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Aging is characterized by a chronic functional decline of organ systems which leads to 
tissue dysfunction over time, representing a risk factor for diseases development, including 
cardiovascular. The aging process occurring in the cardiovascular system involves heart 
and vessels at molecular and cellular level, with subsequent structural modifications 
and functional impairment. Several modifications involved in the aging process can be 
ascribed to cellular senescence, a biological response that limits the proliferation of 
damaged cells. In physiological conditions, the mechanism of cellular senescence is 
involved in regulation of tissue homeostasis, remodeling, and repair. However, in some 
conditions senescence-driven tissue repair may fail, leading to the tissue accumulation of 
senescent cells which in turn may contribute to tumor promotion, aging, and age-related 
diseases. Cellular reprogramming processes can reverse several age-associated cell 
features, such as telomere length, DNA methylation, histone modifications and cell-cycle 
arrest. As such, induced Pluripotent Stem Cells (iPSCs) can provide models of progeroid 
and physiologically aged cells to gain insight into the pathogenesis of such conditions, 
to drive the development of new therapies for premature aging and to further explore the 
possibility of rejuvenating aged cells. An emerging picture is that the tissue remodeling role 
of cellular senescence could also be crucial for the outcomes of in vivo reprogramming 
processes. Experimental evidence has demonstrated that, on one hand, senescence 
represents a cell-autonomous barrier for a cell candidate to reprogramming, but, on the 
other hand, it may positively sustain the reprogramming capability of surrounding cells 
to generate fully proficient tissues. This review fits into this conceptual framework by 
highlighting the most prominent concepts that characterize aging and reprogramming 
and discusses how the aging tissue might provide a favorable microenvironment for in 
vivo cardiac reprogramming.

Keywords: cellular senescence, SASP, reprogramming of somatic cells, cardiovascular aging, direct cardiac 
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intRoduCtion

In the last decades, developed countries have faced a significant rise in life expectancy with consistent 
dramatic increase of the elderly population (1).

Aging is the major risk factor for cardiovascular diseases, which are the leading cause of morbidity, 
disability, and death in western countries (2).
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The aging process occurring in the cardiovascular system 
involves heart and vessels at molecular and cellular level 
with consequent structural modifications and functional  
impairment (3).

Cardiac aging involves on one hand, cellular macromolecular 
and mitochondrial and energetic changes and, on the other hand, 
cell renewal mechanisms and stem cell function. In addition, also 
extracellular matrix (ECM) alterations contribute to the structural 
changes that ultimately lead to cardiac dysfunction commonly 
observed in the elderly (4).

Several modifications involved in the process of cardiac 
aging can be ascribed to cellular senescence (3). A role for 
cellular senescence has been hypothesized in the development of 
cardiovascular diseases which are frequently associated with aging, 
like atherosclerosis and heart failure. The activation of the cellular 
senescence genetic program prompts a series of molecular changes, 
mostly affecting cell cycle, ECM, secretion of growth factors, and 
inflammatory mediators. Moreover, cellular senescence has been 
demonstrated crucial for the homeostasis of stem cell reservoir, thus 
pointing to its key role in tissue remodeling, both in physiological 
and pathological conditions (5).

In the attempt to regenerate functional cardiomyocytes 
(CMs), different approaches have been developed in recent 
decades, ranging from the stimulation of the intrinsic 
proliferative capacity of resident CMs to the enhancement of 
resident or not resident (tissue grafts) cardiac progenitor cells  
differentiation (6–9).

The discovery of induced Pluripotent Stem Cells (iPSCs) by 
Takahashi and Yamanaka in 2006 (10) has changed the field of 
cardiac regenerative medicine, unveiling a new approach to 
heart regeneration. Since then, either the cardiac differentiation 
of iPSCs or the conversion of one differentiated cell type into 
another, without proceeding through a pluripotent intermediate, 
the so-called “direct reprogramming”, was reported for different 
cell types including CMs (11).

