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Abstract

Aquaculture is increasing rapidly to meet global seafood demand. Some hydroid popula-

tions have been linked to mortality and health issues in finfish and shellfish, but their dynam-

ics in and around aquaculture farms remain understudied. In the present work, two

experiments, each with 36 panels, tested colonization (factors: depth, season of immersion)

and succession (factors: depth, submersion duration) over one year. Hydroid surface cover

was estimated for each species, and data were analyzed with multivariate techniques. The

assemblage of hydrozoans was species-poor, although species richness, frequency and

abundance increased with time, paralleling the overall increase in structural complexity of

fouling assemblages. Submersion duration and season of immersion were particularly

important in determining the species composition of the assemblages in the succession and

colonization experiments, respectively. Production of water-borne propagules, including

medusae, from the hydroids was observed from locally abundant colonies, among them the

well-known fouling species Obelia dichotoma, potentially representing a nuisance for cul-

tured fish through contact-driven envenomations and gill disorders. The results illustrate the

potential importance of fouling hydroids and their medusae to the health of organisms in the

aquaculture industry.

Introduction

Aquaculture is playing an increasing role in meeting the protein needs of the growing world

population [1]. The development of new aquaculture facilities has led to an increase in sub-

merged structures such as floats, ropes, cages and nets that inadvertently provide favourable

substrates for fouling organisms [2]. These biofoulers greatly interfere with culture operations,

produce significant economic impacts on marine aquaculture, and are widely recognized as
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one of the main problems faced by any aquaculture facility: the annual direct economic cost of

controlling biofouling on aquaculture is estimated conservatively around 5–10% of the indus-

try value [3].

Common detrimental effects of biofouling in aquaculture include significant increases in

the weight and drag of submerged structures, reduction of water flow through the nets of the

cages, which compromises the environmental quality for fish and shellfish in terms of oxygen

concentration and food limitation, overgrowth of shellfish stocks, and skin and gill lesions and

disease in fish [2, 4–6]. Current antifouling strategies have been unable to cope efficiently with

fouling, and further research on the dynamics of colonization and succession of fouling organ-

isms is needed in order to prevent and manage biofouling in aquaculture [7–8].

Hydrozoans are a common component of biofouling assemblages in aquaculture facilities.

They are renowned for their diverse reproductive patterns, ranging from completely benthic

life cycles to completely pelagic ones, with >700 species having a combination of benthic and

pelagic stages [9]. The most familiar forms, attached hydroids and swimming medusae, occur

in aquaculture facilities worldwide. Benthic hydroids have been linked to a wide array of nega-

tive effects on shellfish and finfish culture, including net occlusion, reduced water flow, smoth-

ering of shells, devaluation of final products, competition with target species for food and

space, disruption of feeding and valve opening, direct lesions, and disease transmission [2, 5,

10]. The medusae and other planktonic propagules produced by some of these hydroids can

equally cause skin and gill damage in farmed fish by their stinging cnidocytes and injectable

venoms, making cultured fish prone to bacterial infections and increased mortality [11–14].

Many species of hydrozoans foul aquaculture facilities around the world, yet most scientific

knowledge on hydroid fouling comes from studies on the large and highly damaging species

belonging to the families Tubulariidae (mainly members of genus Ectopleura) and Campanu-

lariidae [15–20]. Unfortunately, studies on biofouling usually put all hydrozoans in one cate-

gory, thus preventing analysis of the hydroid fouling dynamics and medusa production at the

population and species level. An exception to this is the thesis of Bosch-Belmar [13], which

examined both the fouling hydroids attached to the nets of the fish pens and the small repro-

ductive stages they produce that can enter the gill chambers of the fish damaging them with

stinging capsules (nematocysts). The author detailed the composition, growth and reproduc-

tive periods of hydroid assemblages on fish pens, as well as the planktonic stages of hydrozoans

and gill damage and mortality of fish at two aquaculture facilities along the Mediterranean

coast of southern Spain. Production of the planktonic propagules increased beginning 5

months after net installation, while abundances of the hydrozoans peaked in spring and

autumn and coincided with fish kills by planktonic propagules of Ectopleura larynx (Ellis &

Solander, 1786) and gill damage by all hydrozoans in the water [13–14].

