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Abstract: Peptides of natural and synthetic sources are compounds operating in a wide range of
biological interactions. They play a key role in biotechnological applications as both therapeutic
and diagnostic tools. They are easily synthesized thanks to solid-phase peptide devices where the
amino acid sequence can be exactly selected at molecular levels, by tuning the basic units. Recently,
peptides achieved resounding success in drug delivery and in nanomedicine smart applications.
These applications are the most significant challenge of recent decades: they can selectively deliver
drugs to only pathological tissues whilst saving the other districts of the body. This specific
feature allows a reduction in the drug side effects and increases the drug efficacy. In this context,
peptide-based aggregates present many advantages, including biocompatibility, high drug loading
capacities, chemical diversity, specific targeting, and stimuli responsive drug delivery. A dual behavior
is observed: on the one hand they can fulfill a structural and bioactive role. In this review, we focus on
the design and the characterization of drug delivery systems using peptide-based carriers; moreover,
we will also highlight the peptide ability to self-assemble and to actively address nanosystems toward
specific targets.

Keywords: peptide; peptide backbone structures; drug delivery; peptide self-assembling carriers;
active targeting receptors; diphenylalanine; binding peptides

1. Introduction

Peptides of natural and synthetic origin are compounds involved in a wide variety of biological
roles. They act as hormones, enzyme substrates and inhibitors, antibiotics, biological regulators, and so
on. Therefore, peptides play an essential role in biotechnological applications as therapeutic and
diagnostic agents. Their advantages depend on the strategy applied to produce them and include
biocompatibility, low cost, tunable bioactivity, chemical variety, and specific targeting. Moreover,
they are easily synthesized, for example, by using solid-phase peptide methodologies where the amino
acid sequence can be exactly selected at the molecular level by tuning the basic units [1]. Although
the drawbacks related to their use are referred to as metabolic instability via protease degradation, an
improved metabolic stability can be pursued through several chemical approaches aimed to modify
the original peptide sequences. Some examples are the introduction of specific coded or un-coded
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amino acids, D-counterparts, cyclization, and DNA recombinant technology. Recently, peptides
achieved resounding success in drug delivery and in nanomedicine smart applications, thanks to these
innovative approaches. These applications are among the most significant challenges of recent decades
in transporting drugs only to pathological tissues whilst other districts in the body are preserved from
side effects. This specific feature allows the reduction of unwanted drug effects and increases the drug
efficacy [2].

In peptide-containing aggregates, peptide sequence can fulfill a structural or a bioactive role.
In detail, peptides play a structural role when the primary amino acid sequence drives or affects the
molecular self-assembly by adding remarkable weak non-covalent bonds, electrostatic interactions,
hydrogen bonds, hydrophobic and Van der Waals interactions, and

Molecules 2018, 23, x FOR PEER REVIEW  2 of 27 

 

thanks to these innovative approaches. These applications are among the most significant challenges 
of recent decades in transporting drugs only to pathological tissues whilst other districts in the body 
are preserved from side effects. This specific feature allows the reduction of unwanted drug effects 
and increases the drug efficacy [2]. 

In peptide-containing aggregates, peptide sequence can fulfill a structural or a bioactive role. In 
detail, peptides play a structural role when the primary amino acid sequence drives or affects the 
molecular self-assembly by adding remarkable weak non-covalent bonds, electrostatic interactions, 
hydrogen bonds, hydrophobic and Van der Waals interactions, and ппstacking between the side 
chains. Furthermore, peptides play a bioactive role when the full sequence, or a part of it, is deputed 
to recognize specific receptors, such as those overexpressed by pathological cells. In this review, we 
will focus on the peptide ability to self-assemble and on potential applications of peptide based 
nanosystems for nanomedicine. In addition, we report recent examples of peptides employed as 
delivery systems of anticancer drugs and/or contrast agents for the imaging of tumor pathologies. 
Finally, we will describe peptide nanosystems able to actively address the active pharmaceutical 
ingredients (APIs) toward specific biological targets. 

2. Peptide Self-Assembled Nanostructures 

Peptides are able to gather into assorted nanostructures, including nanotubes, nanofibers, 
nanospheres, and nanovesicles, supported by their device and self-assembly conditions [3]. Different 
types and structures of peptides, including cyclic and linear peptides, amphiphilic peptides, and α-
helical and β-sheet peptides, can self-assemble into nanostructures (see Figure 1). 

 

Figure 1. Different classes of peptides can be arrange in supramolecular structures handling the self-
assembling phenomena. Various morphologies can be generated according to the rational design of 
the primary sequence. 
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chains. Furthermore, peptides play a bioactive role when the full sequence, or a part of it, is deputed
to recognize specific receptors, such as those overexpressed by pathological cells. In this review,
we will focus on the peptide ability to self-assemble and on potential applications of peptide based
nanosystems for nanomedicine. In addition, we report recent examples of peptides employed as
delivery systems of anticancer drugs and/or contrast agents for the imaging of tumor pathologies.
Finally, we will describe peptide nanosystems able to actively address the active pharmaceutical
ingredients (APIs) toward specific biological targets.

2. Peptide Self-Assembled Nanostructures

Peptides are able to gather into assorted nanostructures, including nanotubes, nanofibers,
nanospheres, and nanovesicles, supported by their device and self-assembly conditions [3]. Different
types and structures of peptides, including cyclic and linear peptides, amphiphilic peptides,
and α-helical and β-sheet peptides, can self-assemble into nanostructures (see Figure 1).
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2.1. α-Helical and β-Sheet Peptides

The primary feature in the design and synthesis of peptide based biomolecules regards the
peptide backbone arrangement in α-helical and β-sheet secondary structures. This is a consequence
of the hydrogen bonding pattern interactions through the amide and carbonyls groups in the
peptide backbone. After that, the β-strands turn into a β-sheet self-assembled structure that
could be rearranged in parallel or antiparallel arrays, according to the direction of the peptide
sequences. The peptide is typically designed to contain repeating amino acid residues and distinct
hydrophobic and hydrophilic regions. Consequently, the hydrophobic moiety could be hidden within
the self-assembled nanostructure while the hydrophilic area could be better exposed to the solvent
(water) environment [4]. Unlike β-sheets, α-helices are formed by single peptide chains, where
backbone amide components are intramolecularly hydrogen bonded. This arrangement leads to the
exposition of side chains of amino acids on the surface of each helix. Thus, their positioning further
facilitates the accessibility of the peptide in the solvent.

The regular α-helical peptides with 2,5 helices are shown to aggregate around each other and their
structure evolves in nanofibers [5,6]. These α-helical peptides can also self-assemble into nanofibers if
they have at least 30 amino acid residues, through helical coiled-coil structures [7]. The hydrophobic
residues could promote the helix oligomerization through hydrophobic collapse.

The β-sheet secondary structures are the naturally-occurring motifs most similar to those which
carry on into pay peptide self-assembly [8,9]. The β-sheet determines regular alternating hydrophilic
and hydrophobic regions in the peptide sequence. The same structure provides the amphiphilic
property to the peptide that drives the self-assembly of β-sheets. For instance, β-sheet peptides
(namely the QQR holding sequences) can self-assemble into a pH-responsive hydrogel by means of
the side chain’s ion affinity for acidic residues of Glu and Arg. These peptides are soluble in neutral
pH conditions and they switch into a hydrogel material, in acidic pH surroundings. This behavior can
be rationalized in terms of the rearrangement of antiparallel β-sheet tapes. Those β-sheet tapes are
obtained at lower pH values and, afterward, stacked together to form nanofibrils in hydrogels [10].
The intramolecular folding β-hairpin peptides are well represented in the self-assembled sequences in
various nanostructures, both in water and in space boundaries. Indeed, the self-assembly of β-hairpins
in proteins is carried on by the arrangement of two β-sheets in antiparallel plans. The modulation of pH
values reproduces the status in which these materials could be gained and tailored. It is well-described
that the fundamental mechanism in hydrogels engendered by self-assembly of the β-sheet hairpin
structure strongly depends on the increase of the pH values [11].

The peptide self-assembly processes are also kept up by non-covalent interactions that sometime
show the key role in the overall configuration. The non-covalent interactions should be taken into
high consideration for this grounds, especially when designing peptide self-assembled nanostructures
for drug delivery. Indeed, non-covalent interactions shall be rationally applied in the strategies.
These non-covalent interactions are effortlessly unfair by external environments, for instance,
pH values, temperature array, and the solvent polarity. Indeed, pH values are critical in peptide
sequences richer in charged amino acids, such as Glu, Asp, Lys, His, and Arg, as stated above. As a
consequence of the rank, these peptides can exhibit negative or positive shell charges. Then, those
peptides can self-assemble into different nanostructures, according to the pH values.

2.2. Linear Peptides

Recently, data in the literature have reported that short (below six residues) and ultra-short
(referred to dipeptides and tripeptides) linear peptides have the ability to self-assemble into many
different nanostructures. This aspect, particular interesting, allows to minimize the synthesis and
purification steps and to reduce the cost of the production process [12].

One of the most studied prototypes of self-assembling linear peptides is the ultra-short
homodipeptide Phe-Phe (FF) (Figure 2) identified by Gazit and co-workers in 2003 as the smallest region
of the Aβ-amyloid peptides (Aβ1-40 and Aβ1-42) prone to the aggregation [13]. The characterization of
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FF assemblies via single-crystal X-ray diffraction studies showed that this dipeptide is able to generate
ring-like networks with a hexagonal symmetry, promoted by head-to-tail interactions established by
its charged N- and C-terminus. This association trend is further stabilized by “T-shaped” contacts
between the phenyl aromatic side chains [14]. Molecular dynamic simulations (MD) corroborated
these observations, suggesting the ability of this system to form open ring-like peptide networks in
aqueous solution [15]. Additional studies highlighted the structural versatility of this motif by showing
that, despite its molecular simplicity, FF homodipeptide is able to form more complex supramolecular
architectures [16]. Interestingly, simple modifications of the charged state at the C- or N-terminus of
FF, strongly affected its self-assembling pathway. Indeed, the introduction of a thiol group or of a
Fmoc-fluorenylmethyloxycarbonyl group can alter the self-assembling phenomena, for example [16].
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Figure 2. Diphenylalanine based aggregates can be applied with different biotechnological scopes,
producing drug delivery systems, hydrogels matrices, supramolecular contrast agents, and fluorescent
aggregates. Chemical and functional decorations (like sequences modification, incorporation of
fluorescent dyes and conjugation with chelating agents and polymers) at N- and C-terminus of the
primary sequence produce innovative nanostructurated tools.

Nanotubes, nanowires, nanofibrils, spherical vesicles, and organogels are just a few examples
of the new peptide materials, based on FF self-assembly. These materials exhibit mechanical
properties [17], electrical properties [18], electrochemical properties [19], or optical properties
(photoluminescence [20,21] and optical waveguide [22]) properties. In this contest, it is significant
to highlight the main property of FF self-assembled nanotubes referring their thermal stability,
which is the distinctive skill in bioinspired materials [23]. All these physicochemical characteristics
make them suitable for several applications in nanomedicine (tissue engineering, drug delivery,
and bioimaging) [18,24,25] and in nanofabrication fields (biosensors, nanodevices, and conducting
nanomaterials) (Figure 2) [26,27].
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In 2013, Alves et al. suggested for the first time FF-based microtubes (FF-MTs) as potential drug
delivery vehicles. In their studies, the authors used Rhodamine B (RhB), a common dye, as a model
drug. Data suggested the low in vitro toxicity of the FF-MTs and the potential of these carriers to
deliver drugs at constant rates [28]. Beyond the low in vitro toxicity, FF-MTs units showed very high
thermal stability (up to 120 ◦C) and stability towards to the protease degradation. Self-assembled
nanotubes obtained for aggregation of unnatural fluorinated-peptides containing two aryl units were
found able to penetrate the cultured primary human smooth muscle cells and to locate in their
cytoplasmic/perinuclear region [29]. Successively, FF-micro and nanotubes, covalently conjugated to
folic acid/magnetic nanoparticles (FA/MNPs), were also evaluated as a potential delivery systems of
the anti-cancer therapeutic 5-fluorouracil (5-FU), and of the anti-inflammatory cargo flufenamic acid
(FFA) [30].

Analogously to micro- and nanotubes, FF peptide-based nanofibers have also been recently
proposed as vehicles of hydrophobic drugs, like hydroxycamphothecin (HCPT), for cancer therapy.
In this study, the replacement of some L-amino acids with D-counterparts permitted to further improve
the in vitro and in vivo biostability of these peptides against the hydrolysis catalyzed by endogenous
peptidases. The protease stability allows for prolonged therapeutic effect with reduction of a tumor
mass in a rat model [31]. At the same time, nanofibers of D-peptides generated via enzymatic
dephosphorylation were also investigated for the controlled release of the anticancer drug taxol,
and of a fluorophore (e.g., 4-nitro-2,1,3-benzoxadiazole) used as imaging agents in vivo [32]. Moreover,
the combination of FF with others organic/inorganic molecules brought to the formation of novel
hybrid smart materials responsive to the external stimuli, such as pH, enzyme, and oxidative stress.
For example, aldehyde molecules can induce cationic diphenylalanine to assemble into biocompatible
and biodegradable enzyme-responsive nanocarriers. These nanocarriers loaded with doxorubicin have
been proposed as intelligent antitumor agents [33]. Another example of hybrid stimuli-responsive
biomaterials is represented by magnetic hydrogel generated for co-assembly under mild conditions
of FF with polydopamine spheres coated with Fe3O4 magnetic nanoparticles [34]. Successively,
in 2016 Alves et al. reported the formulation of hybrid materials obtained by conjugation of
electrospun polycaprolactone (PCL) fibers and micro/nanotubes of L,L-diphenylylalanine (FF-MNTs).
This biodegradable matrix allows the achievement of a stable release of lipophilic anesthetic benzocaine
over periods of up to ≈13 hours, much higher than commercially available scaffolds [35].

Concurrently, Wu et al. reported FF-based hybrid nanospheres responsive to pH- and
GSH-stimuli. In these spheres, natural alginate dialdehyde (ADA) was employed as cross-linker
to induce self-assembly of FF and in situ reducer of Au3+ ions into Au nanoparticles (Au NPs).
These biocompatible spheres were proposed as drug loading and delivery systems. Indeed, they were
found able to encapsulate more than 95% of hydrophobic chemotherapeutic drug (camptothecin,
CPT). CPT-loaded spheres exhibited satisfactory stability under normal physiological conditions and
excellent pH- and GSH-responsive release at pH 5.0 with 10 mM GSH, which is similar to the tumor
microenvironment. Moreover, these nanocarriers can be taken up by cancer cells and have greater
cytotoxicity than free drugs [36].