Reprogramming Processes in the Aging 
Contest
The manipulation of cell fates through reprogramming has 
deeply changed the established concepts about the stability 
of cellular identity, leading to new fields of research in human 
disease modeling, in vitro tissue differentiation and cellular trans-
differentiation (12).

Since 2006, when Takahashi and Yamanaka (10) announced 
the successful derivation of iPSCs from adult mouse fibroblasts 
through the ectopic co-expression of the four genes OCT4, SOX2, 
KLF4 and c-MYC (OSKM), further studies reported of successful 
reprogramming of a wide variety of other human cell types (13–15). 
These results demonstrated the apparently universal capacity to 
alter cellular identity.

As iPSCs maintain the key features of ES cells, including 
the ability to give rise to any cell type within the body, this 
technology paved the way to innovative cell replacement therapies. 
However, transplantation of iPSC-derived cells raises several 
safety concerns. For instance, iPSC-derived cardiomyocytes 
frequently display different electrophysiological characteristics 

and immature functionality, making these cells unsuitable for  
transplantation (16).

In general, clinical application of this in vitro technology is a 
challenge, as in vitro manipulation of cells still brings up concerns on 
cell contamination and accumulation of mutations, transplantation 
procedures, delivery strategies and retention of the graft.

Regarding aging and age-related disorders, several experimental 
evidence demonstrated that, even though aging is a barrier to 
reprogramming, an aged cell may still be reprogrammed (17). Thus, 
iPSCs may provide models of progeroid and physiologically aged 
cells to gain insight into the pathogenesis of such conditions, to 
develop new therapies for premature aging and to further explore 
the possibility of rejuvenating aged cells.

Nevertheless, the latter may also represent a major problem 
of modeling aging with iPSCs as, once reprogrammed, aged cells 
no longer display age-associated characteristics such as telomere 
shortening, reduced mitochondrial fitness, and cellular senescence 
(18–21). This situation hampers the use of rejuvenating cells for 
the study of late-onset alterations, making it necessary to expose 
such cells to treatments inducing age- and stress-related conditions.

As aging constitutes a critical barrier to cell reprogramming, 
in aged cells it might be helpful to counteract some age-associated 
characteristics to increase reprogramming efficiency (18, 19, 
22–24). Among age-related alterations, cellular senescence seems 
to negatively impact the reprogramming process (25).

Cellular Senescence as a tissue-
Remodeling Mechanism
Cellular senescence was first described in 1961 by Hayflick and 
Moorhead (26) as a process that reduced the proliferation of 
normal human cells in culture. Interestingly, they also argued 
that senescence could have a pivotal role in driving the aging 
process in vivo. In the last decades, in vitro and in vivo evidence 
have contributed to defining senescence as an irreversible cell 
cycle arrest occurring when a proliferating cell is exposed to a 
severe genotoxic stress, thus revealing a multifaceted phenomenon 
combining both genetic and environmental components, which 
operate through convergent pathways (27, 28).

Today we know that this phenomenon described by Hayflick 
and Moorhead accounts for the so-called “replicative senescence” 
(RS), which refers to the irreversible cell cycle arrest due to the 
progressive telomeres attrition at each S phase (29), and that 
occurs after extensive proliferation in the absence of endogenous 
telomerase activity (30–32). Apart from embryonic stem cells (33), 
which express telomerase, in principle, all proliferating cells can 
undergo RS (27).

From a molecular point of view, cell senescence is believed 
to have evolved as a mechanism aimed at the prevention of the 
replication and transmission of damaged DNA to future generations 
of cells, thus playing a role in the orchestration of tissue remodeling 
and repair, and acting as a tumor suppressor mechanism (5). In 
this sense, it is not surprising that cellular senescence has been 
also implicated in embryonic development, both in mice and  
humans (34).

However, regardless of their inability to replicate, senescent 
cells are still metabolically active. In particular, they develop an 
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aberrant gene expression profile leading to the over-expression 
of different proteins, mostly secreted and not expressed by the 
young counterpart, which confers a proinflammatory behavior, the 
so-called Senescence-Associated Secretory Phenotype (SASP), able 
to induce or accelerate changes in surrounding normal tissues (35).