The objectives of the present work were to describe the colonization and succession of foul-

ing hydrozoan assemblages on panels immersed beside an aquaculture facility at Taranto, Italy

(Central Mediterranean Sea) to test the roles of seasonality, submersion duration, and depth in

the structuring of the fouling hydroid assemblages and to identify the species of fouling hydro-

zoans potentially harmful to the farmed fish in the aquaculture facility. Two experiments tested

colonization (factors: depth, season of immersion) and succession (factors: depth, submersion

duration) throughout one year in the central Mediterranean Sea.

Material and methods

Study area

The study was conducted at an aquaculture facility that produces sea bass (Dicentrarchus lab-
rax (Linnaeus, 1758)) and sea bream (Sparus aurata Linnaeus, 1758) located in an area of
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muddy and sandy bottoms at the eastern sector of the Mar Grande basin in the Gulf of

Taranto, NW Ionian Sea (40˚ 25’ 46.1” N, 17˚ 14’ 23.7” E). No permits were required for the

described study, which complied with all relevant regulations. Mar Grande, with about 36 km2

area and 42 m of maximum depth [21], is a partially-enclosed basin hosting a wide array of

nautical, industrial, productive, and commercial activities. The waters around Taranto rou-

tinely receive urban and industrial waste, which together with the intense ship traffic, have

contributed to the high environmental stress observed in this area for decades [22]. On the

other hand, the region historically has been one of the most important sea farming areas in

Italy for the production of mussels and other shellfish [23–24]. In recent years, several fish

farms have begun operations in the basin, usually in combination with mussel farming.

No direct observation of negative effects involving hydrozoans were reported in the aqua-

culture facility during the course of this study, but mass mortalities associated with fouling

hydroids and pelagic hydromedusae occurred at the same time along the coast of Spain [13–

14], highlighting the need for prospective studies on hydroid dynamics on aquaculture cages

in our area. Benthic hydroids were observed fouling several hard surfaces at the aquaculture

facility throughout the duration of the study, but monitoring of their succession and coloniza-

tion was exclusively on test panels, as described below. Temperature data in the vicinity of the

studied facility obtained from the Italian National Institute for Environmental Protection and

Research are included as supplementary material (S1 Table).

Experimental set-up and laboratory work

Two simultaneous experiments (one on succession, the other on colonization) began in April

2013. The fieldwork, sampling and laboratory methodologies were identical for both experi-

ments. Different panels were analyzed in each experiment, except the first 9 panels deployed

were the first set of panels analyzed in the succession experiment (submersion duration = 3

months) and in the colonization experiment (season of immersion = spring) (Fig 1). In the

succession experiment, 36 roughened PVC panels (15 x 15 x 0.3 cm) were distributed on 12

vertical longlines that were deployed at 2–3 m intervals around a sea bream cage. Three panels

were positioned on each longline at 0.2, 3, and 6 m depths. The total depth of the water column

was ca. 10 m, while the cage extended to 9 m depth. Every three months, three of these long-

lines were detached and their respective panels taken to the laboratory for analysis. Thus, the

succession panels were submerged for 3, 6, 9, or 12 months.

In the colonization experiment, 36 roughened PVC panels (15 x 15 x 0.3 cm) also were dis-

tributed on twelve vertical longlines deployed at 2–3 m intervals around a sea bream cage, but

only three longlines were deployed and recovered in each sampling event. Thus, all analysed

panels were submerged for a period of three months, having been deployed either in spring

(April 2013), summer (July 2013), autumn (October 2013), or winter (January 2014).

The panels were collected, brought to the laboratory and photographed with a Nikon Cool-

pix E990 camera to estimate species coverage. Panels then were fixed in 4% formaldehyde for

subsequent taxonomic analysis. All of the hydrozoans from the surface facing towards the cage

of each panel were identified under 8x and 25x magnification of a stereomicroscope and pho-

tographed. No protected species were sampled during this study.

The hydrozoans were identified to species or the lowest possible taxonomic level following

specialized literature [25–26]. Species richness (number of hydrozoan species per panel), the

substrate on which each hydroid colony was growing, and the number of reproductive struc-

tures per species (gonothecae or medusa buds) were recorded. The total surface area covered

by each hydrozoan species on each panel was calculated from the photographs with the image

analysis software ImageJ [27]. The standardized area (per 100 cm2) was used as the estimate of
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total abundance for each species in subsequent analysis. For each species producing medusae

or planktonic propagules, the number of reproductive structures per 100 cm2 also was calcu-

lated by directly counting either medusa buds, medusae developing inside gonothecae, or

planktonic propagules. The substrate preference of the fouling hydroids as a whole was calcu-

lated as the percentage of occurrences per available substrate in each combination of depth

and submersion duration in the succession experiment. All specimens were deposited in the

Hydrozoa Collection of the University of Salento (Lecce, Italy) (S2 Table).