In 2006, Ulijn and co-workers identified Fmoc-FF as one of the first dipeptides able to form a
homogeneous, transparent, self-supporting hydrogel with fibrous nanostructure under physiological
conditions [37]. The supramolecular nature of Fmoc-FF aggregates suggested its potential use
in biological applications, such as controlled drug release, tissue engineering and cell culture.
Many examples of multicomponent hydrogels as biocompatible drug delivery systems have been
reported until now. FF based hydrogels have been also proposed as vehicle for the delivery of two
complementary anticancer drugs, dexamethasone, and either taxol or dehydro-CPT. These peptide
hydrogels showed a high in vitro biocompatibility for concentrations up to 100 µM over 48 hours.
Moreover, their principal advantages are the improved stability of the drugs over time at 37 ◦C (i.e.,
48 h for the taxol-derivative, and over two weeks for the others) and the slow drug release [38].
Beyond the encapsulation of anticancer drugs, peptide hydrogels can encapsulate non-steroidal
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anti-inflammatory drugs (NSAIDs) for local use [39] or SPECT tracers [40]. Recently, Fmoc-FF has been
utilized in combination with plasmonic gold nanorods (AuNRs) for the development of near-infrared
laser-activatable microspheres. These AuNR-embedded dipeptide microspheres, loaded with the
anticancer agent, doxorubicin (DOX), were proposed as a smart drug-delivery platform for native,
continuous and pulsatile drug release. Results of the study demonstrated the capability to achieve a
sustained and on-demand DOX release from the microspheres by manipulating the laser exposure
time [41].

Hybrid hydrogel encapsulating docetaxel were also prepared via the calcium-ion-triggered
co-assembly of Fmoc-FF peptide and alginate. Due to the synergic effect of these two components,
the final material presented much better stability than the single components in both water and a
phosphate-buffered solution. Controlled drug release was obtained by varying the concentration ratio
between the peptide and the polysaccharide [42]. Fmoc-FF dipeptide has been also utilized to confer
mechanical rigidity and stability to natural polymers like hyaluronic acid (HA), a major component
of the extracellular matrix. Fmoc-FF/HA composite hydrogels showed a sustained release of
curcumin, a hydrophobic polyphenol showing antioxidant, anti-inflammatory, and antitumor activities.
Additionally, in this study, it was observed a direct relationship between the rate of curcumin released
and the concentration of the Fmoc-FF peptide within the hydrogel matrix [43]. Fmoc-FF/poly-L-lysine
(PLL) injectable multicomponent hydrogels, encapsulating the photosensitive drug Chlorin e6 (Ce6),
were also proposed as promising delivery platform in the photodynamic antitumor therapy. In vivo
studies indicated an efficient inhibition of the tumor growth with no detectable toxicity or damages
to normal organs during the treatment [44]. Inspired by Fmoc-FF, recently Adler-Abramovic et
al. reported the synthesis of the peptide 6-nitroveratryloxycarbonyl-diphenylylalanine (Nvoc-FF)
containing an ultraviolet (UV)-sensitive phototrigger [45]. The UV irradiation of the self-supporting
hard hydrogel obtained by the self-assembling of this ultra-short peptide prompts the controlled
release of the encapsulated insulin-fluorescein isothiocyanate (insulin-FITC), used as a drug model.

Over the years, multidisciplinary studies have revealed that the self-assembly of short linear
peptides and still of single amino acids can make a broad range of diversified materials. It was
observed that the conjugation of the polyethylene glycol (PEG) to short homopeptides, containing
aromatic amino acids permits a substantial increase of their water solubility. The aromatic residues that
can be such are, for example: phenylalanine (Phe, F), tyrosine (Tyr, Y) [46], tryptophan (Trp, W) [47],
and naphthylalanine (Nal). Recently, Diaferia et al. proposed a polymer-peptide (PEGylated-F4)
functionalized with Gd-DTPA and Gd-DOTA as contrast agent for potential diagnostic applications in
magnetic resonance imaging (MRI) [48]. Single peptides in the aggregates are in a β-sheet conformation
with an antiparallel alignment along the fiber axis. Each Gd-complex in the nanostructure exhibits a
relaxivity value around 15 mM−1 s−1at 20 MHz, approximately three-fold higher than the classical
contrast agents at low molecular weight (4.7 mM−1s−1). These relaxometric parameters are in line with
other examples of Gd(III) based supramolecular (micelles or liposomes) contrast agents [49]. Due to
the significant internalization efficiency and due to the high relaxivity values, these nanostructures are
able to enhance the MRI cellular response on J774A.1 mouse macrophages cell line. In detail, within
those cells the cytotoxicity of the fibril nanoaggregates was negligible with an incubation time of 3 h in
the 0.5–5.0 mg/mL concentration range.

The same authors also evaluated the effect of the Gd-complex position in the aromatic
framework and of the replacement of the phenylalanine with the non-coded amino acid 2-Nal [50,51].
They observed that the different positioning of the chelating agent into the aromatic framework (at the
center or at the N-terminus of the F4-motif) causes a drastic loss of the tendency to self-assemble and
of the relaxivity value (11 mM−1·s−1). The decrease of the latter is related to the major flexibility of
the Gd-complex on the supramolecular aggregate. On the other hand, the replacement of Phe in the
homodimer with non-coded 2-Nal amino acid permits to restore in dipeptide
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side chain. Above 20 mg/mL, Gd-2Nal2 peptide derivative gels and it was found able to encapsulate
anticancer drugs like DOX, thus suggesting a potential use as theranostic systems.

Recently, Rosenman et al. [21,52] reported the capability of FF and FFF NSs to emit
photoluminescence (PL) in the blue and in the green spectral regions, upon thermally-induced
reconstructive phase transition. Kaminski et al. [53] also observed the same phenomenon in proteins
and in amyloid-like fibrils rich in β-sheet structures. According to the literature, in 2016 Diaferia et
al., synthesized series of PEGylated oligo-phenylalanines (PEG8-F6, PEG12-F6, PEG18-F6, PEG24-F6)
able to generate supramolecular systems rich in β-organization [54,55]. Due to the presence of their
β-sheet structures, these polymer-peptides have been proposed as promising bioimaging agents.
These peptide nanostructures keep their optoelectronic properties both in solution and at the solid
state, upon excitation at 370, 410, and 460 nm, respectively. From a comparison along PEG-series
arises that the PEG length and its composition could alter both the structural and the optoelectronic
properties of the final material. The differences in the optoelectronic properties were attributed to the
extension of the electron delocalization via hydrogen bonds along the cross β-structure of the peptide
spine. This effect is due to the number of amide bonds along the PEG chain. With the aim to develop
novel biocompatible peptide nanostructures as bioimaging tools, the same authors tried to improve the
performance in terms of PL intensity and of wavelength range compatible with in vivo applications.
They demonstrated that the intrinsic PL of these peptides nanostructures can be transferred to an
acceptor dye like 4-chloro-7-nitrobenzofurazan (NBD) confined in proximity of the nanofiber. Then,
the entrapment of NBD in these NSs caused a red-shift from 460 to 530 nm. This evidence was the
proof of concept that PL can be red-shifted towards the infrared region of the visible spectrum [56].

2.3. Cyclic Peptides

In 1974, theoretical analysis suggested the possible arrangement of a cyclic peptide in a hollow
tubular structure [57]. Twenty years later, Ghadiri and coauthors solved the first crystalline structure
of nanotube structure, by ring stacking of cyclic peptides incorporating alternating D and L amino
acids: cyclo-(L-Gln-D-Ala-L-Glu-D-Ala)2 [58]. The peptide side chains were devised on the external
area. It is observed that they were organized in the typical nanotube structures, as a consequence of
the alternating D and L amino acids. The nanotubes are self-assembled and stabilized by hydrogen
bonds between amide groups of the cyclic backbone.

In addition to alternating D- and L-type α-amino acids, several cyclic peptide sequences can make
the self-assembly by alternating α- and β-amino acids, β-amino acids, and δ-amino acids by molecular
stacking and H-bonds between backbones [59–62]. The size of the cavity depends on the length of the
cyclic peptide, from 2 to 13 Å, increasing from a tetramer to a dodecamer. This parameter with charges
on the side chain is essential for the use in biotechnological applications. By tailoring the chemical
structure of the cyclic peptide, supramolecular self-assembled architectures can be accustomed to
meet the requirements of applications, including stimuli-responsive nanomaterials antibacterial agents,
for ion channeling and ion sensing and gene delivery.

Despite a large number of cyclic peptide nanotubes (cPNT) designed, their use as carriers of
anti-cancer drugs is very poor. Zhang and co-workers [63] designed an eight-residue cyclic peptide
containing Glu and Cys amino acids able to self-organize in a micro-scaled aggregate. PEGylated
aggregates loaded with DOX showed a high drug encapsulation ratio. Compared to free DOX,
the PEG-modified DOX-loaded CPNT bundles demonstrated higher cytotoxicity, increased DOX
uptake and altered intracellular distribution of DOX in human breast cancer MCF-7/ADR cells
in vitro.

2.4. Amphiphilic Peptides (PAs)

Nature has elected amphiphilic molecules to generate life, by using them to circumscribe portions
of the environment. Instead, membranes are able to confine biomolecules and to promote the transport
of molecules and ions. Imitating the Nature, amphiphilic peptides self-assemble into different
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nanostructures, including vesicles, micelles, nanofibers, and nanotubes, thus playing a pivotal role in
the production of nanomaterials for biotechnological applications [64,65]. These molecules contain
distinct hydrophobic and hydrophilic segments. The most simple peptides able to self-aggregate are
constituted by short or long homo-chains of hydrophobic amino acids, like Val, Ala, Gly, and Phe,
followed by one or more electrostatic charged residues (such as Asp, Glu, or His). The driving forces
of the aggregation are electrostatic (for Asp, Glu, and His residues) and hydrophobic interactions (for
Val, Ala, Gly, and Phe residues) that address into a wide variety of nanostructures, depending on their
physical and chemical properties.

In 2002, Zhang and co-workers investigated peptide sequences containing an hydrophobic moiety
(valine [66], glycine [67] and alanine residues [68]) and an hydrophilic head (one or two Asp residues or
one of Lys). These molecules self-assemble into various nanotubes or nanovesicles. In particular, the Lys
cationic residues on the head of these peptides could favor their own conjugation with negatively
charged DNA and RNA opening the possibility of application in gene drug delivery. Later, Hamley’s
group has investigated a cationic peptide in which the hydrophobic tail consists in six Ala residues
with an Arg head group. At low concentration, this peptide self-assembles in ultrathin sheets, whereas
at higher concentrations the sheets wrap around themself to form nanotubes and helical ribbons.
This structure shows antimicrobial properties [69]. It is noteworthy that another sequence able to
aggregate is obtained by alternating hydrophobic amino acids with residues bearing on the side chain
positive and negative charges. In this case the EAK16 model peptide aggregates into nanofibers [70].
The methyl groups of alanines form a sheet structure inside, whilst the charge residues are exposed on
the external wall. This structure is able to delivery ellipticine, an anticancer drug. The UV analysis and
the fluorescence demonstrated electrostatic interactions and the conjugation method between the drug
and the nanofibers [71].

Aliphatic peptides and lipopeptides were also proposed as building blocks for self-assembling.
The feature of lipopeptides is the presence of different short or long alkylic chains as hydrophobic
moiety, in the monomer structure. In this case, the aggregation is supported by van der Waals forces.
The simplest lipopeptides are also able to form nanostructures. L-dodecanoylserine monomer forms:
nanotubes, partially wrapped nanotubes and helical ribbon structures [72]. A peptide amphiphile
comprising a single Lys residue, an alpha-(L-Lys),omega-(amino)bolaamphiphile, it was shown to
form nanotubes in acidic aqueous solution [73]. Many lipophilic PAs can self-assemble into cylindrical
nanofibers, as a consequence of H-bonds among peptide moieties and hydrophobic collapse of alkyl
tails [74,75]. The induction of self-assembly in these cylindrical structures could be obtained in aqueous
media, in presence of suitable stimuli such as pH [24,40]. The tetrapeptide sequence, composed by
hydrophobic and negatively charged residues (Val-Glu-Val-Glu), it grafted to an alkyl tail at sixteen
carbon atoms, self-assembled into monodispersed nanobelts in an aqueous solution at a concentration
of 0.1 wt% [76]. In this regard, Hartgerink et al. described two different self-assembling modes [74]:
acid-induced self-assembly and Ca2+ induction. For the acid-induced self-assembly, PA including
C16H31O grafted to C4G3S(PO4)RGD, they can aggregate in nanofibers after dissolution in water and
exposition to gaseous HCl. On the other hand, the treatment of a solution of these conjugates with Ca2+

instantly caused the gel formation in solution. This Ca2+-induced self-assembly may be particularly
helpful for medical applications at physiological pH, where formation of a gel is mandatory.

Drug delivery applications of hydrogelation based on PAs were studied by the Stupp’s group [75].
In their studies, the chemical structure of the PA molecule (C16V2A2E2) is composed of three segments:
an hydrophobic tail (palmytic acid), the well-established β-sheet amino acid sequence V2A2 and
two negatively charged glutamates able to induce cross-linking in presence of Ca2+ ions in solution.
Properties of this peptide as controlled drug release tool were investigated linking prodan, a fluorescent
lipophilic tag used as a dielectric probe for cell membranes. This probe was linked to the peptide
through a hydrazine bond inserting a Lys residue at different positions along the backbone of the
peptide. This pH-sensitive bond can be broken in acidic conditions of a cell compartment. Hydrogel
formation was induced by adding a 100 mM Ca2+ solution after dissolving PA in NaOH.
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Lipopeptides with similar chemical structure can form self-assembled micelles. Stearyl-H3CR5C
lipopeptide, that are crosslinked by disulfide bonds (SHRss), have been used to form DOX-loaded
micelles with an average diameter of 233 nm by nanoprecipitation and probe-based ultrasonication
methods. DOX and microRNA are then loaded into the micelles through hydrophobic interactions [77].
The DOX release profile strongly depends on the pH value. Indeed, a larger amount of drug was
released at pH 5.5 (82.6%) (corresponding to the endolysomial pH) than at physiological pH 7.4 (63.3%).
Cellular uptake has also been investigated by flow cytometry and confocal laser scanning microscopy
(CLSM) on DU145 (human prostate cancer) cells. Results indicated that the uptake of micelles were
time-dependent with an intracellular uptake rate higher after four hours of incubation (89.50 ± 0.99%)
than after one hour of incubation (82.56 ± 1.55%). Cationic micelles can be obtained by self-assembly
of PAs in which the hydrophobic moiety is represented by cholesterol (Chol) and the hydrophilic head
contains a variable number of positively charged residues, such as histidine and arginine (Chol-CH5R5,
Chol-CH3R3, Chol-CR5, and Chol-CR3,) [78]. These aggregates are able to adsorb on their surface
different amount of DNA depending on the ratios between the arginine residues and DNA phosphate
bases. Formation of micelles with palmitoyl-p5314-29has been studied by Missirlis et al. [79]. This PA
self-assembled in 10 mM phosphate buffer; the hydrophobic interactions induced the simultaneous
formation of micelles with a hydrodynamic diameter of 319 nm and the formation of elongated micelles
with a diameter of 10 nm having a length of a few hundred nanometers.