In general, senescent cells are efficiently cleared by phagocytosis, 
but, in some conditions, tissue repair may fail, leading to senescent 
cells accumulation in tissues, which in turn may contribute to 
tumor promotion, tissue aging and age-related diseases (5, 27, 28).

The SASP comprises the secretion of chemokines, pro-
inflammatory cytokines (with a particularly relevant role for 
interleukin-6 (IL-6) and interleukin-8 (IL-8)), growth factors and 
proteases (36–38), whose secretion triggers inflammation, which 
is critical for macrophages chemoattraction and the subsequent 
clearance of senescent cells by phagocytosis (39, 40). Nevertheless, 
SASP components may also induce senescence in surrounding cells 
in a paracrine manner, through a mechanism involving Reactive 
Oxygen Species (ROS) generation and DNA damage (41, 42). 
Recently, a role for SASP in inducing somatic stem/progenitor 
characteristics in several tissues has also been described (43).

Besides SASP, other peculiar characteristics of senescent cells 
are: the appearance of senescence-associated heterochromatin foci 
(SAHF), the expression of Senescence-Associated β-galactosidase 
(SA-β-gal), enlarged and flattened morphology, the presence of 
senescence-associated DNA-damage foci (SDFs) (44, 45).

Different stimuli, other than telomere erosion, may induce 
senescence (5). A common feature of such senescence-inducing 
stimuli is to elicit epigenomic disruption and genomic damage 
with the DNA damage response (DDR) activation, responsible 
for initiation and maintenance of both the in vitro and in vivo 
senescence growth arrest in mouse and human cells (46). These 
stimuli converge on activation of p53 and of cyclin-dependent 
kinase (CDK) inhibitors p16INK4A, p14ARF, p21CIP1  and 
p27 (47, 48). CDK–cyclin complexes inhibition leads to hypo-
phosphorylation of the Retinoblastoma protein (Rb), with the 
subsequent proliferation arrest (49).

Other stimuli triggering persistent DDR signaling, such as 
oncogene-driven mitogenic signals or over-expression of pro-
proliferative genes that cause defective replication origins and 
replication fork collapse, also leads to a senescence growth arrest, 
the so-called “oncogene-induced senescence” (OIS) (50–52). 
Also, treatments with cytotoxic chemotherapeutic agents, such as 
etoposide, or de-regulation of some microRNA that break DNA 
double strand, may be responsible for a p53-dependent premature 
senescence (53–55). Senescence can also occur, however, without 
detectable DDR signaling. This “stress-induced senescence” (SIS) 
could be dependent on several endogenous or exogenous sources 
of stress, such as ROS (56, 57).

More recently, the role of cellular senescence in tissue remodeling 
has been linked to cellular reprogramming processes (18).

It is well established that cell senescence causes a p53-
dependent block to reprogramming (22–25). Indeed, improved 
reprogramming efficiency has been achieved by the knocking-
down expression of p53, p21CIP1, p16INK4A and p14ARF (25, 
58, 59), and microRNA-195 (60).

The transgenic expression of the four Yamanaka factors (OSKM) 
(10) in adult mice, in addition to reprogramming, also induces 

cellular damage and senescence, both in vitro (25) and in vivo (61, 
62). These two opposite cellular fates are detectable in different 
subsets of cells, albeit in the same tissue (61, 62).

These results support the idea that cellular senescence may 
influence the outcome of cell-fate manipulating procedure in two 
ways: on the one hand it represents a cell-autonomous barrier for 
a cell candidate to reprogramming, but, on the other hand, it may 
positively sustain the reprogramming capability of surrounding 
cells to generate fully proficient tissues. Therefore, the emerging 
picture is that senescence, via SASPs, may generate a tissue 
microenvironment sustaining in vivo reprogramming (63).

Cellular Senescence: A Cell-Autonomous 
Barrier for Reprogramming
The number of senescent cells increases in organs during aging 
(45, 48). Consequently, old age donor cells may contain a more 
significant number of senescent and pre-senescent cells, and these 
would ultimately affect the reprogramming efficiency.