Data analysis

Differences in the total abundance and species richness of the fouling hydroids on each panel

were tested through a series of two-way Analysis of Variance (ANOVA). The factors tested

were depth and submersion duration in the succession experiment, and depth and season of

immersion in the colonization experiment. Multivariate analyses were used to compare the

similarity of the assemblages of fouling hydroids on the panels according to the tested factors

in each experiment. Non-metric multidimensional scaling (nMDS) analyses based on Bray-

Curtis distances of square root-transformed surface area data (samples with no hydrozoans

excluded) were performed to visualize changes in species assemblages. To test the differences

in the composition of the assemblages in relation to factors ‘submersion duration’ in the suc-

cession experiment (fixed, four levels), ‘season of immersion’ in the colonization experiment

Fig 1. Experimental design to test hydroid succession and colonization at an aquaculture farm in the Central Mediterranean Sea (2013–2014).

Three replicate test panels at each depth are identified as R1, R2, or R3. Panels for the succession experiment are inside the black rectangle and those for

the colonization experiment are shaded in gray. The number of months that each set of panels spent underwater is indicated.

https://doi.org/10.1371/journal.pone.0195352.g001

Hydroid succession dynamics in a fish farm

PLOS ONE | https://doi.org/10.1371/journal.pone.0195352 April 2, 2018 4 / 18

https://doi.org/10.1371/journal.pone.0195352.g001
https://doi.org/10.1371/journal.pone.0195352


(fixed, four levels), and depth in both experiments (fixed, three levels), distance-based permu-

tational multivariate analysis of variance was used (PERMANOVA, [28]). Finally, the similar-

ity percentage procedure SIMPER enabled calculation of the contribution of each species to

the observed patterns. All multivariate analyses were performed using the PRIMER software

package [29].

Results

Succession experiment

Fouling hydroids were present on the panels on all dates and at all depths during the succes-

sion experiment. An average of 9.8 cm2 (± 6.5) was occupied by hydroids on any of the 36 pan-

els at any immersion time and depth, which represented about 5% (± 3.3%) of the available

surface area. Considerable variation was observed in mean surface covered by fouling hydroids

among panels (Fig 2); however, this variation was not statistically significant in relation to the

submersion duration or to the depth of immersion (Table 1).

Fig 2. Variation in species richness (dashed line, total values) and surface cover (bars and error bars, mean ± standard deviation) occupied by

fouling hydroids on the test panels during the succession and colonization experiments.

https://doi.org/10.1371/journal.pone.0195352.g002
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A total of 11 hydrozoan taxa were identified as part of the fouling community on the panels

(Fig 3). Specimens in the family Campanulinidae could not be identified to species level due to

the lack of reproductive structures and few polyps collected. The number of hydroid species

increased significantly with duration underwater, from only 3 species after 3 months to 9 after

12 months. Species richness did not differ significantly on panels at different depths (Table 1).

The hydrozoan species composition of the fouling assemblages changed with submersion

duration, but the panel depth did not significantly affect the assemblages, as shown by the

PERMANOVA analysis (Table 2). The nMDS diagram showed differences between the panels

submerged for 3 months and those submerged for 9 and 12 months, which grouped together.

The hydroid assemblages from 3- and 6-month panels overlapped little with those submerged

for 9 and 12 months (Fig 4).

The SIMPER analysis showed that Aglaophenia picardi Svoboda, 1979, Obelia dichotoma
(Linnaeus, 1758), and Eudendrium racemosum (Cavolini, 1785) characterized the assemblages

on panels submerged for 3 and 6 months, while variations in the abundances of Halecium

Table 1. Two-way ANOVA analyses of the effects of selected factors on the mean surface covered by fouling hydroids and species richness in the succession and col-

onization experiments.