3. Self-Assembling PAs for Targeting in Nanostructures

In PA-based nanostructures, the main goal of peptides is to drive the self-aggregation and to
regulate the loading and the release of the encapsulated drug. In the wide category of PAs, the sequence
of the amino acids is responsible for the targeting and delivery features. For this purpose, the sequence
is selected on the ability to cross the cell membrane or to bind overexpressed receptors on the
cell membranes.

3.1. Cell Penetrating Peptide (CPPs) and Smart Sequences

Cell penetrating peptides (CPPs) are a large class containing more than 1700 different
experimentally-validated sequences [80,81]. Most common CPPs are cationic and they are widely
used. A class of CPPs are derived from the α-helical domain of the Tat protein, covering residues from
48 to 60. Those residues are mainly composed of basic amino acids, such asthe TAT dodecapeptide:
GRKKRRQRRRPQ [82]. The CPP role as a nanovector has been described in many reviews [83,84].

Despite high cellular uptake efficiency, CPPs lack cancer cell specificity. To overcome this drawback
stimuli-responsive CPPs have been developed recently to enhance the cellular uptake of therapeutic
cargo only in the tumor tissue. As previously reported, these stimuli can respond to pH variation or to
enzyme activity or to oxidative stress. CPPs can be considered as responsive molecules when containing
residues able to vary the net charge depending on the pH. One residue able to tune the net charge of the
peptide is His. Therefore, Zhang et al. designed an α-helical CPP to obtain a pH-responsive peptide,
by replacing all its lysines with histidines (THAGYLLGHINLHHLAHL(Aib)HHIL). This peptide
(TH) showed a neutral charge at physiological pH, but the net charge became positive under acidic
conditions, so that its cell penetration capacity was activated [85]. PEGylated liposomes functionalized
with TH peptide showed a more efficient internalization into C26 colon cancer cells, when compared
to non-targeted liposomes. Moreover, PTX-loaded liposomes suppressed C26 colon tumors in vivo
with high apoptosis levels where the tumor inhibition rate reached 86.3%. Proteases abundant in
tumor tissue can constitute internal stimuli for activating CPPs. Liu et al. developed a liposome
able to carry DOX labelled with the sequence AAN-Tat [86]. The AAN sequence is a substrate of
Legumain endoprotease. The addition of the AAN moiety to the fourth lysine in the TAT generates
a branched peptide moiety, which leads to a decrease in the transmembrane transport capacity of
TAT up to 72.65%. The action of the enzyme allows restoring the penetrating capacity of TAT. In vivo
assays carried out on nude mice showed inhibition of the tumor growth significantly higher in mice
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administered with AAN-TAT liposomal DOX than control. Simultaneously, for the group treated with
targeted DOC liposomes, it was also observed a prolonged survival period. Another stimulus could
be derived externally, such as UV or NIR irradiation. In these cases, the CPP peptide is modified
by the action of a residue with a photolabile protecting group. Upon reaching the tumor site, the
peptide-functionalized liposomes are irradiated by UV or NIR light that cleaves the protective groups
and in this way allows the CPP to play its role. Following this methodology, a CPP (CKRRMKWKK or
CGRRMKWKK) enhances the efficiency of the translocation, derived from the penetration. This CPP
is designed to turn into an inactive form by neutralizing the positive changes of the lysines, which are
caged with photoresponsive groups [87].

3.2. Peptide Able to Interact with Overexpressed Receptors

In certain PAs, the receptor-targeting peptides are able to induce high levels of internalization
within tumor cells due to a receptor-mediated endocytosis mechanism. The peptide sequence can be
composed in this manner [88]. These strategies could allow the intracellular delivery of the payload.
Some known endogenous proteins are able to bind the target receptor with high affinity. A significant
topic of research is about how to preserve the affinity for the overexpressed receptors, especially after
the conjugation to the hydrophobic moiety. Furthermore, evidence showed how all the residues which
are involved in the receptor binding are well-exposed on the nanostructure surface. Those residues
maintained a conformation suitable to the interaction with the receptor [89]. Further studies are
aimed to preserve the in vivo chemical stability, due to the high sensitivity of peptides to the protease
degradation. Improved metabolic stability and pharmacokinetics can be achieved by modifying
peptide sequences with either specific coded amino acids or un-coded amino acids, or, as well,
with amino acids in the D configuration. Alternative strategies consist of: the cyclization between the
N- and C-terminals, the cyclization between the N- or C-terminal and a side-chain, or the cyclization
between two side-chains.

Peptide sequences can act as cell surface receptor antagonists if molecules are modeled, allowing
selective targeting towards to receptors. Antagonist peptides show a dual advantage if compared
with their agonist counterparts: on the one hand they do not act in the biological pathways
following receptor binding; on the other hand they present higher binding capacities [90,91]. However,
the strategy of rational design of new compounds has some limits, one of the most significant being
the limit of the knowledge requirement related to the structure of ligand/receptor interaction [92].
A further possibility to identify novel peptide sequences is the use of the phage display technique,
concerning recognizing tumor-associated proteins [93]. Next to the identification of a peptide sequence,
some suitable spacers (charged or neutral) can be inserted between the hydrophobic region and
the peptide. One of the most used spacers in this context is uncharged polyethylene glycol (PEG).
Indeed, the presence of one or more ethoxilic units permits an increase in the blood circulation time
of the supramolecular aggregates (enhanced permeability retention effect). In addition, the lack of
charge prevents interactions with the residues on the bioactive portion which could induce unnatural
and incorrect conformations. Furthermore, the spacer allows the maintenance of the molecule’s
flexibility, mobility, and increases, in some cases, the solubility. The formulation of supramolecular
aggregates, like micelles and liposomes, externally functionalized with bioactive peptides, may be
obtained by using different approaches, such as pre-functionalization and the post-functionalization
strategies [94–97]. In the pre-funtionalization, the peptide sequence is placed on the aggregate during
the nanostructure preparation: Figure 3 (left panel) shows an amphiphilic peptide derivative added
during the formulation step. In the post-functionalization strategy (Figure 3, right panel), the peptide
is chemically conjugated on the aggregate surface after nanostructure organization. The advantages of
the first method are a defined quantity of bioactive molecules in the aggregate and the avoidance of
impurities, but it requires as input a well-purified amphiphilic peptide molecule. However, in the case
of liposomes, the bioactive peptide is located on both the external surface and in the inner aqueous
compartment, after liposomial formulation. In the post-functionalization approach, peptide coupling
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concerns the introduction of suitable functional groups (already activated) onto the external side of
liposomes or nanoparticles for covalent or non-covalent peptide binding. In order to make sure about
the proper orientation of the targeting ligand, biorthogonal, and site-specific surface, it is necessary to
choose the appropriate reactions. In this sense, the most used chemical approaches are: enzymatic
ligation, Cu-free chemistry, the amine in case of the N-Hydroxysuccinimide coupling method; thiol for
maleimide; Michael addition; azide for Cu(I)-catalyzed Huisgen cycloaddition (CuAAC); biotin for
non-covalent interaction with avidin;triphosphines for Staudinger ligation; and hydroxylamine for the
oxime bond [98].
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Figure 3. Schematic representation of two approaches used for the synthesis of peptide containing
liposomes. In route I (pre-liposomal functionalization) a PA is inserted directly during the liposome
formulation. In route II (post-liposomal functionalization) a peptide is anchored on the exteral surfaces
after liposome formulation by a selective reaction between two functional groups displayed on the
peptide and on the liposome, respectively.

In the literature, targeting peptides are tailored toward three broad types of receptors which
are overexpressed or exclusively expressed in cancer vasculature and/or cancer cells: integrins;
growth factor receptors (GFRs); and G-protein-coupled receptors (GPCRs). Several examples of
supramolecular systems loaded with therapeutic or diagnostic agents and externally decorated with
homing peptides, able to selective recognize integrin receptors or membrane receptors belonging to
the GPCR superfamily, are reported in Table 1.
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Table 1. Supramolecular systems decorated with homing peptides able to selectively recognize integrin
receptors or membrane receptors belonging to the GPCR superfamily. The bioactive peptide, the
peptide conjugation, the encapsulated API, and the corresponding references are reported.

Receptor Peptide Sequence Peptide Derivative Drug Ref.
c(RGDfK) c(RGDfK)-NHS-PEG-PLA CA4 [99]

c(RGDfK) c(RGDfK)-SH post liposome
modification CDDP [100]

c(RGDfC) MBPE-c(RGDfC)
post-insertion DOX [101]

c(RGDf[N-Met]K) c(RGDf[N-Met]K(Ac-SCH2CO)) DOX [102]
c(RGDyK) DSPE-PEG- c(RGDyK) CDDP [103]
cAbaRGD
cAmpRGD

DSPE-PEG-cAbaRGD
DSPE-PEG- cAmpRGD

DOX
DOX [104]

Integrin receptor
Avβ3

iRGD iRGD-HES-SS-C18 NCs DOX/sorafenib [105]
Octreotide OCA-DOTA/ OCA-DTPAGlu Gd-complex [106]
Octreotide (C18)2(AdOO)5OCT Gd-complex [107]
Octreotide (C18)2(AdOO)5OCT CDDP/DOX [108]
Octreotide OCT-(PTX)-PEG-b-PCL PTX [109]
Octreotide Oct-Phe-PEG-SA DOX [110]
Octreotide H40-PLA-PEG-OCT TDP-A [111]

Octreotide SAMA-TOC post liposome
modification 111In-DTPA [112]

Octreotide HSPE-PEG4000-OCT DOX [113]
[Tyr3]-Octreotate Maleimido-TATE 64Cu-DOTA [114]

KE108 KE108 post micelle
modification via NHS

TDP-A
AB3

[115]
[116]

[7–14]BN wild-type (C18)2-L5-[7–14]BN
(C18)2-PEG3000-[7–14]BN 111In-DOTA [117]

[7–14]BN-AA1
analogue MonY-BN-AA1

DOX
AUL12
DOX

[118]
[119]
[120]

G-Protein coupled
receptor

CCK8 (C18)2-L5CCK8 Gd-DOTA/Gd-DTPA [121]

3.2.1. Peptide Target for Integrin Receptors

Integrins are heterodimers transmembrane receptors related to the cell-extracellular matrix (ECM)
adhesion. Upon ligand binding, integrins activate cellular signals such as regulation of the cell cycle,
organization of the intracellular cytoskeleton, and movement of new receptors to the cell membrane.
Integrins are one of the most important receptors that can be used in active targeting strategies [122].
Among the different subfamilies of these heterodimeric transmembrane proteins, integrins αVβ3 and
αVβ5 have prominent roles in angiogenesis and metastatic disseminations. The integrin αvβ3 plays a
very domineering role in angiogenesis and is overexpressed in endothelial cells of the tumour. Recently
a large exploration in the field of αvβ3 integrin-mediated bioactive targeting for cancer treatment has
been reported. All designed peptide sequences contain the RGD motif.

In most of the cases, the cyclization is commonly employed to improve the binding properties,
conferring rigidity to the structure. In linear peptides, the fourth amino acid alters the binding
specificity and the nature of residues, by flanking the RGD sequence. The fourth amino acid could
influence receptor affinity, receptor selectivity, and other biological properties [123]. Therefore,
nanoaggregates grafted with cRGD sequence have been widely evaluated for the treatment of different
cancers, such as ovarian cancer, melanoma, and breast carcinoma [124,125]. The first examples of
aggregates functionalized with RGD containing peptides they were formulated only in half of the
last decade. In fifteen years, more than 450 articles were published on RGD-labelled liposomes or
micelles delivering hydrophilic drugs like DOX [126,127], but also with many others anticancer drugs,
such as cisplatin (CDDP) [128], paclitaxel (PXL) [129,130], docetaxel (DTX) [131], combretastatin A4
(CA4) [132], and 5-fluorouracil (5-FU) [133,134].
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Generally, the RGD sequence is inserted in a five residue cycle in which one of the amino
acids is in the D-configuration. Therefore, in the case of a single D-amino acid and four L-amino
acids, the homodetic cyclic pentapeptide prefers a II’/conformation with the D amino acid in the
i + 1 position of the II′-turn [135]. Most aggregates were grafted with the c(RGDfK) cyclic peptide
(Figure 4a). This sequence, developed by Kessler et al. [136], is able to target the αvβ3 and αvβ5
integrin receptors [137]. For example, c(RGDfK) was coupled to poly(L-lactide)-block-poly(ethylene
glycol)-succinic ester (NHS-PEG-PLA) [138] to obtain polymeric micelles able to deliver hydrophobic
drugs like CA4 [99].
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The density of cRGD on the micelle surface can affect the amount of drug delivered
into the cells. This issue was studied by Kataoka’s group varying the quantity the monomer
functionalized by cRGD ligand from 5% up to 40%. cRGDfK-labelled micelles were prepared by
“post conjugating” Cys-containing cRGD peptides onto maleimide-functionalized DACHPt/micelles
obtained from a mixture of poly(ethylene glycol)-b-poly(L-glutamic acid) (MeO-PEG-b-P(Glu))
and maleimide-conjugated poly(ethylene glycol)-b-poly-(L-glutamic acid) (Mal-PEG-b-P(Glu)) [100].
The better results in terms of uptake and cytotoxicity were observed for cis-platinum-loaded micelles
functionalized with an amount of peptide ranging between 20 and 40%.

Others analogue cyclic RGDs were also analysed for drug delivery applications. One of those
studies was performed by Tao et al., who formulated DOX loaded liposomes labelled with c(RGDfC):
the peptide was conjugated to the liposomal surface by a thiol-maleimide coupling reaction with MBPE
lipid [MBPE-c(RGDfC)] and the PEG coating of liposomes was obtained by using the post-insertion
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method [101]. Key factors in tumor therapy are biodistribution and clearance of the aggregates
affected by peptide hydrophilicity. In view to assess the effect of the peptide hydrophilicity, PEGylated
liposomal DOX has been tested in vitro on integrin-expressing HUVEC cells, after the insertion of
three cyclic RGD analogues: RGDyC, RGDf[N-Met]K, and RGDfK. Liposomal systems grafted with
the RGDf[N-Met]K sequence were than compared to the other two analogue sequences (RGDyC and
RGDfK). They showed the lowest undesired (not) specific interactions with other integrin-presenting
sites, localization in tumor, and lower DOX side effects [102]. Moreover, a further cyclic sequence
c(RGDyk) was then put in place as a labelling cisplatin delivery system for therapeutic applications
against bone metastasis derived from prostate cancer in a mouse model [103]. CDDP-loaded targeted
liposomes showed a higher cytotoxicity (IC50 = 1.83 µM) than free drug (IC50 = 15.4 µM) or untargeted
liposomal drug (IC50 = 10.0 µM). The capability of these targeted liposomes to be selectively
accumulated in metastatic tumor bones was tested during several in vivo assays. They showed
a clear tumor regression.