Moreover, the reprogramming process itself triggers senescence, 
the so-called reprogramming-induced senescence (RIS) (25, 62). 
Cells from old donors may, therefore, be more sensitive to RIS and 
more difficult to reprogram, due to the already activated intrinsic 
senescence pathways.

Studies investigating the possible influence of senescence 
on reprogramming highlighted a negative association between 
replicative passages of cultured cells and reprogramming efficiency, 
with a prominent role of p16/p21-dependent senescence response 
in thwarting aging cell-fate manipulations (25), and, thus, 
confirming the complex role played by the Ink4a/Arf locus in  
reprogramming (58, 62).

Pioneer studies aimed at investigating the effect of donor 
age on reprogramming efficiency were performed in mice and 
revealed that the older the donor mouse, the lower the extent of 
reprogramming efficiency (64–66). Indeed, a significant reduction 
was observed in the reprogramming efficiency of aged vs. young 
mouse dermal fibroblasts or bone marrow cells, in which those 
from older animals showed either lower or slower reprogramming 
(64–66). Nevertheless, these studies also demonstrated that, once 
iPSCs were obtained from these old donors, they have unchanged 
potential to be differentiated in vitro and in vivo.

Therefore, even if we can consider that aging may interfere with 
the onset of the reprogramming process in a cell-autonomous 
fashion, once the process starts it proceeds to completion until 
the development of iPSCs.

Contrary to mice, in humans, the aging process does not seem 
to impair the ability of cells to reprogram. Indeed, several groups 
generated iPSC lines, which expressed pluripotency markers, 
were able to differentiate into the three germ layers and to induce 
teratomas when injected into nude mice, from tissues of older 
individuals (67, 68), thus demonstrating that reprogramming 
to iPSC is possible regardless of the donor age. Also, the gene 
expression profile of these cells confirmed they had been reset to 
an embryonic-like stage (19, 58, 64, 67).

Lapasset et al. (19) tested the reprogramming feasibility of 
extreme aging phenotypes, generating iPSCs from post-mitotic 
cells and fibroblasts isolated from a 101 years old subject. Since 
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then, the generation of iPSC from different centenarian tissue 
types was obtained (69–71). Interestingly, these iPSC obtained 
from centenarian fibroblasts were pluripotent and were able to 
generate all the three embryonic lineages.

The reprogramming process can reverse several age-associated 
cell features, such as cell-cycle arrest (25), DNA methylation and 
histone modifications (72), telomere length (73) and expression 
of pro-inflammatory factors (22).

Indeed, in iPSC the re-expression of telomerase (74), the 
modification of histone pattern (75) and the improvement of 
mitochondrial activity with increased energetic output and ROS 
resistance (76) have been demonstrated.

Hence, reprogramming somatic cells to iPSCs has been shown 
to reverses their “developmental clock”, restoring it to levels 
similar to human embryonic stem cells (20). It can be argued that 
cellular age and identity are not unalterable endpoints, but merely 
plastic cellular states, mostly depending on the epigenetic code 
expressed at a given time, whose change is responsible of the whole 
reprogramming process.

Cellular Senescence: A Booster for in vivo 
Reprogramming
Few studies explored the molecular and cellular contexts 
affecting in vivo reprogramming. Emerging evidence highlight a 
robust positive association between reprogramming and cellular 
senescence, which seems to create a tissue microenvironment 
favoring OSKM-driven reprogramming in neighboring cells.

It is well established that cellular damages associated to 
reprogramming activate the tumor suppressor genes p53, p21CIP1, 
p16INK4, and p14ARF, which result in proliferation arrest 
and, consequently, act as cell-autonomous barriers for cellular 
reprogramming (22, 24, 58, 76).

Mosteiro et al., in 2016 showed for the first time that the expression 
of Yamanaka factors in vivo not only starts the reprogramming 
process on some cells but also imposes exacerbated DNA damage 
on many other cells, leading them toward a senescence state (62).