Succession experiment

Mean surface covered by fouling hydroids
Source DF SS MS F P

Submersion duration (S) 3 169.028 56.343 0.32 0.808

Depth (D) 2 739.078 369.539 2.13 0.141

S x D 6 497.204 82.867 0.48 0.818

Residual 24 4164.574 173.524

Total 35 5569.884

Species richness
Source DF SS MS F P

Submersion duration (S) 3 45.111 15.037 8.59 0.001

Depth (D) 2 16.056 8.029 4.59 0.121

S x D 6 5.056 0.843 0.48 0.816

Residual 24 42.000 1.750

Total 35 108.222

Colonization experiment

Mean surface covered by fouling hydroids
Source DF SS MS F P

Season of immersion (S) 3 1565.525 521.842 4.17 0.010

Depth (D) 2 690.362 345.181 2.76 0.084

S x D 6 860.183 143.364 1.14 0.367

Residual 24 3005.042 125.210

Total 35 6121.111

Species richness
Source DF SS MS F P

Season of immersion (S) 3 1.639 0.546 0.94 0.438

Depth (D) 2 0.167 0.083 0.14 0.868

S x D 6 0.944 0.157 0.27 0.946

Residual 24 14.000 0.583

Total 35 16.750

Statistically significant results (P < 0.05) are shaded in grey. DF = degrees of freedom; SS = sum of squares; MS = mean squares; F = F statistic; P = probability value.

https://doi.org/10.1371/journal.pone.0195352.t001
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Fig 3. Percentage of mean surface cover for every species of fouling hydroid on the test panels during the succession experiment.

https://doi.org/10.1371/journal.pone.0195352.g003

Table 2. PERMANOVA (permutational multivariate analysis of variance) results of tested factors on community composition based on surface cover of species in

the succession and colonization experiments.

Succession experiment

Source DF SS MS Pseudo-F P (perm) Unique perms

Submersion duration (S) 3 12061 4020.2 2.828 0.018 999

Depth (D) 2 9336.1 4668.1 2.284 0.109 998

S x D 6 13336 2222.6 1.564 0.122 996

Residual 16 22742 1421.4

Total 27 62595

Colonization experiment

Source DF SS MS Pseudo-F P (perm) Unique perms

Season of immersion (S) 3 56220 18740 9.312 0.001 998

Depth (D) 2 3571.5 1785.7 0.887 0.592 997

S x D 6 16958 2826.4 1.404 0.059 997

Residual 20 40251 2012.6

Total 31 121000

Statistically significant results (P < 0.05) are shaded in grey. DF = degrees of freedom; SS = sum of squares; MS = mean squares; Pseudo-F = Pseudo-F statistic; P (perm)

= probability after the permutations; Unique perms = permutations performed.

https://doi.org/10.1371/journal.pone.0195352.t002
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pusillum Sars, 1856, Kirchenpaueria halecioides (Alder, 1859), Sertularella ellisii (Deshayes &

Milne Edwards, 1836), O. dichotoma, and Bougainvillia muscus (Allman, 1863) characterized

assemblages on panels submerged for 9 and 12 months (Table 3). Aglaophenia picardi, O.

dichotoma, and E. racemosum were the only species present on the panels recovered after 3

months. The surface occupied by these three species decreased over time as other species

appeared on the panels (e.g., Turritopsis dohrnii (Weismann, 1883), K. halecioides, S. ellisii and

H. pusillum). Later stages of succession had more species and more area covered by epibiotic

colonies of B. muscus, Clytia hemisphaerica (Linnaeus, 1767), Halecium petrosum Stechow,

1919, H. pusillum, and Campanulinidae species. The most common and abundant species

through all immersion times and depth levels were A. picardi and O. dichotoma (Fig 3).

Substrate preferences of the fouling hydroids changed with the submersion duration of the

panels (Fig 5). In the first 3 months of immersion, the only surface available for colonization

was the artificial substrate of the PVC panels. After 6 months, new fouling biota appeared

(polychaetes, tunicates, bryozoans, and mussels), which provided new available substrates for

fouling hydrozoans. On the panels submerged for 9 and 12 months, the shells of fouling mus-

sels (Mytilus galloprovincialis Lamarck, 1819) became the main substrate for the epibiotic spe-

cies of hydroids, including many H. pusillum colonies. In later stages of succession, hydroids

grew on other hydroids, especially C. hemisphaerica and Campanulinidae species, which used

S. ellisii and the stem of E. racemosum as substrates.

Four species produced reproductive structures during the experiment: A. picardi, O. dichot-
oma, C. hemisphaerica and B. muscus. The last three species release medusae as part of their life

cycle, with fertile colonies appearing on panels submerged for 3–12 months. The mean num-

ber of medusae produced per 100 cm2 reached maxima of 2.6 (±19.6) for O. dichotoma, 2.2

(±19.1) for C. hemisphaerica, and 0.2 (±1.7) for B. muscus. Numerous asexually-produced

planktonic propagules were produced by H. pusillum (mean of 3.0 ± 21.3 per 100 cm2) mostly

on the panels submerged for 9 and 12 months.