Moreover, other analogues were obtained introducing in the peptide cycle of the cyclo
azabicycloalkane and aminoproline residues. Zanardi et al. arranged targeted liposomal doxorubicin
by incorporating a 5% molar ratio of DSPE-PEGcAbaRGD or DSPE-PEG-cAmpRGD amphiphiles
into cAbaRGD-LP or cAmpRGD-LP, respectively [104]. They also studied their in vitro behaviour
on three different cell lines (MCF7, HUVECs, and HepG2). Results showed how both targeted
liposomes (cAbaRGD-LP or cAmpRGD-LP) possess higher kinetics of nuclei internalization and
a higher percentage of cell death when compared to the free drug.

In the last decade, a new cyclic peptide (CRGDKGPDC) iRGD was identified for peptides hosting
tumor metastases [139]. This peptide was found to bind αβ integrin overexpressed on the surface
of cancer cells and on tumor-vessel cells, but not in normal vessel cells. In delivery applications,
the peptide was anchored on the surface by a post-insertion method, in turn, to develop the iRGD
properties of several aggregates transporting the isoliquiritigenin (ISL), a natural anti-breast cancer
dietary compound [140] or the doxorubicinand sorafenib [105]. However, self-assembling iRGD-based
amphiphilic molecules have rarely been reported. The targeting motif was chemically modified with a
hydrophilic arginine-rich sequence and hydrophobic alkyl chains sequentially able to self-assemble in
a nanostructure. This adjustment aimed to deliver photosensitizer hypocrellin B for photodynamic
application the iRGD [141]. Moreover, very recently, a new PA containing iRGD and a hydrocarbon
chain, in addition to hydroxyethyl starch (HES), a semi-synthetic polysaccharide (iRGD-HES-SS-C18
NCs), was formulated [142].

3.2.2. GPR Target Peptide

A wide number of nanostructures were functionalized with peptides able to recognize GPCRs,
in particular to target receptors for somatostatin (SST), cholecystokinin (CCK), gastrin-releasing
peptides (GRP/Bombesin), lutein, and neurotensin.

Somatostatin Receptors

Nanoaggregates directed toward somatostatin receptors have been widely exploited for diagnostic
and therapeutic applications. Instead, a side effect is highly frequent in the expression of SSTR in
human tumors of neuroendocrine origin, mostly affecting the expression in normal tissues. In general,
SSTR2 is the most common SSTR subtype found in human tumors, followed by SSTR1, with SSTR3,
that are four and five times less common. Due to the very low in vivo half-life of the wild-type
SST tetradecapeptide, researchers have preferred to label aggregates with more stable somatostatin
analogues. The most renowned selected analogue is the octreotide (OCT) shown in Figure 4b. The OCT
is a cyclic peptide containing eight amino acids in L and D configuration, developed in 1992 by Sandoz
(now Novartis) [143]. This cyclic peptide is able to cross the cell membranes via endocytosis by binding
to SSTR2 with high affinity and inhibitory concentration better than wild-type SST (IC50 = 2 nM).
The OCT is able to bind also SSTR3 (IC50 = 376 nM) and SSTR5 (IC50 = 299 nM), but with a lower
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degree if compared to SSTR2. Moreover, the OCT peptide binding to receptors is not affected by
chemical modifications on its N-terminus.

Octreotide-labeled aggregates may be obtained following both previously reported approaches
and employing opportune strategies aimed to avoid possible undesired compounds. Many studies
demostrated that the β-like turn, formed by Phe-Lys-DTrp-Thr residues, is involved in receptor
binding [144]. Therefore, it is essential to verify the retention of the amino acid configuration
and the exposition of the tryptophan residue on the external aggregate surface. Hence, after their
formulation, peptide properties on the liposomes have to be fully characterized. In 2009, Morisco et al.
synthetized OCT amphiphlic molecules able to self-assemble in micelles for the selective delivery of
magnetic resonance imaging (MRI) contrast agents [106]. These PAs contain three different regions:
a hydrophobic moiety based on two stearyl chains, a chelating agent (DTPAGlu or DOTA) able to
coordinate Gd3+ ions as a contrast agent, and the bioactive peptide. Fluorescence studies indicate for
all micelles a complete exposure of OCT on the surface. CD measurements show the predominant
presence of a β-sheet peptide conformation, characterized by a β-like turn.

The majority of aggregates in the literature are not formulated only by PA self-assembling, but they
are obtained by mixing PAs with other surfactant molecules. Morelli’s group has studied mixed
aggregates formulated by co-assembling of the OCT lipopeptide with a second monomer containing
in the hydrophilic head: a metal complex acting as diagnostic or therapeutic agent. In diagnostic
aggregates (Gd-DTPAGlu, Gd-DTPA, and Gd-DOTA complexes), the metal chelate is covalently
bound through a lysine residue to two eighteen-carbon chains [107]. Structural characterization
of the aggregates indicates a shape and size of the supramolecular aggregates suitable for in vivo
use. Therapeutic aggregates were formulated by co-assembling, at a 10/90 molar ratio, of the OCT
lipopeptide with a second amphiphilic monomer containing a cytotoxic platinum complex anchored to
the lipophilic tails, (C18)2PKAG-Pt [108]. The (C18)2-PKAG-Pt/(C18)2(AdOO)5-OCT mixed aggregates
generate large liposomes with an average diameter of 168 nm. These liposomes were further loaded in
their inner aqueous compartment with the hydrophilic DOX drug. Indeed, platinum complexes are
frequently used as chemotherapeutics, in combination with other drugs such as paclitaxel, bleomycin,
vinblastine, and in several trials with DOX. This represents the proof of concept of combined therapy
based on DOX and platinum complexes.

Targeted OCT aggregates were also largely investigated as carriers for the delivery of hydrophobic
anticancer drugs, such as paclitaxel (PTX): a mitotic inhibitor used to treat patients with lung,
ovarian, breast, head and neck cancers, and advanced forms of Kaposi’s sarcoma. Zhang et al.,
loaded PTX in polyethylene glycol-polycaprolactone (PEG-PCL) polymeric micelles, they obtained
the OCT-(PTX)-PEG-b-PCL (OCT-M-PTX) and the salinomycin (SAL)-loaded PEG-b-PCL (M-SAL).
The OCT was coupled to NHS-PEG-b-PCL through the activated NHS group [109]. These micelles
had a diameter of approximately 25–30 nm and the encapsulation efficiency of the drug was 90%.
Moreover, by adding free OCT, the interaction was inhibited, then it was confirmed that cellular uptake
occurs through a receptor-mediated mechanism.

Zou et al. coupled OCT to hydrophobilized chitosan polymer [110]. This peptide derivative
was able to self-assemble in micelles having very low cytotoxicity, an excellent biocompatibility,
and biodegradability. In detail, the authors formulated N-octyl-O,N-carboxymethyl chitosan (OCC)
and N-deoxycholic acid-O,N-hydroxyethylation chitosan (DAHC) micelles. Then, they conjugated
the OCT on the N-terminal moiety of free carboxylic groups of OCC. The coupling had an extremely
low (about 3%) yield, which is largely due to the high molecular weights of OCT and chitosan
derivatives, due to the strong hydrogen bonds in the chitosan backbone, and due to poor solubility
of chitosan derivatives in organic solvent. This result pushed toward alternative mixed aggregates,
adding to DAHC a ligand-PEG-lipid conjugate able to guarantee same long circulation time in blood
and ligand targeting. Both micelle types showed good DOX loading capability, with a drug loading
content (DLC) in the 22–30% range. As an alternative strategy, the same authors anchored N-terminal
peptides in solution to a PEG fragment and this moiety was conjugated to an aliphatic chain or to
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the deoxycholic acid obtaining the OCT(Phe)-PEG-SA (OPS) monomer or the OCT(Phe)PEG-DOCA
(OPD), respectively [110].

More recently, OCT-functionalized unimolecular micelles were exploited to delivery
thailandepsin-A (TDP-A) toward neuroendocrinal tumor cells. TDP-A is a relatively new naturally
produced histone deacetylase (HDAC) inhibitor. Target selective micelles were obtained by the
self-assembling of individual hyperbranched polymer molecules, consisting of a hyperbranched
polymer core (Boltorn®H40) and approximately 25 amphiphilic polylactide-poly(-ethlyene glycol)
(PLA-PEG) block copolymer arms covalently bound through the succinimidyl group (NHS) to
octreotide (H40-PLA-PEG-OCT) b [111].

Helbok et al. [112] synthesized an amphiphilic OCT derivative by cross-linking
the S-acetyl-mercaptopropionic acid peptide (SAMA-TOC) with the Mal-DSPE-PEG2000
phospholipid. Next mixed liposomes were obtained by adding to the OCT derivative adequate
amounts of palmitoyloleoyl-phosphatidylcholine (POPC), lyso-stearyl-phosphatidylglycerol
(Lyso-PG), distearyl phosphatidylcholine–polyethyleneglycol-2000 (DSPE-PEG2000),
and dimyristoylphosphoethanolamine-DTPA (DMPE-DTPA) in a molar ratio of 0.1:11:7.5:0.9:2,
respectively. These aggregates are usually employed in nuclear medicine applications radiolabelling
with indium-111.

Octreotide-targeted liposomal doxorubicin was constructed with different ligand density by
post-inserting HSPE-PEG4000-Octreotide into pre-formed liposomes. The octreotide ligand insertion
was confirmed by the activity detection of octreotide in HSPE-PEG4000-Octreotide with synchronous
fluorescence. Results indicated that an octreotide density around 1% could achieve the best uptake
efficiencyon NCI-H-446 and SMMC-7721 cell lines among the studied liposomes [113].

Similar properties were shown by the somatostatin [Tyr3]-octreotate (TATE) analogue. Petersenet
al. [114] conjugated this peptide to maleimide, covalently attached to the distal end of DSPE-PEG2000
via a thioether bond. Targeted liposomes (DSPC/Chol/DSPE-PEG2000/DSPE-PEG2000-TATE in a
molar ratio of 50:40:9:1, respectively), they encapsulated a positron emitter 64Cu, as diagnostic agent
for positron emission tomography (PET) imaging. Peptide-labelled liposomes displayed significantly
higher tumor-to-muscle (T/M) ratio (12.7 ± 1.0) compared to control-liposomes without TATE
(8.9 ± 0.9) and to the 64CuDOTA-TATE peptide (7.2 ± 0.3). These results reveal the feasibility of
utilizing somatostatin analogs for specific targeting of the above-described aggregates to tumors
overexpressing somatostatin receptors.

Very recently, TDP-A and AB3, new histone deacetylase inhibitors, they were encapsulated
in the hydrophobic core of self-assembling micelles labelled with a somatostatin analog KE108
(PAMAM–PVL–PEG–OCH3/Cy5/KE108) [115,116]. This nonapeptide analogue contains the
Phe–D-Trp–Lys–Thr motif, crucial for high-affinity somatostatin receptor binding like octreotide.
Being formed by eight residues, the cycle size of this analog is larger than octreotide. It possesses high
affinity to all five subtypes of SSTR. KE108 exhibited superior targeting ability in medullary thyroid
cancer (MTC) cells, if compared to octreotide.

Bombesin Receptors

The four receptor subtypes which are associated with the Bombesin-like peptides (BLP) family
have been identified and found to be overexpressed in prostate, breast, small cell lung, [145] ovarian,
and gastrointestinal stromal tumors [146]. A peptide able to bind these receptors is the bombesin
(BN), which is constituted by fourteen aminoacid residues. Its eight-residue C-terminal peptide
sequence ([7–14]BN), reported in Figure 4c, and many other BN analogs have been modified to
selectively carry diagnostic or therapeutic agents to their receptors. They act both as agonists or
antagonists. Many studies demonstrate that the [7–14]BN fragment and its analogues conjugated on
the N-terminus with amino acid linkers, aliphatic or hydrophilic moiety, they all keep the affinity for
receptors [147–149].
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Despite the large overexpression of these receptors only few aggregates were developed. In the
first example, Accardo et al. prepared mixed liposomes composed by two amphiphilic derivatives
(C18)2-L5-[7–14]BN (or (C18)2-PEG3000-[7–14]BN) and (C18)2-DOTA(111In), both of them containing
the same hydrophobic portion (two stearyl tails) and alternatively BN peptide or indium complex.
The presence of a metal complex could allow to detect the in vitro fate of the liposome and its
binding capability. Peptide was anchored to the alkyl chains trough different ethoxylic spacers (L5 or
PEG3000). These spacers permit to improve the hydrophilicity of the final monomer and to increase
the bioavalability of the peptide sequence on the external surface of the liposome. It is worth noting
how to perform a really active targeting, as it is relevant to consider the length of the ethoxylic region.
In fact, a long chain hides the bioactive sequence [117]. Successively, the same authors synthetized
DSPC-based liposomes derivatized by the pre-functionalization approach with the MonY-BNAA1
monomer containing [7–14]BN analogue, DOTA chelating agent and the alkyl chains in the same
molecule. Specific binding capability and cytotoxicity of these targeted liposomes, loaded with DOX,
were carried out in PC-3 xenograft-bearing mice. An inhibition of the tumor growth in mice treated
with DSPC/MonY-BN/DOX targeted liposomes [118] was observed.

More recently, the same sequence was grafted to cholesterol by a click chemistry, following a
post-insertion method. The liposome obtained by mixing this monomer with DPPC was able to load
subphthalocyanines (SubPc), an interesting hydrophobic probe for optical imaging, with a geometry
that prevent aggregation [150]. An amphiphilic derivative of the [7–14]BN peptide was also used to
prepare sterically-stabilized mixed micelles (SSMMs) as drug delivery systems for gold(III) complexes
(AUL12). The latter is already known for its in vitro and in vivo high antitumor activity, even in the
CDDP-resistant cell lines. These micelles were able to encapsulate the hydrophobic metal complex
with high loading efficiency while maintaining the gold (III) complexs table in the +3 oxidation state
over a period of 72 h. The in vitro binding ability and cytotoxicity of this target selective micelles were
assessed in PC-3 cells overexpressing the GRP/bombesin receptors [119].

