

with |GS;⇑〉 = |GS〉⊗| ⇑〉 and |GS〉 being the groundstate
of the chain Hamiltonian in equation (11), while | ⇑〉 being
one of the two eigestates of T z (we expect our final result
not to sensibly depend on the choice of the initial state
to project out, which enables us to arbitrarely choose the
initial state). It is simple, now, to prove that one gets

〈GS;⇑ |P2
g |GS;⇑〉 = 1 +

3g2

16
. (38)

Moreover, one also obtains

〈GS;⇑ |PgHChainsPg|GS;⇑〉 = EGS

{
1 +

3g2

16

}

+ 3g2Ψ1[Δw]Ψ2[Δw], (39)

with

Ψ1[Δw] =
[

1
π(1 + Δw)2

] ∫ W

Δw

dε

ε

√
ε2 − Δ2

w

√
W 2 − ε2

Ψ2[Δw] =
[

1
π(1 + Δw)2

] ∫ W

Δw

dε
√

ε2 − Δ2
w

√
W 2 − ε2,

(40)

and EGS = 〈GS|HChain|GS〉. In order to find out the last
contribution to the averaged energy, we need the following
identities

[
3∑

λ=1

Σλ
1Rλ

]2

=
3
16

− 1
4

3∑

λ=1

Σλ
1 T λ

[
3∑

λ=1

Σλ
1 T λ

]3

= − 3
64

+
1
4

3∑

λ=1

Σλ
1 T λ. (41)

Therefore, we obtain

〈GS;⇑ |PgHΔPg|GS;⇑〉 =
[
3g

8
− 3g2

64

]
JΔ, (42)

so that we eventually get

E [JΔ; Δw; g] = EGS +
3g2Ψ1[Δw]Ψ2[Δw] + 3

8g
(
1 − g

4

)
JΔ

1 + 3g2

16

.

(43)
The condition ∂gE [JΔ; Δw; g] = 0 is satisfied by either
setting g = g1[JΔ; Δw], or g = g2[JΔ; Δw], with

g1[JΔ; Δw] =
2H[Δw]−JΔ−2

√
H2[Δw]−H[Δw]JΔ+J2

Δ

3JΔ/4

g2[JΔ; Δw] =
2H[Δw]−JΔ+2

√
H2[Δw]−H[Δw]JΔ+J2

Δ

3JΔ/4
,

(44)

and H[Δw] = 16Ψ1[Δw]Ψ2[Δw]. In Figure 4, we plot
H[Δw]/W vs. Δw/W . We see that H[Δw] keeps finite
at not-too-large values of Δw. Therefore, we may readily
compute g∗j = limJΔ→∞ gj[JΔ; Δw] from equations (44),
obtaining g∗1 = −4, g∗2 = 4

3 . The latter value corre-
sponds to projecting out the singlet and, therefore, it max-
imizes E . Therefore, we take for good the former value
which, as expected, corresponds to fully projecting out
the triplet and to having a localized singlet at the effec-
tive magnetic impurity. We therefore conclude that hav-
ing a nonzero Δw does not spoil Nozière’s picture of the
system’s groundstate as a localized spin singlet at the
impurity. As a result, we may readily describe the sys-
tem’s groundstate as a twofold degenerate singlet, formed
by T and either one between S1 and T1 which can be
simply described within our approach as discussed in ref-
erences [36,40].
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Fig. 4. Plot of the function H[Δw ] vs. Δw (both quantities
are measured in units of W ).

7 Discussion and conclusions

In this paper we rigorously prove that a junction of three
off-critical quantum Ising chains can be regarded as a
quantum spin chain realization of the two-channel spin-
1/2 overscreened Kondo effect with two superconducting
leads. By making a combined use of a pertinently adapted
version of poor man’s perturbative RG approach to the
Kondo problem [1,3] and of the variational approach to
the strong coupling fixed point based on progressively pro-
jecting out from the Hilbert space states different from a
localized singlet at the impurity site [15,40], we show that,
on lowering the reference energy scale D, the system flows
all the way down to 2CK-fixed point.

Our result paves the way to the possibility of realizing
and studying in a controlled setting 2CK-effect with su-
perconducting lead, so far never considered in a solid-state
quantum dot device. In fact, our proposed device appears
to be within the reach of nowadays technology in nanos-
tructures and could be engineered by means, for instance,
of a pertinent Josephson junction network [27]. To detect
the effect in the quantum spin chain system, one may look,
for instance, at the scaling with D of the local magneti-
zation at the endpoints of the chains (such as discussed
in Ref. [28]). Alternatively, in the Josephson junction net-
work realization of the system one can in principle detect
the effect by means of an appropriate dc Josephson cur-
rent measurement [27].