These reprogramming-induced senescent cells facilitate in 
vivo reprogramming through the paracrine action of some SASP 
components, in particular, IL-6 (61, 62, 77). Authors demonstrated 
that OSKM transduction, in the absence of p53, leads to extensive 
damage and RIS in tissues, resulting in high levels of secreted IL-6 
which further enhance reprogramming. On the contrary, in the 
absence of Ink4a/Arf, RIS is severely compromised, with low IL-6 
secretion levels. Although the Ink4a/Arf deficiency should represent 
a cell-autonomous advantage to reprogramming, the results obtained 
exhibit a very inefficient reprogramming process, probably due to the 
in vivo absence of RIS and IL-6 secretion (62, 77).

This also might be observed in the reprogramming of aged or 
injured tissues, where the accumulation of senescent cells may 
increase OSKM reprogramming by sending signals to surrounding 
cells. As it has been demonstrated that SASP may also induce 
somatic stem/progenitor characteristics in several tissues (43), 
a fascinating picture could be the identification of such a signal 
capable of inducing tissue regeneration to promote tissue repair.

Possible effects of cellular senescence on the reprogramming 
process are schematically depicted in Figure 1.

Cellular Senescence in the Heart
Despite the fact that heart has been traditionally considered a post-
mitotic organ, in the recent decades the growth of the cardiovascular 
research field has led to the hypothesis that the heart can retain a 
regenerative potential (78), even if limited and still not therapeutically 
exploitable. Senescence can be described as the irreversible cell-cycle 
arrest that occurs in mitotic cells; thus, it can seem inappropriate to 
consider senescence in a context, cardiac, in which cell replication 
is quite limited. Nevertheless, hallmarks of senescence can be 
found in the aging heart and recently it has been shown that an 
increase in senescence markers in the cardiovascular system such 
as cardiac tissue, great vessels, and pericardium is associated with 
increased dysfunction and reduced lifespan (79). Thus, in the light 
of cardiovascular regeneration, cardiac senescence can be considered 
as organ senescence and analyzed in both cardiomyocytes and non-
cardiomyocytes. Cardiac senescence is characterized by the decrease 
in the number of cardiomyocytes and their increased size, with age and 
cardiovascular diseases, which represent a fundamental characteristic 
of cardiac remodeling, along with extracellular matrix increase (80). 
The numerical changes that occur with aging are mainly due to the 
age-associated reduced efficiency of autophagy (81).

Telomere length is another hallmark of aging and has been 
associated with cardiovascular disease development and mortality 
in elderly patients (82). However, the causality of these associations 
remains uncertain (83).

Other crucial aspects associated with cardiomyocyte senescence 
involve age-dependent defects of adrenergic signaling and calcium 
handling. These two cellular alterations are typically affected by age. 
Increased norepinephrine circulating levels are the results of reduced 
plasma clearance and increased spillover from the tissues (82). 
These alterations lead to the progressive impairment of adrenergic 
responsiveness, with the consequent β-adrenergic desensitization 
typically observed in cardiovascular aging. The dysfunction of the 
myocardial sarcoplasmic reticulum calcium adenosine triphosphatase 
(SERCA2a) is responsible for the impairment in calcium handling 
observed in cardiomyocyte aging (84).

Mitochondrial inability to maintain ROS homeostasis contributes 
to the accumulation of highly reactive products, which increases 
DNA mutations, inflammation, and cell death pathways activation 
ultimately leading to cellular senescence (85). Also, the family of 
nicotinamide adenine dinucleotide-dependent deacetylases termed 
sirtuins have an established role in human aging (86) and are related 
to cardiovascular aging and disease development (87).