Anyway, circulation time in vivo of the [7–14]BN wild-type (t1/2 = 15.5 h) remains relatively short.
This evidence led the same authors to develop a new peptide analog, BNAA1, in which Sta13-Leu14

and the Gly11 residue with the N-methyl-glycine replaced Leu13-Met14 residues. These changes were
finalized to increase the resistance towards the aminopeptidase and carnitine enzymes. The labelled
DSPC/MonY-BN-AA1/DOX liposomes reduce the tumor volume showing value reductions superior
to 20% when compared toDSPC/MonY-BN/DOX liposomes [120].

CCK receptors

In neuroendocrine origin tumors, such as medullary thyroid cancers, it was found that both CCK1
and CCK2 receptors were overexpressed. The same phenomenon was found in small cell lung cancers
and in gastroenteropancreatic (GEP) tumors. The peptide CCK8 is able to recognize both receptors.

In Figure 4d, one can see the eight residue C-terminus sequence of the endogenous hormone
cholecystokinin (CCK). The CCK8 can be tailored on N-terminus without affecting receptor binding.
This feature is essentially due to the interaction of receptor N-terminal extra domain with the amino
acid side chains. The latter lies on the C-terminal moiety of the peptide ligand, as demonstrated by
solution NMR [151] and theoretical studies [152]. Based on these data, in the last 10 years, Accardo
et al. developed a wide class of CCK8-decorated supramolecular aggregates (namely Naposomes),
by anchoring the bioactive moiety through the N-terminus [107]. The exposition of the CCK8 peptide
was assessed by fluorescence measurements [153]. However, the peptide availability on surface
aggregates is not an exclusive requirement for the receptor binding: the correct peptide conformation
is crucial to assure high affinity and selectivity in ligand/protein binding processes. In this case,
the CCK8 peptide needs to adopt a pseudo-α-helix conformation to give high binding affinity towards
to the CCK1-R and CCK2-R receptors, according to the membrane-bound pathway theory [151].
The authors demonstrated that only peptide amphiphiles having an initial random coil conformation
were able to adopt the pseudo-α-helix conformation in the presence of the receptor. Unlike them,
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peptides like (C18)2-L5CCK8, in which the peptide displays a β−sheet conformation, do not show
in vitro cellular binding. Closing that chemical modification on the CCK8, the N-terminus seems to
play an important role in stabilizing the peptide active conformation in self-assembling. The CCK8
amphiphilic monomers were combined with a second monomer containing the DOTA or DTPA
chelating agent (general formula: (C18)2-L5CCK8 and (C18)2-CA, respectively). The morphology
and the size of the resulting aggregates (micelles, liposomes or open bilayers) are determined by
several parameters, such as ionic strength, pH, monomer structure (length of polioxiethylene spacers),
composition, and formulation procedure (dissolution in buffered solution or well-assessed procedures
based on sonication and extrusion) [107,121,154]. Moreover, these aggregates can play a double role as
theranostic delivering contrast agents and drugs [155].

3.2.3. Supramolecular System Based on Disordered Linear Peptides

The design of supramolecular systems could drive the disordered peptides to fold into a
stable structure. This structural modification could be a promising route to develop a new class
of bio-molecules for processes in which a specific conformational rearrangement is required [156].
These considerations deserve an in-depth study of the intrinsic disorder of peptide behavior in
solution and their performance on surface of nanostructures [157]. Recently, the authors have studied
the structural preferences of linear synthetic peptides with CPC-containing sequences (chemokine
receptor CXCR4) characterized by the presence of some unordered amino acids [158]. In particular,
these studies showed the conformational flexibility of both peptides, tested on the CXCR4 receptor
through an indirect binding assay. Additionally, the authors tested the inhibition of CXCL12-induced
migration and cAMP reduction. In addition, they proved how disordered peptides possess a stronger
inhibitory capability on the adenilate cyclase, if compared to the AMD3100, which is, nowadays,
the best characterized CXCR4 inhibitor. Trial evidence highlights that short, flexible peptides with no
regular secondary structure can dynamically explore some conformational ensembles by targeting the
chemokine receptor CXCR4. The employment of intrinsically-disordered peptides could lie in the skill
to control the transition between different structural states, especially as biosensors and in molecular
recognition [159].

4. Conclusions

In this review, we have reported the most recent evidence on peptide-based drug-delivery systems
in biotechnological applications. During the examination of the very rich literature data, several very
remarkable and significant aspects have come into sight. Without a doubt, the extensive use of peptides
to build more complex molecular constructs for biotechnological applications is well known. This is
mostly due to their ease of achieving, and automation in, the synthesis of ad hoc designed sequences.
In addition, peptides are also suitable for modification and control to gain desired biostructures in
different aggregates. Additionally, several of their specific features allow operative research groups
to obtain a broad variety of biotechnological materials. Furthermore, the option to arrange them
in both linear and cyclic peptide sequences is worth mentioning; the likelihood to draw on side
chains of the amino acid residues; the possibility to load on them charges and functional groups; and,
finally, the intrinsic opportunity to arrange predictable physical and chemical patterns, suitable for
biotechnological modular applications. In structured and/or disordered peptides, we can also consider
the option of using conformational preferences: we can always put up micelles, liposomes, and gels
based on peptides with preferential secondary dimensions and structures.

All these characteristics can also be engaged by means of bioactive sequences and/or through
the recognition of post-translation moieties between biosystems. Therefore, it seems evident that the
concrete possibilities that these biomaterials open up many sectors of peptide research, which can be
engineered for specific applications in the various biotechnology sectors.

As said above, nature itself has elected amphiphilic molecules to generate life, by using them to
circumscribe a portion of the environment. Indeed, surfactants constitute membranes able to contain
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biomolecules inside cells and they can select and transport molecules and ions. While imitating nature,
amphiphilic peptides self-assemble into different nanostructures, such as vesicles, micelles, nanofibers,
and nanotubes. In our guess, this is the way can play a key role in the production of new nanomaterials
designed for biotechnological applications.

Author Contributions: D.T. and A.A.: Conceptualization, investigation data, editing, writing—Original draft
preparation. V.M. and C.D.: Curating/handling references and visualization, figures and draft preparation. F.R.,
J.G., and L.R.: funding acquisition, review and writing—Original draft preparation.

Funding: This research received external funding by Bando Vinci 2016, C4-4.

Acknowledgments: Vittoria Milano thanks the Università Italo-Francese (UIF) for financial post-doc support
(project Bando VINCI 2016, C4-4). Historia vero testis temporum, lux veritatis, vita memoriae, magistra vitae,
nuntia vetustatis (Cicerone, De Oratore, II, 9, 36). Dedicated to emeritus Ettore Benedetti and Carlo Pedone:
earliest and beyond compare mentors and scientists in our past and more recent "peptide chemistry story". Thank
you Bibi and Carlo.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ruber Perez, C.M.; Stephanopoulos, N.; Sur, S.; Lee, S.S.; Newcomb, C.; Stupp, S.I. The Powerful Functions of
Peptide-Based Bioactive Matrices for Regenerative Medicine. Ann. Biomed. Eng. 2015, 43, 501–514. [CrossRef]

2. Sahoo, S.K.; Labhasetwar, V. Nanotech approaches to drug delivery and imaging. Drug Discov. Today 2003, 8,
1112–1120. [CrossRef]

3. Panda, J.J.; Chauhan, V.S. Short peptide based self-assembled nanostructures: Implications in drug delivery
and tissue engineering. Polym. Chem. 2014, 5, 4418–4436. [CrossRef]

4. Brack, A.; Orgel, L.E. ß structures of alternating polypeptides and their possible prebiotic significance. Nature
1975, 256, 383–387. [CrossRef] [PubMed]

5. Potekhin, S.A.; Melnik, T.N.; Popov, V.; Lanina, N.F.; Vazina, A.A.; Rigler, P.; Verdini, A.S.; Corradin, G.;
Kajava, A.V. De novo design of fibrils made of short α-helical coiled coil peptides. Chem. Biol. 2001, 8,
1025–1032. [CrossRef]

6. Wagner, D.E.; Philips, C.L.; Ali, W.M.; Nybakken, G.E.; Crawford, E.D.; Schwab, A.D.; Smith, W.F.; Fairman, R.
Toward the development of peptide nanofilaments and nanopores as smart materials. Proc. Nat. Acad. Sci.
USA 2005, 102, 12656–12661. [CrossRef] [PubMed]

7. Moutevelis, E.; Woolfson, D.N. A Periodic Table of Coiled-Coil Protein Structures. J. Mol. Biol. 2009, 385,
726–732. [CrossRef] [PubMed]

8. Aggeli, A.; Nyrkova, I.A.; Bell, M.; Harding, R.; Carrick, L.; McLeish, T.C.B.; Semenov, A.N.; Boden, N.
Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils,
and fibers. Proc. Nat. Acad. Sci. USA 2001, 98, 11857–11862. [CrossRef] [PubMed]

9. Fishwick, C.W.G.; Beevers, A.J.L.; Carrick, M.; Whitehouse, C.D.; Aggeli, A.; Boden, N. Structures of helical
β-tapes and twisted ribbons: The role of side-chain interactions on twist and bend behavior. Nano Lett. 2003,
3, 1475–1479. [CrossRef]

10. Aggeli, A.; Bell, M.; Carrick, L.M.; Fishwick, C.W.G.; Harding, R.; Mawer, P.J.; Radford, S.E.; Strong, A.E.;
Boden, N. pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and
isotropic phases. J. Am. Chem. Soc. 2003, 125, 9619–9628. [CrossRef]

11. Schneider, J.P.; Pochan, D.J.; Ozbas, B.; Rajagopal, K.; Pakstis, L.; Kretsinger, J. Responsive hydrogels from
the intramolecular folding and self-assembly of a designed peptide. J. Am. Chem. Soc. 2002, 124, 15030–15037.
[CrossRef] [PubMed]

12. Veiga, A.S.; Sinthuvanich, C.; Gaspar, D.; Franquelim, H.G.; Castanho, M.A.R.B.; Schneider, J.P. Arginine-rich
self-assembling peptides as potent antibacterial gels. Biomaterials 2012, 33, 8907–8916. [CrossRef] [PubMed]

13. Reches, M.; Gazit, E. Casting metal nanowires within discrete self-assembled peptide nanotubes. Science
2003, 300, 625–627. [CrossRef] [PubMed]

14. Görbitz, C.H. The structure of nanotubes formed by diphenylalanine, the core recognition motif of
Alzheimer’s β-amyloid polypeptide. Chem. Comm. 2006, 22, 2332–2334. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s10439-014-1166-6
http://dx.doi.org/10.1016/S1359-6446(03)02903-9
http://dx.doi.org/10.1039/C4PY00173G
http://dx.doi.org/10.1038/256383a0
http://www.ncbi.nlm.nih.gov/pubmed/238134
http://dx.doi.org/10.1016/S1074-5521(01)00073-4
http://dx.doi.org/10.1073/pnas.0505871102
http://www.ncbi.nlm.nih.gov/pubmed/16129839
http://dx.doi.org/10.1016/j.jmb.2008.11.028
http://www.ncbi.nlm.nih.gov/pubmed/19059267
http://dx.doi.org/10.1073/pnas.191250198
http://www.ncbi.nlm.nih.gov/pubmed/11592996
http://dx.doi.org/10.1021/nl034095p
http://dx.doi.org/10.1021/ja021047i
http://dx.doi.org/10.1021/ja027993g
http://www.ncbi.nlm.nih.gov/pubmed/12475347
http://dx.doi.org/10.1016/j.biomaterials.2012.08.046
http://www.ncbi.nlm.nih.gov/pubmed/22995710
http://dx.doi.org/10.1126/science.1082387
http://www.ncbi.nlm.nih.gov/pubmed/12714741
http://dx.doi.org/10.1039/B603080G
http://www.ncbi.nlm.nih.gov/pubmed/16733570


Molecules 2019, 24, 351 20 of 27

15. Tamamis, P.; Adler-Abramovich, L.; Reches, M.; Marshall, K.; Sikorski, P.; Serpell, L.; Gazit, E.; Archontis, G.
Self-Assembly of Phenylalanine Oligopeptides: Insights from Experiments and Simulations. Biophys. J. 2009,
96, 5020–5029. [CrossRef] [PubMed]

16. Yan, X.; Zhu, P.; Li, J. Self-assembly and application of diphenylalanine-based nanostructures. Chem. Soc.
Rev. 2010, 39, 1877–1890. [CrossRef] [PubMed]

17. Adler-Abramovich, L.; Kol, N.; Yanai, I.; Barlam, D.; Shneck, R.Z.; Gazit, E.; Rousso, I. Self-assembled organic
nanostructures with metallic-like stiffness. Angew. Chem. Int. Ed. 2010, 49, 9939–9942. [CrossRef]

18. Wang, M.; Du, L.; Wu, X.; Xiong, S.; Chu, P.K. Charged Diphenylalanine Nanotubes and Controlled
Hierarchical Self-Assembly. ACS Nano 2011, 5, 4448–4454. [CrossRef]

19. Vasilev, S.; Zelenovskiy, P.; Vasileva, D.; Nuraeva, A.; ShurYa, V.; Kholkin, A.L. Piezoelectric properties of
diphenylalaninemicrotubes prepared from the solution. J. Phys. Chem. Solids 2016, 93, 68–72. [CrossRef]

20. Nikitin, T.; Kopyl, S.; Shur, V.Y.; Kopelevich, Y.V.; Kholkin, A.L. Low-temperature photoluminescence in
self-assembled diphenylalanine microtubes. Phys. Lett. A 2016, 380, 1658–1662. [CrossRef]

21. Handelman, A.; Kuritz, N.; Natan, A.; Rosenman, G. Reconstructive Phase Transition in Ultrashort Peptide
Nanostructures and Induced Visible Photoluminescence. Langmuir 2016, 32, 2847–2862. [CrossRef] [PubMed]

22. Handelman, A.; Apter, B.; Turko, N.; Rosenman, G. Linear and nonlinear optical waveguiding in bio-inspired
peptide nanotubes. Acta Biomater. 2016, 30, 72–77. [CrossRef] [PubMed]

23. Adler-Abramovich, L.; Reches, M.; Sedman, V.L.; Allen, S.; Tendler, S.J.B.; Gazit, E. Thermal and chemical
stability of diphenylalanine peptide nanotubes: Implications for nanotechnological applications. Langmuir
2006, 22, 1313–1320. [CrossRef] [PubMed]

24. Marchesan, S.; Vargiu, A.V.; Styan, K.E. The Phe-Phe motif for peptide self-assembly in nanomedicine.
Molecules 2015, 20, 19775–19788. [CrossRef] [PubMed]

25. Adler-Abramovich, L.; Aronov, D.; Beker, P.; Yevnin, M.; Stempler, S.; Buzhansky, L.; Rosenman, G.; Gazit, E.
Self-assembled arrays of peptide nanotubes by vapour deposition. Nat. Nanotechnol. 2009, 4, 849–854.
[CrossRef]