Colonization experiment

The pioneer hydrozoan species on the panels were always a subset of those observed in the suc-

cession experiment. All the panels immersed for 3 months at different seasons of the year

Fig 4. Non-metric multidimensional scaling (nMDS) plots based on Bray-Curtis similarity of surface covered by fouling hydroids in the

succession and colonization experiments.

https://doi.org/10.1371/journal.pone.0195352.g004
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included hydrozoans as part of the colonizing fouling fauna. The mean surface covered by the

hydroids differed significantly by season of immersion (Fig 2); however, depth did not have a

significant effect on mean surface cover of fouling hydroids in the colonization experiment

(Table 1).

Table 3. Average similarity (SIMPER) within fouling hydroid assemblages from panels with different submersion duration (succession experiment) and panels

with different seasons of immersion (colonization experiment).

Succession experiment

Av.

Surf.

Av.

Sim.

Sim/

SD

Contrib

%

Cum

%

Panels submerged for3 months
Average similarity: 66.67

Obelia dichotoma 0.8 50 1.60 75 75

Aglaophenia picardi 0.6 16.67 0.58 25 100

Panels submerged for 6 months
Average similarity: 49.17

Aglaophenia picardi 0.67 39.17 1.38 79.66 79.6

Eudendrium racemosum 0.33 10 0.5 20.34 100

Panels submerged for 9 months
Average similarity: 46.14

Halecium pusillum 0.75 15.69 1.01 34.01 34.1

Aglaophenia picardi 0.63 13.11 1.03 28.41 62.4

Obelia dichotoma 0.75 11.88 0.74 25.76 88.2

Sertularella ellisii 0.25 2.86 0.38 6.19 94.4

Panels submerged for 12 months
Average similarity: 61.49

Halecium pusillum 0.89 19.99 1.66 32.51 32.5

Obelia dichotoma 0.78 14.35 1.02 23.33 55.8

Bougainvillia muscus 0.44 8.42 0.66 13.7 69.5

Aglaophenia picardi 0.44 7.87 0.66 12.79 82.3

Clytia hemisphaerica 0.44 6.17 0.49 10.04 92.4

Colonization experiment

Panels submerged from May to July 2013
Average similarity: 35.04

Obelia dichotoma 5.89 26.37 1.68 75.27 75.3

Aglaophenia picardi 4.95 8.66 0.58 24.73 100

Panels submerged from August to October 2013
Average similarity: 24.44

Eudendrium racemosum 20.34 46.69 1.45 96.45 96.5

Panels submerged from November 2013 to January 2014
Average similarity: 48.41

Kirchenpaueria halecioides 7.84 23.39 1.67 95.72 95.7

Panels submerged from February to April 2014
Average similarity: 53.90

Aglaophenia picardi 1.86 33.2 1.29 61.59 61.6

Obelia dichotoma 0.75 15.67 0.8 29.07 90.7

Av. Surf. = average surface area covered; Av. Sim. = average similarity; Sim/SD = similarity to standard deviation ratio; Contrib % = percentage contribution; Cum. % =

cumulative percentage contribution.

https://doi.org/10.1371/journal.pone.0195352.t003
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In all, 7 hydroid species (A. picardi, O. dichotoma, E. racemosum, S. ellisii, K. halecioides, H.

petrosum, and B. muscus) colonized the panels immersed for 3 months, although only 2 or 3 of

these species grew simultaneously on any one panel. In fact, the number of fouling hydroid

species observed in the colonization experiment did not differ significantly among depths or

seasons (Table 1).