Non-cardiomyocytes represent the vast majority of cardiac cells 
population. In particular, cardiac fibroblasts represent the main 
contributors to the cardiac structure through the production, 
maintenance, and remodeling of extracellular matrix. Fibroblasts 
isolated from aged hearts show impaired proliferative capacity and 
are less responsive to profibrotic stimuli in vitro (87). Infarcted aged 
hearts showed a reduction of collagen deposition in the scar, a delay 
in the scar stabilization, and reduced yet prolonged inflammation, 
highlighting a possible age-related cardiac fibroblasts dysfunction 
(88). In addition to the cellular changes, aging is associated 
with overexpression of several ECM proteins, such as collagen, 
fibronectin, and alpha 1 and alpha 5 integrin along with increased 
collagen cross-linking (89, 90).
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Although high cellular plasticity is associated with high regenerative 
capacity, it also bears high tumorigenicity. Thus, mechanisms 
aimed at the increase of cellular plasticity may be a double-edged 
sword. This and other concerns, such as the failure to demonstrate 
that iPSCs-derived cardiomyocytes, once transplanted, may 
improve cardiac function, suggest caution in the adoption of such 
a therapeutic strategy.

Hence, the possibility of remuscularizing an aged or damaged 
human heart with such approach highlights some critical questions 
that need to be addressed before in vitro-derived cardiomyocyte 
transplantation can become part of a regenerative therapy.

In recent years it has been developed an alternative method to 
produce cardiomyocytes in vitro as well as in vivo, the so-called 
“direct cardiac reprogramming”. This method bypasses the concerns 
on plasticity and relative tumorigenicity, as it involves a cell fate 
switch from a fully differentiated cell type into another, without 
going through the pluripotent state.

The direct conversion was achieved for the first time in 2010 
by forcing expression of tree key lineage-specific factors: Gata4, 
Mef2c, and Tbx5 (GMT factors) in mice (91).

Since then, different research groups worldwide reported 
unique combinations of transcription factors, microRNAs and/
or chemical compounds capable of engineering mouse and human 
fibroblasts cell fate to produce cardiomyocyte-like cells both in 
vitro and in vivo (92–95 and extensively reviewed in 11). This is 
a new hope to restore heart function and induce regeneration. 

Indeed, several elegant efforts have been made to induce heart 
regeneration by direct reprogramming of cardiac fibroblasts 
of the infarcted area into induced cardiomyocytes (iCMs). 
Interestingly, findings revealed that in situ trans-differentiation 
of cardiac fibroblasts into iCMs results in functional improvements 
in mouse models of MI, yielding more mature cardiomyocytes 
with more similarity to their endogenous counterparts than in 
the in vitro setting (92, 96–99). These data suggest that cardiac 
microenvironment may specifically have a positive imp act on 
the robustness of the process rather than environments of other 
tissues or in vitro conditions.

Interestingly, supporting the positive role of the cardiac milieu, 
it has been presented that the infarcted adult heart induced more 
cardiomyocyte maturation and hypertrophy than the neonatal 
heart (92). This proves that in vivo environment of the infarcted 
ventricle can provide inductive signals specifically for the three-
lineage cardiovascular differentiation of iPSCs and maturation of 
injected cardiomyocytes.

Identification of such powerful inducers in cardiac 
microenvironment could provide new insights into the mechanisms 
of cardiac reprogramming. Moreover, other neighboring cell 
types can make the heart tissue more permissive and favorable 
to reprogramming.

Indeed, the SASP is characterized by the increase of 
several soluble factors, either proteins or nonproteins, many 
of which may play a role in promoting and facilitating tissue  
reprogramming.

FiGuRe 1 |  Schematic representation of possible implications of cellular senescence on the reprogramming process. RIS, Reprogramming Induced Senescence; 
O, Oct4; K, Klf4; S, Sox2; M, c-Myc; SASP, Senescence-Associated Secretory Phenotype.
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Recently, this topic has become the object of more deep 
investigations, several of which have led to very interesting yet 
non-conclusive results.