26. Scanlon, S.; Aggeli, A. Self-assembling peptide nanotubes. Nano Today 2008, 3, 22–30. [CrossRef]
27. Hendler, N.; Sidelman, N.; Reches, M.; Gazit, E.; Rosenberg, Y.; Richter, S. Formation of well-organized

self-assembled films from peptide nanotubes. Adv. Mater. 2007, 19, 1485–1488. [CrossRef]
28. Silva, R.F.; Araujo, D.R.; Silva, E.R.; Ando, R.A.; Alves, W.A. L-Diphenylalanine Microtubes As a Potential

Drug-Delivery System: Characterization, Release Kinetics, and Cytotoxicity. Langmuir 2013, 29, 10205–10212.
[CrossRef]

29. Bonetti, A.; Pellegrino, S.; Das, P.; Yuran, S.; Bucci, R.; Ferri, N.; Meneghetti, F.; Castellano, C.; Reches, M.;
Gelmi, M.L. Dipeptide Nanotubes Containing Unnatural Fluorine-Substituted-Diarylamino Acid and
L-Alanine as Candidates for Biomedical Applications. Org. Lett. 2015, 17, 4468–4471. [CrossRef]

30. Emtiazi, G.; Zohrabi, T.; Lee, L.Y.; Habibi, N.; Zarrabi, A. Covalent diphenylalanine peptide nanotube
conjugated to folic acid/magnetic nanoparticles for anti-cancer drug delivery. J. Drug Deliv. Sci. Technol.
2017, 41, 90–98. [CrossRef]

31. Liu, J.; Liu, J.; Chu, L.; Zhang, Y.; Xu, H.; Kong, D.; Yang, Z.; Yang, C.; Ding, D. Self-Assembling Peptide of
D-Amino Acids Boosts Selectivity and Antitumor Efficacy of 10-Hydroxycamptothecin. ACS Appl. Mater.
Interfaces 2014, 6, 5558–5565. [CrossRef]

32. Li, J.; Gao, Y.; Kuang, Y.; Shi, J.; Du, X.; Zhou, J.; Wang, H.; Yang, Z.; Xu, B. Dephosphorylation of D-Peptide
Derivatives to Form Biofunctional, Supramolecular Nanofibers/Hydrogels and Their Potential Applications
for Intracellular Imaging and Intratumoral Chemotherapy. J. Am. Chem. Soc. 2013, 135, 9907–9914. [CrossRef]

33. Zhang, H.; Fei, J.; Yan, X.; Wang, A.; Li, J. Enzyme-responsive release of doxorubicin from monodisperse
dipeptide-based nanocarriers for highly efficient cancer treatment in vitro. Adv. Funct. Mater. 2015, 25,
1193–1204. [CrossRef]

34. Das, P.; Yuran, S.; Yan, J.; Lee, P.S.; Reches, M. Sticky tubes and magnetic hydrogels co-assembled by a short
peptide and melanin-like nanoparticles. Chem. Commun. 2015, 51, 5432–5435. [CrossRef] [PubMed]

35. Liberato, M.S.; Kogikoski, S.; da Silva, E.R.; de Araujo, D.R.; Guha, S.; Alves, W.A. Polycaprolactone fibers
with self-assembled peptide micro/nanotubes: A practical route towards enhanced mechanical strength and
drug delivery applications. J. Mater. Chem. B 2016, 4, 1405–1413. [CrossRef]

36. Li, Q.; Chen, M.; Chen, D.; Wu, L. One-Pot Synthesis of Diphenylalanine-Based Hybrid Nanospheres for
Controllable pH- and GSH-Responsive Delivery of Drugs. Chem. Mater. 2016, 28, 6584–6590. [CrossRef]

http://dx.doi.org/10.1016/j.bpj.2009.03.026
http://www.ncbi.nlm.nih.gov/pubmed/19527662
http://dx.doi.org/10.1039/b915765b
http://www.ncbi.nlm.nih.gov/pubmed/20502791
http://dx.doi.org/10.1002/anie.201002037
http://dx.doi.org/10.1021/nn2016524
http://dx.doi.org/10.1016/j.jpcs.2016.02.002
http://dx.doi.org/10.1016/j.physleta.2016.02.043
http://dx.doi.org/10.1021/acs.langmuir.5b02784
http://www.ncbi.nlm.nih.gov/pubmed/26496411
http://dx.doi.org/10.1016/j.actbio.2015.11.004
http://www.ncbi.nlm.nih.gov/pubmed/26546415
http://dx.doi.org/10.1021/la052409d
http://www.ncbi.nlm.nih.gov/pubmed/16430299
http://dx.doi.org/10.3390/molecules201119658
http://www.ncbi.nlm.nih.gov/pubmed/26540034
http://dx.doi.org/10.1038/nnano.2009.298
http://dx.doi.org/10.1016/S1748-0132(08)70041-0
http://dx.doi.org/10.1002/adma.200602265
http://dx.doi.org/10.1021/la4019162
http://dx.doi.org/10.1021/acs.orglett.5b02132
http://dx.doi.org/10.1016/j.jddst.2017.06.005
http://dx.doi.org/10.1021/am406007g
http://dx.doi.org/10.1021/ja404215g
http://dx.doi.org/10.1002/adfm.201403119
http://dx.doi.org/10.1039/C4CC07671K
http://www.ncbi.nlm.nih.gov/pubmed/25470201
http://dx.doi.org/10.1039/C5TB02240A
http://dx.doi.org/10.1021/acs.chemmater.6b02604


Molecules 2019, 24, 351 21 of 27

37. Jayawarna, V.; Ali, M.; Jowitt, T.A.; Miller, A.E.; Saiani, A.; Gough, J.E.; Ulijn, R.V. Nanostructured Hydrogels
for Three-Dimensional Cell Culture Through Self-Assembly of Fluorenylmethoxycarbonyl-Dipeptides.
Adv. Mater. 2006, 18, 611–614. [CrossRef]

38. Mao, L.N.; Wang, H.M.; Tan, M.; Ou, L.L.; Kong, D.L.; Yang, Z.M. Conjugation of two complementary
anti-cancer drugs confers molecular hydrogels as a co-delivery system. Chem. Commun. 2012, 48, 395–397.
[CrossRef]

39. Li, J.; Kuang, Y.; Gao, Y.; Du, X.; Shi, J.; Xu, B. D-amino acids boost the selectivity and confer supramolecular
hydrogels of a nonsteroidal anti-inflammatory drug (NSAID). J. Am. Chem. Soc. 2013, 135, 542–545.
[CrossRef]

40. Liang, G.; Yang, Z.; Zhang, R.; Li, L.; Fan, Y.; Kuang, Y.; Gao, Y.; Wang, T.; Lu, W.W.; Xu, B. Supramolecular
Hydrogel of a D-Amino Acid Dipeptide for Controlled Drug Release in Vivo. Langmuir 2009, 25, 8419–8422.
[CrossRef]

41. Erdogan, H.; Yilmaz, M.; Babur, E.; Duman, M.; Aydin, H.M.; Demirel, G. Fabrication of Plasmonic
Nanorod-Embedded Dipeptide Microspheres via the Freeze-Quenching Method for Near-Infrared
Laser-Triggered Drug-Delivery Applications. Biomacromolecules 2016, 17, 1788–1794. [CrossRef] [PubMed]

42. Xie, Y.; Zhao, J.; Huang, R.; Qi, W.; Wang, Y.; Su, R.; He, Z. Calcium-Ion-Triggered Co-assembly of Peptide
and Polysaccharide into a Hybrid Hydrogel for Drug Delivery. Nanoscale Res. Lett. 2016, 11, 184. [CrossRef]
[PubMed]

43. Aviv, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Buzhansky, L.; Mironi-Harpaz, I.; Seliktar, D.; Einav, S.;
Nevo, Z.; Adler-Abramovich, L. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a
Supramolecular Peptide Matrix. ACS Appl. Mater. Interfaces 2018, in press. [CrossRef] [PubMed]

44. Abbas, M.; Xing, R.; Zhang, N.; Zou, Q.; Yan, X. Antitumor Photodynamic Therapy Based on Dipeptide
Fibrous Hydrogels with Incorporation of Photosensitive Drugs. ACS Biomater. Sci. Eng. 2018, 4, 2046–2052.
[CrossRef]

45. Roth-Konforti, M.E.; Comune, M.; Halperin-Sternfeld, M.; Grigoriants, I.; Shabat, D.; Adler-Abramovich, L.
UV Light-Responsive Peptide-Based Supramolecular Hydrogel for Controlled Drug Delivery. Macromol.
Rapid Commun. 2018, in press. [CrossRef] [PubMed]

46. Diaferia, C.; Balasco, N.; Sibillano, T.; Ghosh, M.; Adler-Abramovich, L.; Giannini, C.; Vitagliano, L.;
Morelli, G.; Accardo, A. Amyloid-Like Fibrillary Morphology Originated by Tyrosine-Containing Aromatic
Hexapeptides. Chem. Eur. J. 2018, 24, 6804–6817. [CrossRef]

47. Diaferia, C.; Balasco, N.; Sibillano, T.; Giannini, C.; Vitagliano, L.; Morelli, G.; Accardo, A. Structural
Characterization of Self-Assembled Tetra-Tryptophan Based Nanostructures: Variations on a Common
Theme. Chem. Phys. Chem. 2018, 19, 1635–1642. [CrossRef]

48. Diaferia, C.; Gianolio, E.; Palladino, P.; Arena, F.; Boffa, C.; Morelli, G.; Accardo, A. Peptide Materials
Obtained by Aggregation of Polyphenylalanine Conjugates as Gadolinium-Based Magnetic Resonance
Imaging Contrast Agents. Adv. Funct. Mater. 2015, 25, 7003–7016. [CrossRef]

49. Accardo, A.; Tesauro, D.; Aloj, L.; Pedone, C.; Morelli, G. Supramolecular aggregates containing lipophilic
Gd(III) complexes as contrast agents in MRI. Coord. Chem. Rev. 2009, 253, 2193–2213. [CrossRef]

50. Diaferia, C.; Gianolio, E.; Accardo, A.; Morelli, G. Gadolinium containing telechelic PEG-polymers
end-capped by di-phenylalanine motives as potential supramolecular MRI contrast agents. J. Pept. Sci. 2017,
23, 122–130. [CrossRef]

51. Diaferia, C.; Gianolio, E.; Sibillano, T.; Mercurio, F.A.; Leone, M.; Giannini, C.; Balasco, N.; Vitagliano, L.;
Morelli, G.; Accardo, A. Cross-beta nanostructures based on dinaphthylalanine Gd-conjugates loaded with
doxorubicin. Sci. Rep. 2017, 7, 307. [CrossRef] [PubMed]

52. Handelman, A.; Natan, A.; Rosenman, G. Structural and optical properties of short peptides:
Nanotubes-to-nanofibers phase transformation. J. Pept. Sci. 2014, 20, 487–493. [CrossRef] [PubMed]

53. Pinotsi, D.; Buell, A.K.; Dobson, C.M.; Kaminski, G.S.; Kaminski, C.F. A label-free, quantitative assay of
amyloid fibril growth based on intrinsic fluorescence. ChemBioChem 2013, 14, 846–850. [CrossRef] [PubMed]

54. Diaferia, C.; Sibillano, T.; Balasco, N.; Giannini, C.; Roviello, V.; Vitagliano, L.; Morelli, G.; Accardo, A.
Hierarchical analysis of self-assembled PEGylated hexaphenylalanine photoluminescent nanostructures.
Chem. Eur. J. 2016, 22, 16586–16597. [CrossRef] [PubMed]

http://dx.doi.org/10.1002/adma.200501522
http://dx.doi.org/10.1039/C1CC16250K
http://dx.doi.org/10.1021/ja310019x
http://dx.doi.org/10.1021/la804271d
http://dx.doi.org/10.1021/acs.biomac.6b00214
http://www.ncbi.nlm.nih.gov/pubmed/27064415
http://dx.doi.org/10.1186/s11671-016-1415-8
http://www.ncbi.nlm.nih.gov/pubmed/27067732
http://dx.doi.org/10.1021/acsami.8b08423
http://www.ncbi.nlm.nih.gov/pubmed/30211538
http://dx.doi.org/10.1021/acsbiomaterials.7b00624
http://dx.doi.org/10.1002/marc.201800588
http://www.ncbi.nlm.nih.gov/pubmed/30276909
http://dx.doi.org/10.1002/chem.201800351
http://dx.doi.org/10.1002/cphc.201800026
http://dx.doi.org/10.1002/adfm.201502458
http://dx.doi.org/10.1016/j.ccr.2009.01.015
http://dx.doi.org/10.1002/psc.2942
http://dx.doi.org/10.1038/s41598-017-00332-3
http://www.ncbi.nlm.nih.gov/pubmed/28331187
http://dx.doi.org/10.1002/psc.2661
http://www.ncbi.nlm.nih.gov/pubmed/24895323
http://dx.doi.org/10.1002/cbic.201300103
http://www.ncbi.nlm.nih.gov/pubmed/23592254
http://dx.doi.org/10.1002/chem.201604107
http://www.ncbi.nlm.nih.gov/pubmed/27706842


Molecules 2019, 24, 351 22 of 27

55. Diaferia, C.; Sibillano, T.; Altamura, D.; Roviello, V.; Vitagliano, L.; Giannini, C.; Morelli, G.;
Accardo, A. Structural Characterization of PEGylated Hexaphenylalanine Nanostructures Exhibiting Green
Photoluminescence Emission. Chem. Eur. J. 2017, 23, 14039–14048. [CrossRef] [PubMed]

56. Diaferia, C.; Sibillano, T.; Giannini, C.; Roviello, V.; Vitagliano, L.; Morelli, G.; Accardo, A. Photoluminescent
Peptide-Based Nanostructures as FRET Donor for Fluorophore Dye. Chem. Eur. J. 2017, 23, 8741–8748.
[CrossRef] [PubMed]

57. De Santis, P.; Morosetti, S.; Rizzo, R. Conformational Analysis of Regular Enantiomeric Sequences.
Macromolecules 1974, 7, 52–58. [CrossRef]

58. Ghadiri, M.R.; Granja, J.R.; Milligan, R.A.; McRee, D.E.; Khazanovich, N. Self-assembling organic nanotubes
based on a cyclic peptide architecture. Nature 1993, 366, 324–327. [CrossRef]

59. Chapman, R.; Danial, M.; Koh, M.L.; Jolliffe, K.A.; Perrier, S. Design and properties of functional nanotubes
from the self-assembly of cyclic peptide templates. Chem. Soc. Rev. 2012, 41, 6023–6041. [CrossRef]

60. Fernandez-Lopez, S.; Kim, H.S.; Choi, E.C.; Delgado, M.; Granja, J.R.; Khasanov, A.; Kraehenbuehl, K.;
Long, G.; Weinberger, D.A.; Wilcoxen, K.M.; et al. Antibacterial agents based on the cyclic D,L-α-peptide
architecture. Nature 2001, 412, 452–455. [CrossRef]

61. Ishihara, Y.; Kimura, S. Nanofiber formation of amphiphilic cyclic tri-β-peptide. J. Pept. Sci. 2010, 16, 110–114.
[CrossRef] [PubMed]

62. Hartgerink, J.D.; Granja, J.R.; Milligan, R.A.; Ghadiri, M.R. Peptide-amphiphile nanofibers: A versatile
scaffold for the preparation of self-assembling materials. J. Am. Chem Soc. 1996, 118, 43–50. [CrossRef]

63. Wang, Y.; Yi, S.; Sun, L.; Huang, Y.; Lenaghan, S.C.; Zhang, M. Doxorubicin-loaded cyclic peptide nanotube
bundles overcome chemoresistance in breast cancer cells. J. Biomed. Nanotechnol. 2014, 10, 445–454. [CrossRef]
[PubMed]

64. Hamley, I.W. Self-assembly of amphiphilic peptides. Soft Matter. 2011, 7, 4122–4138. [CrossRef]
65. Versluis, F.; Marsden, H.R.; Kros, A. Power struggles in peptide-amphiphile nanostructures. Chem. Soc. Rev.