The season when the panels were immersed significantly affected the composition of foul-

ing hydrozoan assemblages, while the depth of the panels did not significantly affect the colo-

nization, as shown by the PERMANOVA (Table 2). The panels immersed during different

seasons had clearly different fouling hydroid assemblages (Fig 4). The species characterizing

the hydroid communities on the panels (i.e. those with highest percentage of cover and identi-

fied by the SIMPER analysis) were A. picardi and O. dichotoma in spring and winter, E. race-
mosum in summer, and K. halecioides in autumn (Table 3).

Fouling colonies of A. picardi, K. halecioides and O. dichotoma were producing reproductive

structures (sessile gonophores in the first two species and gonothecae with medusa buds in the

third) in the colonization experiment. Fertile colonies appeared on panels submerged in all

seasons: A. picardi in spring and summer, K. halecioides in winter and spring, and O. dichot-
oma all year. The potential number of medusae released by colonies of O. dichotoma during

the colonization experiment reached maximum means of 2.4 (±15.3) per 100 cm2 on the win-

ter and spring panels, corresponding with the highest reproductive effort of the fouling

hydroid colonies and contrasting with the lowest reproductive effort recorded in summer.

Discussion

Hydrozoans represent a conspicuous component of the fouling assemblages in the studied

aquaculture facility and are likely to regularly interact with cultured fish and shellfish. Their

abilities to grow rapidly and to settle and re-settle on different surfaces allow hydroids to be

among the first metazoans to colonize available substrates and ensure their presence during

Fig 5. Substrate preference (percentage of occurrences per available substrate in each combination of depth and submersion duration) of the

fouling hydroids in the succession experiment.

https://doi.org/10.1371/journal.pone.0195352.g005
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the entire process of succession [30–31]. The degree and outcomes of the interactions between

fouling hydroids and fish, however, will change in time and space, in part modulated by the

four main patterns emerging from our analysis: (i) increasing species richness as succession

proceeded; (ii) changing species composition according to season and duration of exposure;

(iii) progressively shifting substrate usage to include newly-created biotic surfaces; (iv) produc-

ing numerous planktonic propagules in all stages of succession and throughout the year.

The changes in hydroid composition and abundance follow the same patterns described for

succession in natural hard-substrate communities, with certain species colonizing the sub-

strate and, as succession proceeds, modifying the environment such that it becomes unsuitable

for further recruitment, but facilitating settlement and development of a new group of species

[32–33]. In the studied assemblages, the submersion duration was particularly important in

determining the succession, through variation in larval abundance, arrival of new species, and

biological interactions between biofoulers [34–35]. Successful hydroid biofoulers display

different abundances and growth rates as succession progresses, reflecting their unique life his-

tory traits (e.g. production of planktonic stages, asexual reproduction, survival of the planulae),

which in temperate regions are subjected to severe temporal fluctuations [36–37]. In fact, as

for hydrozoans in natural communities, seasonal variation in environmental conditions affects

the establishment, survival and growth of fouling hydroids [37–38] and, therefore, determines

the composition and structure of biofouling assemblages and succession.

The observed increase in hydrozoan species with time (i.e., submersion duration) reflected

the growing complexity of the fouling assemblages and the ability of hydroids to settle and

grow on their competitors, capitalizing on the increased surface generated by other biofoulers

(e.g., mussels, sponges, tunicates, bryozoans, polychaetes). Despite this, the observed fouling

hydrozoans constituted only a very small portion (ca. 8%) of the total number of species (115)

recorded from the surrounding coastal habitats [26]. More generally, fewer species are often

encountered as biofoulers on artificial substrates compared to species-rich assemblages of nat-

ural habitats [39–41]. Which species colonized depended primarily on the season when the

panels were immersed; specifically, different sets of species were observed on panels deployed

in spring, summer, autumn, and winter. Experimental evidence suggests that both the season

when a structure is immersed and the duration of submersion are more important than the

type of substrate in structuring subtidal biofouling communities [42]. The season of immer-

sion has been widely recognized as one of the most important factors modulating the outcome

of succession in natural and artificial assemblages [34, 43–44]. As with the submersion dura-

tion, the time of the year when new substrates become available for colonization has a crucial

influence on succession because of the seasonal differences of environmental conditions,

reproduction, and growth patterns of fouling species, eventually affecting the pattern and rate

of succession [34, 44–46]. Nevertheless, season may not determine the outcome in natural

hard-bottom communities, because the stronger competitors eventually monopolize the avail-

able space despite initial differences in colonization, thus making the succession process par-

tially predictable [33].