Besides the theoretical interest, our results are poten-
tially relevant for what concerns quantum entanglement
properties of the system, which suggests a possible further
development of our research towards quantum computa-
tion related issues. Finally, it would be interesting to study
how the effect is modified by e.g. the introduction of dis-
orded in the chains, by inhomogeneities in the boundary
couplings, etc. Such topics, though interesting, lie never-
theless beyond the scope of this work and we will possibly
reserve them for a further publication.
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Appendix: Fermionization and explicit
solution of a single quantum Ising chain
with open boundary conditions

In this Appendix, we review the Jordan-Wigner fermion-
ization procedure applied to a single QIC with open
boundary conditions and eventually present the exact
solution of the model Hamiltonian in terms of Jordan-
Wigner fermions. The Hamiltonian for a single chain is
given by:

H1 = −J

�−1∑

j=1

Sx
j+1S

x
j + h

�∑

j=1

Sz
j . (A.1)

The Jordan-Wigner tranformation [35] allows us for trad-
ing the bosonic Hamiltonian H1 for a fully fermionic one,
by introducing a set of spinless lattice fermions {aj, a

†
j},

obeying the basic anticommutation relations {aj, a
†
j′} =

δj,j′ . The relations between the bosonic spins and the
fermionic operators are determined so to preserve the
correct (anti)commutation relations. They are therefore
given by:

S+
j = a†

je
iπ

∑ j−1
r=1 a†

rar

S−
j = aje

iπ
∑ j−1

r=1 a†
rar

Sz
j = a†

jaj −
1
2
, (A.2)

with

Sx
j =

1
2
[S+

j + S−
j ]

Sy
j =

−i

2
[S+

j − S−
j ]. (A.3)

On inserting equations (A.2) into the Hamiltonian in
equation (A.1), we readily resort to the fully fermionized
version of H1, given by:

H1 = −J

4

�−1∑

j=1

{a†
jaj+1 + a†

j+1aj}

− J

4

�−1∑

j=1

{ajaj+1 + a†
j+1a

†
j} + h

�∑

j=1

a†
jaj . (A.4)

The Hamiltonian in equation (A.4) is Kitaev’s model
Hamiltonian for a one-dimensional p-wave superconduc-
tor [44], with the various parameter (in the notation of
Ref. [44]) chosen as w = Δ = J

4 , μ = −h. To explicitly
determine the energy eigenmodes of H1, Γε, we assume
that they take the form

Γε =
�∑

j=1

{[uε
j]
∗aj + [vε

j ]
∗a†

j}

Γ †
ε =

�∑

j=1

{vε
jaj + uε

ja
†
j}, (A.5)
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with uε
j, v

ε
j being the lattice version of the quasiparticle

wavefunction solving the Bogoliubov-de Gennes (BDG)
equations for a superconductor [45]. Imposing the com-
mutation relation [Γε, H1] = εΓε, one therefore obtains
the BDG equations for (uε

j , v
ε
j), in the form

εuε
j = −J

4
{uε

j+1 + uε
j−1} +

J

4
{vε

j+1 − vε
j−1} + huε

j

εvε
j =

J

4
{vε

j+1 + vε
j−1} −

J

4
{uε

j+1 − uε
j−1} − hvε

j , (A.6)

for 1 < j < �, supplemented with the boundary conditions
at j = 1, � given by (see [28] for a detailed discussion of
the implementation of open boundary conditions within
the fermionic description of open quantum spin chains)

uε
0 + vε

0 = uε
�+1 − vε

�+1 = 0. (A.7)

In solving equations (A.6) in combination with the bound-
ary conditions in equation (A.7), we look for solutions of
the form [

uε
j

vε
j

]
=

[
uk

vk

]
eikj . (A.8)

At a given k, we then find two independent solutions at

energy ±εk, with εk =
√

J2

4 + h2 − Jh cos(k), and the two
solutions respectively given by:

[
uε

j

vε
j

]

+

=

√
2

� + 1

[
cos

(
ϕk

2

)
sin

[
kj + ϕk

2

]

− sin
(

ϕk

2

)
cos

[
kj + ϕk

2

]

]
, (A.9)

for the positive energy solution, with the allowed values
of k determined by the secular equation

sin [k(� + 1) + ϕk] = 0, (A.10)

and
[

uε
j

vε
j

]

−
=

√
2

� + 1

[
sin

(
ϕk

2

)
cos

[
kj + ϕk

2

]

− cos
(

ϕk

2

)
sin

[
kj + ϕk

2

]

]
, (A.11)

for the negative-energy solution, with

cos(ϕk) = −
J
2 cos(k) − h

εk
, sin(ϕk) =

J
2 sin(k)

εk
, (A.12)

with the allowed values of k again given by equa-
tion (A.10). On rewriting the dispersion relation as

εk =

√(
J

2
∓ h

)2

+ Jh [cos(k) ± 1], (A.13)

we see that the system presents a single-fermion excita-
tion gap Δw = |J2 − |h||, with quantum phase transitions
at the quantum critical points J

2 = ±h and the gap Δw

correspondingly closing at k = π or at k = 0. The junc-
tion of quantum-critical Ising chains has been largely dis-
cussed by Tsvelik [26,29]. In the main text of this paper
we instead focused onto the off-critical regime, with a fully

gapped JW fermion excitation spectrum for the single
chains. When the off-critical chain lies in the magnetically
ordered phase, corresponding to the topological supercon-
ducting phase of Kitaev Hamiltonian (that is, within the
parameter range |2h|

J < 1), additional low-energy sub-gap
modes arise, which, in the long-chain limit (� → ∞) evolve
into the localized zero-Majorana modes at the endpoints
of the chain [44]. Here, as we are only interested in the
boundary physics at the j = 1-boundary, we consider only
the solution corresponding to the localized mode near the
left-hand endpoint of the chain, with exponentially decay-
ing wavefunction given by:

[
u0

j

v0
j

]

L

=

[√
J2 − 4h2

2
√

2h

][
1

−1

](
2h

J

)j

. (A.14)

As expected, the solution in equation (A.14) becomes non
normalizable as

∣∣ 2h
J

∣∣ ≥ 1 and, therefore, it can no more be
accepted as physically meaningful.
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