2010, 39, 3434–3444. [CrossRef] [PubMed]
66. Vauthey, S.; Santoso, S.; Gong, H.; Watson, N.; Zhang, S. Molecular self-assembly of surfactant-like peptides

to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. USA 2002, 99, 5355–5360. [CrossRef] [PubMed]
67. Santoso, S.; Hwang, W.; Hartman, H.; Zhang, S. Self-assembly of surfactant-like peptides with variable

glycine tails to form nanotubes and nanovesicles. Nano Lett. 2002, 2, 687–691. [CrossRef]
68. Von Maltzahn, G.; Vauthey, S.; Santoso, S.; Zhang, S. Positively charged surfactant like peptides self-assemble

into nanostructures. Langmuir 2003, 19, 4332–4337. [CrossRef]
69. Dehsorkhi, A.; Castelletto, V.; Hamley, I.W.; Seitsonen, J.; Ruokolainen, J. Interaction between a cationic

surfactant-like peptide and lipid vesicles and its relationship to antimicrobial activity. Langmuir 2013, 29,
14246–14253. [CrossRef]

70. Zhabìng, S.; Holmes, T.; Lockshin, C.; Rich, A. Spontaneous assembly of a self complementaryoligopeptide
to form stable microscopic membrane. Proc. Natl. Acad. Sci. USA 1993, 90, 3334–3338. [CrossRef]

71. Liu, E.; Wang, H.; Shang, Y.; Liu, M.; Chen, P. Molecular binding self assembling peptide EAK16-II with
anticancer agent EPT and its implication in cancer cell inhibition. J. Control. Release 2012, 160, 33–40.
[CrossRef] [PubMed]

72. Boettcher, C.; Schade, B.; Fuhrhop, J.H. Comparative cryo-electron microscopy of noncovalent
N-dodecanoyl-(D- and L-) serine assemblies in vitreous toluene and water. Langmuir 2001, 17, 873–877.
[CrossRef]

73. Fuhrhop, J.H.; Spiroski, D.; Boettcher, C. Molecular monolayer rods and tubules made of
.alpha.-(L-lysine),.omega.-(amino) bolaamphiphiles. J. Am. Chem. Soc. 1993, 115, 1600. [CrossRef]

74. Hartgerink, J.D.; Beniash, E.; Stupp, S.I. Peptide-amphiphilenanofibers: A versatile scaffold for the
preparation of self- assembling materials. Proc. Natl. Acad. Sci. USA 2002, 99, 5133–5138. [CrossRef]
[PubMed]

75. Matson, J.B.; Newcomb, C.J.; Bitton, R.; Stupp, S.I. Nanostructure-templated control of drug release from
peptide amphiphile nanofiber gels. Soft Matter 2012, 8, 3586–3595. [CrossRef] [PubMed]

76. Cui, H.; Muraoka, T.; Cheetham, A.G.; Stupp, S.I. Self-Assembly of Giant Peptide. Nanobelts 2018, 16, 9.
[CrossRef]

http://dx.doi.org/10.1002/chem.201703055
http://www.ncbi.nlm.nih.gov/pubmed/28782843
http://dx.doi.org/10.1002/chem.201701381
http://www.ncbi.nlm.nih.gov/pubmed/28508550
http://dx.doi.org/10.1021/ma60037a011
http://dx.doi.org/10.1038/366324a0
http://dx.doi.org/10.1039/c2cs35172b
http://dx.doi.org/10.1038/35086601
http://dx.doi.org/10.1002/psc.1206
http://www.ncbi.nlm.nih.gov/pubmed/20063334
http://dx.doi.org/10.1021/ja953070s
http://dx.doi.org/10.1166/jbn.2014.1724
http://www.ncbi.nlm.nih.gov/pubmed/24730240
http://dx.doi.org/10.1039/c0sm01218a
http://dx.doi.org/10.1039/b919446k
http://www.ncbi.nlm.nih.gov/pubmed/20644886
http://dx.doi.org/10.1073/pnas.072089599
http://www.ncbi.nlm.nih.gov/pubmed/11929973
http://dx.doi.org/10.1021/nl025563i
http://dx.doi.org/10.1021/la026526+
http://dx.doi.org/10.1021/la403447u
http://dx.doi.org/10.1073/pnas.90.8.3334
http://dx.doi.org/10.1016/j.jconrel.2012.03.009
http://www.ncbi.nlm.nih.gov/pubmed/22465389
http://dx.doi.org/10.1021/la001054p
http://dx.doi.org/10.1021/ja00057a069
http://dx.doi.org/10.1073/pnas.072699999
http://www.ncbi.nlm.nih.gov/pubmed/11929981
http://dx.doi.org/10.1039/c2sm07420f
http://www.ncbi.nlm.nih.gov/pubmed/23130084
http://dx.doi.org/10.1021/nl802813f


Molecules 2019, 24, 351 23 of 27

77. Yao, C.; Liu, J.Y.; Wu, X.; Tao, Z.G.; Gao, Y.; Zhu, Q.G.; Li, J.F.; Zhang, L.J.; Hu, C.L.; Gu, F.F.; et al. Reducible
self-assembling cationic polypeptide-based micelles mediate co-delivery of doxorubicin and microRNA-34a
for androgen- independent prostate cancer therapy. J. Control. Release 2016, 232, 203–214. [CrossRef]

78. Tang, Q.; Cao, B.; Wu, H.; Cheng, G. Cholesterol-Peptide Hybrids to Form Liposome-Like Vesicles for Gene
Delivery. PLoS ONE 2013, 8. [CrossRef]

79. Missirlis, D.; Krogstad, D.V.; Tirrell, M. Subsequent Endosomal Disruption Results in SJSA-1. Mol Pharm.
2010, 7, 2173–2184. [CrossRef]

80. Pujals, S.; Fernandez-Carneado, J.; Lopez-Iglesias, C.; Kogan, M.J.; Giralt, E. Mechanistic aspects of
cell-penetrating peptide-mediated intracellular drug delivery: Relevance of CPP self-assembly. Biochim.
Biophys. Acta Biomembr. 2006, 1758, 264–279. [CrossRef]

81. Agrawal, P.; Bhalla, S.; Usmani, S.S.; Singh, S.; Chaudhary, K.; Raghava, G.P.; Gautam, A. CPPsite 2.0:
Arepository of experimentally validated cell-penetrating peptides. Nucleic Acids Res. 2016, 44, D1098–D1103.
[CrossRef] [PubMed]

82. Borrelli, A.; Tornesello, A.L.; Tornesello, M.L.; Buonaguro, F.M. Cell Penetrating Peptides as Molecular
Carriers for Anti-Cancer Agents. Molecules 2018, 23, 295. [CrossRef] [PubMed]

83. Sun, H.; Dong, Y.; Feijen, J.; Zhong, Z. Peptide-decorated polymeric nanomedicines for precision cancer
therapy. J. Control. Release 2018, 290, 11–27. [CrossRef] [PubMed]

84. Gallo, M.; Defaus, S.; Andreu, D. 1988–2018: Thirty years of drug smuggling at the nano scale. Challenges
and opportunities of cell-penetrating peptides in biomedical research. Arch. Biochem. Biophys. 2019, 661,
74–86. [CrossRef] [PubMed]

85. Zhang, Q.; Tang, J.; Fu, L.; Ran, R.; Liu, Y.; Yuan, M.; He, Q. A pH-responsive α-helical cell penetrating
peptide-mediated liposomal delivery system. Biomaterials 2013, 34, 7980–7993. [CrossRef] [PubMed]

86. Liu, Z.; Xiong, M.; Gong, J.; Zhang, Y.; Bai, N.; Luo, Y.; Li, L.; Wei, Y.; Liu, Y.; Tan, X. Legumain
protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat. Commun.
2014, 5, 4280. [CrossRef] [PubMed]

87. Yang, Y.; Yang, Y.; Xie, X.; Cai, X.; Mei, X. Preparation and characterization of photo-responsive
cell-penetrating peptide-mediated nanostructured lipid carrier. J. Drug Target. 2014, 22, 891–900. [CrossRef]

88. Reubi, J.C. Peptide receptors as molecular targets for cancer diagnosis and therapy. Endocr. Rev. 2003, 24,
389–427. [CrossRef]

89. Accardo, A.; Ringhieri, P.; Palumbo, R.; Morelli, G. Influence of PEG length on conformational and binding
properties of CCK peptides exposed by supramolecular aggregates. Pept. Sci. 2014, 102, 304–312. [CrossRef]

90. Ginj, M.; Zhang, H.; Waser, B.; Cescato, R.; Wild, D.; Wang, X.; Erchegyi, J.; Rivier, J.; Macke, H.R.; Reubi, J.C.
Radiolabeled somatostatin receptor antagonists are preferable to agonists for in vivo peptide receptor
targeting of tumors. Proc. Natl. Acad. Sci. USA 2006, 103, 16436–16441. [CrossRef]

91. Chan, K.Y.; Vermeersch, S.; de Hoon, J.; Villalón, C.M.; Maassenvandenbrink, A. Potential mechanisms of
prospective antimigraine drugs: A focus on vascular (side) effects. Pharmacol. Ther. 2011, 129, 332–351.
[CrossRef] [PubMed]

92. Allen, F.H.; Pitchford, N.A. Conformational analysis from crystallographic data. In Structure Based Drug
Design; Codding, P.W., Ed.; Kluwer Academic: Dordrecht, The Netherlands, 1998; pp. 15–26.

93. Pande, J.; Szewczyk, M.M.; Grover, A.K. Phage display: Concept, innovations, applications and future.
Biotechnol. Adv. 2010, 28, 849–858. [CrossRef] [PubMed]

94. Ringhieri, P.; Mannucci, S.; Conti, G.; Nicolato, E.; Fracasso, G.; Marzola, P.; Morelli, G.;
Accardo, A. Liposomes derivatized with multimeric copies of KCCYSL peptide as targeting agents for
HER-2-overexpressing tumor cells. Int. J. Nanomed. 2017, 12, 501–514. [CrossRef] [PubMed]

95. Ringhieri, P.; Diaferia, C.; Galdiero, S.; Palumbo, R.; Morelli, G.; Accardo, A. Liposomal doxorubicin doubly
functionalized with CCK8 and R8 peptide sequences for selective intracellular drug delivery. J. Pept. Sci.
2015, 21, 415–425. [CrossRef]

96. Accardo, A.; Ringhieri, P.; Tesauro, D.; Morelli, G. Liposomes derivatized with tetrabranchedneurotensin
peptides via click chemistry reactions. New J. Chem. 2013, 37, 3528–3534. [CrossRef]

97. Accardo, A.; Morelli, G. Review peptide-targeted liposomes for selective drug delivery: Advantages and
problematic issues. Pept. Sci. 2015, 104, 462–479. [CrossRef] [PubMed]

98. Feldborg, L.N.; Jølck, R.I.; Andresen, T.L. Quantitative evaluation of bioorthogonal chemistries for surface
functionalization of nanoparticles. Bioconjug. Chem. 2012, 23, 2444–2450. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.jconrel.2016.04.034
http://dx.doi.org/10.1371/journal.pone.0054460
http://dx.doi.org/10.1021/mp100193h
http://dx.doi.org/10.1016/j.bbamem.2006.01.006
http://dx.doi.org/10.1093/nar/gkv1266
http://www.ncbi.nlm.nih.gov/pubmed/26586798
http://dx.doi.org/10.3390/molecules23020295
http://www.ncbi.nlm.nih.gov/pubmed/29385037
http://dx.doi.org/10.1016/j.jconrel.2018.09.029
http://www.ncbi.nlm.nih.gov/pubmed/30290243
http://dx.doi.org/10.1016/j.abb.2018.11.010
http://www.ncbi.nlm.nih.gov/pubmed/30447207
http://dx.doi.org/10.1016/j.biomaterials.2013.07.014
http://www.ncbi.nlm.nih.gov/pubmed/23891517
http://dx.doi.org/10.1038/ncomms5280
http://www.ncbi.nlm.nih.gov/pubmed/24969588
http://dx.doi.org/10.3109/1061186X.2014.940589
http://dx.doi.org/10.1210/er.2002-0007
http://dx.doi.org/10.1002/bip.22500
http://dx.doi.org/10.1073/pnas.0607761103
http://dx.doi.org/10.1016/j.pharmthera.2010.12.001
http://www.ncbi.nlm.nih.gov/pubmed/21130807
http://dx.doi.org/10.1016/j.biotechadv.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20659548
http://dx.doi.org/10.2147/IJN.S113607
http://www.ncbi.nlm.nih.gov/pubmed/28144135
http://dx.doi.org/10.1002/psc.2759
http://dx.doi.org/10.1039/c3nj00596h
http://dx.doi.org/10.1002/bip.22678
http://www.ncbi.nlm.nih.gov/pubmed/26010528
http://dx.doi.org/10.1021/bc3005057
http://www.ncbi.nlm.nih.gov/pubmed/23153257


Molecules 2019, 24, 351 24 of 27

99. Wang, Y.; Yang, T.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. Targeted Polymeric Micelle System for Delivery
of Combretastatin A4 to Tumor Vasculature In Vitro. Pharm. Res. 2010, 27, 1861–1868. [CrossRef]

100. Miura, Y.; Takenaka, T.; Toh, K.; Wu, S.; Nishihara, H.; Kano, M.R.; Ino, Y.; Nomoto, T.; Matsumoto, Y.;
Koyama, H.; et al. Cyclic RGD-linked polymeric micelles for targeted delivery of platinum anticancer drugs
to glioblastoma through the blood-brain tumor barrier. ACS Nano 2013, 7, 8583–8592. [CrossRef]