In contrast, the depths at which our test panels were submerged did not have a significant

role in structuring the fouling hydrozoan assemblages. Although many physical factors change

with depth and strong vertical zonation has been observed in natural and biofouling commu-

nities [47–49], most examples of depth-related vertical zonation come from depth differences

larger than those studied here. Distinctly different communities are not usually found in the

first 5–6 m from the surface on man-made structures [50]; the panels deployed in our study

were assumed not to be subjected to highly different conditions of temperature, pressure, light,

food, or nutrients. Therefore, a lack of vertical zonation in the analyzed biofouling assemblages

was expected.

Hydroid succession dynamics in a fish farm
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All of the hydrozoan species observed have been recorded previously from the surrounding

hard-bottom benthic community [25–26], which can be considered the basic pool of coloniz-

ers. Furthermore, previously reported fouling hydroids in the area include O. dichotoma as

well as species of Aglaophenia, Sertularella, and Eudendrium [39, 51]. In general, the species

recorded here can be classified into two main groups: (i) ‘colonizers’ or ‘early successional

species’ with tendencies to produce abundant asexual propagules and display rapid growth

rates, and (ii) ‘mid- and late-successional species’, which tend to rely on efficient utilisation of

resources to outcompete colonizers. The first group included A. picardi, O. dichotoma, E. race-
mosum, and K. halecioides, depending on the season. The second group was formed by epibio-

tic, less generalist species such as H. pusillum, H. petrosum, and Campanulinidae sp.

The best example of the pioneering and early successional hydrozoans recorded here may

be O. dichotoma, a common and abundant species often encountered in disturbed sites and

fouling communities. Contardo-Jara et al. [52] found it to be particularly abundant in dis-

turbed communities growing on PVC panels in the southwestern Atlantic. It also has been

reported as part of the biofouling assemblages of fish farms in the southwestern Pacific and

northeastern Atlantic oceans, growing on coated and uncoated nets [5, 53]. It is a frequent spe-

cies in harbours [40], where it often predominates over other fouling species [54], which may

explain its ubiquity in the studied fouling assemblages. It is also one of the most common and

abundant fouling hydrozoans on power stations and other artificial substrates along Italian

coasts [55–57]. Blooms of Obelia spp. jellyfish occur along temperate coasts together with mas-

sive occurrence of hydroids [58]. Obelia species are frequent and widespread fouling organ-

isms found abundantly virtually everywhere in aquaculture facilities: Obelia longissima (Pallas

1766) is common on Atlantic salmon cages and mussel nets at high latitudes in the Northern

hemisphere [59–60], while Obelia spp. have been reported growing on finfish aquaculture

cages in the Mediterranean [60], northeastern Pacific [61], and North Atlantic [62], in some

cases contributing to problems due to occlusion of the net mesh aperture in the cages. Obelia
spp. were also recorded growing on shellfish aquaculture facilities and on the shells of target

species, as observed in the Eastern Mediterranean for mussels [63] and in the tropical south-

western Pacific for pearl oysters [64]. The high abundance of fouling Obelia spp. hydroids was

suggested to be one of the factors potentially causing the observed high mortalities in shellfish

aquaculture facilities, while the massive production of medusae by those hydroids substantially

changed the quality of the nearby plankton community [65].

The dynamics of early successional species such as Obelia spp. contrast sharply with that of

mid- and late-successional taxa such as H. pusillum or H. petrosum, which are smaller, slightly

more specialized species commonly found growing on living substrates [66]. Other fouling

hydrozoan species observed at the fish farm in Taranto also have been reported from aquacul-

ture facilities around the world. As examples, eudendriid and bougainvilliid hydroids (includ-

ing B. muscus) grow on nets containing scallops (Pecten maximus (Linnaeus, 1758)) or

Atlantic salmon (Salmo salar Linnaeus, 1758) in the northern Atlantic and Pacific oceans [62,

67–68]; Clytia spp. are commonly recorded on culture tanks, nets, and PVC panels worldwide

[62, 67, 69–70]; species of Kirchenpaueria and Sertularella may grow on ropes and nets of fin-

fish and shellfish farms [60, 71].