Recently, intriguing results have been obtained in non-cardiac 
tissues, such as skeletal muscle and pancreas (61, 62). Mosteiro 
et al., starting from the evidence that the in vivo transduction of 
OKSM factors induces cellular damage and senescence along with 
dedifferentiation (62), found a possible role for SASP components 
in in vivo cell reprogramming (77). Also in skeletal muscle, it has 
been demonstrated that in-vivo reprogramming is facilitated by the 
accumulation of senescent cells (61). These results strongly suggest 
that cell intrinsic and extrinsic effects of senescence can be pivotal 
for tissue repair and regeneration, particularly during the aging 
process and in the presence of tissue damage. Indeed, tissue injury 
enhances the in-vivo lineage reprogramming efficiency in both liver 
and pancreas and the induction of a senescent program could drive 
these processes.

With aging, several of the SASP components, particularly 
those related to proinflammatory signaling, have been shown 
to be involved in tissue remodeling in both the heart and large 
arteries. As previously highlighted, a possible interesting role 
in the remodeling process of the cardiovascular system can be 
played by IL-6. IL-6, in fact, is significantly increased, secreted and 
up-regulated in aged Vascular Smooth Muscle Cells (VSMCs) as 
well as in aged myocardium (100).

To our knowledge, no data on cardiac direct reprogramming 
and SASP are available.

At cardiac level, in particular, an age-associated increase in 
myocardial damaged and matrix remodeling seems to be promoted 
by up-regulation of this cytokine, along with TNF-alpha and both 
seem to be required for myocardial development (100–102). The 
role of IL-6, more specifically, seems to be central in the process 
of myocardial remodeling, either pathological or physiological. In 
fact, while on the one hand it has recently been showed that deletion 
of IL-6 attenuates pressure overload-induced left ventricular 
remodelling, on the other hand, deletion of IL-6 has been 
demonstrated to be responsible for left ventricular dysfunction, 
fibrosis, reduced capillary density, and significant alteration of 
cell populations of the developing and adult heart. Both these 
pathological and developmental responses to IL-6 signaling occur 
through the modulation of the activity of STAT3 (103).

IL-6 is also able to enhance in vitro reprogramming, by 
replacing the activity of another IL-6 cytokine family member, 
the leukemia inhibitory factor (LIF), a related cytokine often used 
for reprogramming in vitro (103, 104).

Given the growing evidence on a possible role of IL-6 in 
facilitating in vitro reprogramming and given the increased levels 
of this cytokine in the aged heart, it can be argued that also an 
in-vivo direct cardiac reprogramming process could be favorably 
influenced in the presence of IL-6.

LIF is an essential compound used during the induced 
cardiomyocytes maturation in the direct cardiac reprogramming 
process (105). Like IL-6, also LIF acts through a shared gp130 receptor 
leading to overlapping but characteristic biological actions mediated 
by the activation of STAT3 (106). Several studies have been performed 
on the intracellular signals leading to the formation of a “wall of 
protection” against cardiomyocytes acute stress (104). LIF would seem 
to have other effects on other cell types in the infarcted myocardium 
reparative process. In mouse infarcted myocardium, LIF has been 
shown to contribute to the homing process of bone marrow-derived 
cardiac progenitors, along with the differentiation of resident cardiac 
stem cells into endothelial cells (106, 107). Increased circulating LIF in 
a mouse model of MI not only were protective against cardiomyocyte 
death but was able to enhance neovascularization and to induce 
bone marrow cells homing in the heart and their differentiation into 
cardiomyocytes (108).

ConCluSionS

In vivo lineage reprogramming-based therapies are being 
considered to treat a wide range of diseases, and tissue-damage-
induced senescence seems to contribute to in vivo cellular plasticity 
via SASP positively. Although this beneficial role for cellular 
senescence has been demonstrated on muscle and pancreas 
regeneration, no data are available for a similar effect on cardiac 
regeneration. Nevertheless, experimental evidence has shown 
that the reprogramming by GMT in the infarcted adult heart 
induced more cardiomyocyte maturation and hypertrophy than 
into the neonatal heart. It may be speculated that this could be 
ascribed to the induction of a senescence program in the damaged 
myocardium, thus supporting the positive contribution of the 
cardiac milieu to the in vivo reprogramming process. Hence, it will 
be of great interest to investigate how specific SASP components 
would also affect cardiac reprogramming.
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