Hydrozoan species that require the development of some structural elements prior to their

settlement arrive after the rapidly growing, opportunistic colonizers. This implies a strong rela-

tionship between the development of the fouling community as a whole and the associated

hydrozoan component during succession. During early succession almost 100% of hydrozoans

found on the panel surface were growing directly on the PVC, but this percentage decreased

sharply with immersion duration after the diversity and abundance of substrates on the panels

increased. Eventually, some species (including E. racemosum and S. ellisii) became substrates
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for other hydrozoans, while other hydroids thrived by closely following the dynamics of their

invertebrate substrates (e.g., mussels, ascidians, etc.). The latter is best exemplified by H. pusil-
lum growing on the mussel M. galloprovincialis and the non-indigenous tunicate Polyandro-
carpa zorritensis (Van Name, 1931). Because mussels and ascidians gradually covered the

experimental panels, the fouling hydrozoan biota shifted towards epibiotic species that are able

to colonize and survive on mussel shells and effectively take advantage of the newly available

living space. The same occurred on panels submerged near the study area on which M. gallo-
provincialis eventually became very abundant, leading to a profound change in the number of

other biofoulers [39]. Mytilus galloprovincialis is known to effectively deter fouling on its shell

surface, which limits the available space for colonization by other biofoulers and creates spe-

cific conditions that permits settlement of only a few species (such as H. pusillum) on its shell

[72].

Dispersive free-swimming medusae or asexual planktonic propagules were released by

fouling hydroids into the water column during all the stages of succession and in all seasons.

Halecium pusillum asexually produces complex, heterotrophic propagules adapted to pelagic

life and released independently of the environmental conditions [66, 73]. The release of these

propagules is common in the life cycle of some Halecium species and has been hypothesized to

promote dispersal [74]. Dispersion through asexual propagules can be a very important demo-

graphic process in a wide array of taxa (e.g., sponges, tunicates, bryozoans, algae) [75] and is

particularly important among benthic hydrozoans [31], especially to maintain populations of

H. pusillum in the Mediterranean Sea [66]. The planktonic propagules of H. pusillum carry

nematocysts [73] and could damage the skin and gills of fish in the cages.

The potential effects of pelagic cnidarians on the health of farmed fish in aquaculture facili-

ties are beginning to be recognized through recent studies showing that abundances of sting-

ing species are strongly correlated with gill and skin lesions, as well as fish mortality [12, 14,

76]. In the case of the facility we studied, the observed medusa production in O. dichotoma,

C. hemisphaerica, and B. muscus, with colonies of O. dichotoma releasing particularly high

numbers of medusae from early stages of colonization and throughout the entire succession,

could easily generate damage associated with nematocyst discharge and venom injection. Jelly-

fish of O. dichotoma, C. hemisphaerica and B. muscus represent a potential problem for the

farmed fish of Taranto. Jellyfish also have been suggested to be important as vectors of bacte-

rial diseases for farmed fish [11] and some hydromedusae are intermediate hosts of fish para-

sites [77–78].

Altogether, the observed fouling hydroid assemblages may pose substantial problems for

aquaculture in terms of fish health and increased production costs. In addition to medusae,

actinula larvae and planktonic propagules, the benthic stages of fouling hydrozoans can

directly harm the skin and gills of fish, as has been documented for E. larynx in Irish salmon

farms [19]. Hydroid species also negatively affect shellfish and crustacean cultures by compet-

ing for food [69, 79–80], predating on larvae of the target species [20, 81], and inhibiting

spat settlement [82]. More commonly, the presence of fouling hydroids has been linked to

decreased water flow and increased net weight in fish cages [17, 62, 68]. Any of these negative

impacts could occur in aquaculture facilities as the abundance of fouling hydrozoans increases.

The common local biofouler O. dichotoma, for instance, has been linked to decreased water

flow and increased net weight in cultures of the deep-sea scallop Placopecten magellanicus
(Gmelin 1791) in the northwestern Atlantic [15] and is one of the parasite reservoirs for amoe-

bic gill disease of cultured salmon in southwestern Pacific waters [83]. In the Mediterranean

Sea, however, few estimates exist of the damage caused to finfish aquaculture by fouling hydro-

zoans [14] and, generally, no information is available on the agents causing mortality or dis-

ease of cultured fish. Thus, regular monitoring of the hydrozoan fouling assemblages is
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necessary to further increase understanding of their potential effects on the health of cultured

fish and shellfish.
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