101. Chen, Z.; Deng, J.; Zhao, Y.; Tao, T. Cyclic RGD peptide-modified liposomal drug delivery system: Enhanced
cellular uptake in vitro and improved pharmacokinetics in rats. Int. J. Nanomed. 2012, 7, 3803–3811.
[CrossRef]

102. Amin, M.; Badiee, A.; Jaafari, M.R. Improvement of pharmacokinetic and antitumor activity of PEGylated
liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon
carcinomas. Int. J. Pharm. 2013, 458, 324–333. [CrossRef] [PubMed]

103. Wang, F.; Chen, L.; Zhang, R.; Chen, Z.; Zhu, L. RGD peptide conjugated liposomal drug delivery system for
enhance therapeutic efficacy in treating bone metastasis from prostate cancer. J. Control. Release 2014, 196,
222–233. [CrossRef] [PubMed]

104. Battistini, L.; Burreddu, P.; Sartori, A.; Arosio, D.; Manzoni, L.; Paduano, L.; D’Errico, G.; Sala, R.; Reia, L.;
Bonomini, S.; et al. Enhancement of the uptake and cytotoxicactivity of doxorubicin in cancercells by novel
cRGD-semipeptide-anchoring liposomes. Mol. Pharm. 2014, 11, 2280–2293. [CrossRef] [PubMed]

105. Zhang, J.; Hon, J.H.; Chan, F.; Skibba, M.; Liang, G.; Chen, M. RGD decorated lipid-polymer hybrid
nanoparticles for targeted co-delivery of doxorubicin and sorafenib to enhance anti-hepatocellular carcinoma
efficacy. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 1303–1311. [CrossRef] [PubMed]

106. Morisco, A.; Accardo, A.; Gianolio, E.; Tesauro, D.; Benedetti, E.; Morelli, G. Micelles derivatized with
octreotide as potential target-selective contrast agents in MRI. J. Pept. Sci. 2009, 15, 242–250. [CrossRef]
[PubMed]

107. Accardo, A.; Morisco, A.; Tesauro, D.; Pedone, C.; Morelli, G. Naposomes: A new class of peptide-derivatized,
target-selective multimodal nanoparticles for imaging and therapeutic applications. Ther. Deliv. 2011, 2,
235–257. [CrossRef] [PubMed]

108. Accardo, A.; Mangiapia, G.; Paduano, L.; Morelli, G.; Tesauro, D. Octreotide labeled aggregates containing
platinum complexes as nanovectors for drug delivery. J. Peptsci. 2013, 19, 190–197. [CrossRef]

109. Zhang, Y.; Zhang, H.; Wang, X.; Wang, J.; Zhang, X.; Zhang, Q. The eradication of breast cancer and cancer
stem cells using octreotide modified paclitaxel active targeting micelles and salinomycin passive targeting
micelles. Biomaterials 2012, 33, 679–691. [CrossRef]

110. Zou, A.; Chen, Y.; Huo, M.; Wang, J.; Zhang, Y.; Zhou, J.; Zhang, Q. In vivo studies of octreotidemodified
N-octyl-O, N-carboxymethyl chitosan micelles loaded with doxorubicin for tumor-targeted delivery. J. Pharm.
Sci. 2013, 102, 126–135. [CrossRef]

111. Jaskula-Sztul, R.; Xu, W.; Chen, G.; Harrison, A.; Dammalapati, A.; Nair, R.; Cheng, Y.; Gong, S.; Chen, H.
Thailandepsin A-loaded and octreotide-functionalized unimolecular micelles for targeted neuroendocrine
cancer therapy. Biomaterials 2016, 91, 1–10. [CrossRef]

112. Helbok, A.; Rangger, C.; von Guggenberg, E.; Saba-Lepek, M.; Radolf, T.; Thurner, G.; Andreae, F.; Prassl, R.;
Decristoforo, C. Targeting properties of peptide-modified radiolabeled liposomal nanoparticles. Nanomedicine
2012, 8, 112–118. [CrossRef] [PubMed]

113. Li, H.; Yuan, D.; Minjie, S.; Ping, Q. Effect of ligand density and PEG modification on
octreotide-targetedliposome via somatostatin receptor in vitro and in vivo. Drug Deliv. 2016, 23, 3562–3572.
[CrossRef] [PubMed]

114. Petersen, A.L.; Binderup, T.; Jølck, R.I.; Rasmussen, P.; Henriksen, J.R.; Pfeifer, A.K.; Kjær, A.; Andresen, T.L.
Positron emission tomography evaluation of somatostatin receptor targeted 64Cu-TATE-liposomes in a
human neuroendocrine carcinoma mouse model. J. Control. Release 2012, 160, 254–263. [CrossRef] [PubMed]

115. Chen, G.; Jaskula-Sztul, R.; Harrison, A.; Dammalapati, A.; Chen, H.; Gong, S.; Xube, W.; Cheng, Y.
KE108-conjugated unimolecular micelles loaded with a novel HDAC inhibitor thailandepsin-A for targeted
neuroendocrine cancer therapy. Biomaterials 2016, 97, 22–33. [CrossRef] [PubMed]

116. Jaskula-Sztul, R.; Chen, G.; Dammalapati, A.; Harrison, A.; Tang, W.; Gong, S.; Chen, H. AB3-loaded and
tumor-targeted unimolecular micelles for medullary thyroid cancer treatment. J. Mater. Chem. B 2017, 5,
151–159. [CrossRef] [PubMed]

http://dx.doi.org/10.1007/s11095-010-0184-9
http://dx.doi.org/10.1021/nn402662d
http://dx.doi.org/10.2147/IJN.S33541
http://dx.doi.org/10.1016/j.ijpharm.2013.10.018
http://www.ncbi.nlm.nih.gov/pubmed/24148663
http://dx.doi.org/10.1016/j.jconrel.2014.10.012
http://www.ncbi.nlm.nih.gov/pubmed/25456829
http://dx.doi.org/10.1021/mp400718j
http://www.ncbi.nlm.nih.gov/pubmed/24819754
http://dx.doi.org/10.1016/j.nano.2016.01.017
http://www.ncbi.nlm.nih.gov/pubmed/26964482
http://dx.doi.org/10.1002/psc.1087
http://www.ncbi.nlm.nih.gov/pubmed/19035577
http://dx.doi.org/10.4155/tde.10.86
http://www.ncbi.nlm.nih.gov/pubmed/22833950
http://dx.doi.org/10.1002/psc.2481
http://dx.doi.org/10.1016/j.biomaterials.2011.09.072
http://dx.doi.org/10.1002/jps.23341
http://dx.doi.org/10.1016/j.biomaterials.2016.03.010
http://dx.doi.org/10.1016/j.nano.2011.04.012
http://www.ncbi.nlm.nih.gov/pubmed/21645641
http://dx.doi.org/10.1080/10717544.2016.1209797
http://www.ncbi.nlm.nih.gov/pubmed/27432585
http://dx.doi.org/10.1016/j.jconrel.2011.12.038
http://www.ncbi.nlm.nih.gov/pubmed/22245688
http://dx.doi.org/10.1016/j.biomaterials.2016.04.029
http://www.ncbi.nlm.nih.gov/pubmed/27156249
http://dx.doi.org/10.1039/C6TB02530G
http://www.ncbi.nlm.nih.gov/pubmed/28025618


Molecules 2019, 24, 351 25 of 27

117. Accardo, A.; Mansi, R.; Morisco, A.; Mangiapia, G.; Paduano, L.; Tesauro, D.; Radulescu, A.; Aurilio, M.;
Aloj, L.; Arra, C.; et al. Peptide modified nanocarriers for selective targeting of bombesin receptors.
Mol. Biosyst. 2010, 6, 878–887. [CrossRef] [PubMed]

118. Accardo, A.; Salzano, G.; Morisco, A.; Aurilio, M.; Parisi, A.; Maione, F.; Cicala, C.; Tesauro, D.; Aloj, L.;
De Rosa, G.; et al. Peptide-modified liposomes for selective targeting of bombesin receptors overexpressed
by cancer cells: A potential theranostic agent. Int. J. Nanomed. 2012, 7, 2007–2017. [CrossRef]

119. Ringhieri, P.; Iannitti, R.; Nardon, C.; Palumbo, R.; Fregona, D.; Morelli, G.; Accardo, A. Target selective
micelles for bombesin receptors incorporating Au(III)-dithiocarbamato complexes. Int. J. Pharmaceut. 2014,
473, 194–202. [CrossRef]

120. Accardo, A.; Mansi, R.; Salzano, G.; Morisco, A.; Aurilio, M.; Parisi, A.; Maione, F.; Cicala, C.; Ziaco, B.;
Tesauro, D.; et al. Bombesin peptide antagonist for target-selective delivery of liposomal doxorubicin on
cancer cells. J. Drug Target. 2013, 21, 240–249. [CrossRef]

121. Accardo, A.; Tesauro, D.; Morelli, G.; Gianolio, E.; Aime, S.; Vaccaro, M.; Mangiapia, G.; Paduano, L.;
Schillen, K. High-relaxivity supramolecular aggregates containing peptide and Gd complexes agents in MRI.
J. Biol. Inorg. Chem. 2007, 12, 267–276. [CrossRef]

122. Gasparini, G.; Brooks, P.C.; Biganzoli, E.; Vermeulen, P.B.; Bonoldi, E.; Dirix, L.Y.; Ranieri, G.; Miceli, R.;
Cheresh, D.A. Vascular integrin αvβ3: A new prognostic indicator in breast cancer. Clin. Cancer Res. 1998, 4,
2625–2634. [PubMed]

123. Liu, S. Radiolabeled multimeric cyclic RGD peptides as integrin alphavbeta3 targeted radiotracers for tumor
imaging. Mol. Pharm. 2006, 3, 472–487. [CrossRef] [PubMed]

124. Xiong, X.B.; Huang, Y.; Lu, W.L.; Zhang, X.; Zhang, H.; Nagai, T.; Zhang, Q. Enhanced intracellular delivery
and improved antitumor efficacy of doxorubicin by sterically stabilized liposomes modified with a synthetic
RGD mimetic. J. Control. Release 2005, 107, 262–275. [CrossRef] [PubMed]

125. Danhier, F.; Le Breton, A.; Préat, V. RGD-based strategies to target alpha(v) beta(3) integrin in cancer therapy
and diagnosis. Mol. Pharm. 2012, 9, 2961–2973. [CrossRef] [PubMed]

126. Schiffelers, R.M.; Koning, G.A.; ten Hagen, T.L.M.; Fens, M.H.A.M.; Schraa, A.J.; Janssen, A.P.C.A.; Kok, R.J.;
Molema, G.; Storm, G. Anti-tumor efficacy of tumor vasculature-targeted liposomal doxorubicin. J. Control.
Release 2003, 115–122. [CrossRef]

127. Murphy, E.A.; Majeti, B.K.; Barnes, L.A.; Makale, M.; Weis, S.M.; Lutu-Fuga, K.; Wrasidlo, W.; Cheresh, D.A.
Nanoparticle-mediated drug delivery to tumor vasculature suppresses metastasis. Proc Natl. Acad. Sci. USA
2008, 105, 9343–9348. [CrossRef] [PubMed]

128. Guan, X.; Hu, X.; Liu, S.; Sun, X.; Gai, X. Cyclic RGD targeting cisplatin micelles for near-infrared
imaging-guided chemotherapy. RSC Advances 2016, 6, 1151–1157. [CrossRef]

129. Zhao, H.; Wang, J.-C.; Sun, Q.-S.; Luo, C.-L.; Zhang, Q. RGD-based strategies for improving antitumor
activity of paclitaxel-loaded liposomes in nude mice xenografted with human ovarian cancer. J. Drug Target.
2009, 17, 10–18. [CrossRef]

130. Meng, S.; Su, B.; Li, W.; Ding, Y.; Tang, L.; Zhou, W.; Song, Y.; Li, H.; Zhou, C. Enhanced antitumor effect of
novel dual-targeted paclitaxel liposomes. Nanotechnology 2010, 21, 415103. [CrossRef]

131. Li, Y.; Zheng, X.; Sun, Y.; Ren, Z.; Li, X.; Cui, G. RGD-fatty alcohol-modified docetaxel liposomes improve
tumor selectivity in vivo. Int. J. Pharm. 2014, 468, 133–141. [CrossRef]

132. Pattillo, C.B.; Sari-Sarraf, F.; Nallamothu, R.; Moore, B.M.; Wood, G.C.; Kiani, M.F. Targeting of the
antivascular drug combretastatin to irradiated tumors results in tumor growth delay. Pharm. Res. 2005, 22,
1117–1120. [CrossRef] [PubMed]

133. Dubey, P.K.; Mishra, V.; Jain, S.; Mahor, S.; Vyas, S.P. Liposomes modified with cyclic RGD peptide for tumor
targeting. J. Drug Target. 2004, 12, 257–264. [CrossRef] [PubMed]

134. Garg, A.; Tisdale, A.W.; Haidari, E.; Kokkoli, E. Targeting colon cancer cells using PEGylated liposomes
modified with a fibronectin-mimetic peptide. Int. J. Pharm. 2009, 366, 201–210. [CrossRef] [PubMed]

135. Kessler, H.; Kutscher, B.; Klein, A. Peptidkonformationen, 39. NMR-studien zur konformation von
cyclopentapeptidanalogen des thymopoietins. Liebigs Ann. Chem. 1986, 1986, 893–913. [CrossRef]

136. Kessler, H.; Diefenbach, B.; Finsinger, D.; Geyer, A.; Gurrath, M.; Goodman, S.L.; Hölzemann, G.; Haubner, R.;
Jonczyk, A.; Müller, G.; et al. Design of superactive and selective integrin receptor antagonists containing
the RGD sequence. Lett. Pep. Sci. 1995, 2, 155–166. [CrossRef]

http://dx.doi.org/10.1039/b923147a
http://www.ncbi.nlm.nih.gov/pubmed/20567774
http://dx.doi.org/10.2147/IJN.S29242
http://dx.doi.org/10.1016/j.ijpharm.2014.07.014
http://dx.doi.org/10.3109/1061186X.2012.741138
http://dx.doi.org/10.1007/s00775-006-0186-6
http://www.ncbi.nlm.nih.gov/pubmed/9829725
http://dx.doi.org/10.1021/mp060049x
http://www.ncbi.nlm.nih.gov/pubmed/17009846
http://dx.doi.org/10.1016/j.jconrel.2005.03.030
http://www.ncbi.nlm.nih.gov/pubmed/16125816
http://dx.doi.org/10.1021/mp3002733
http://www.ncbi.nlm.nih.gov/pubmed/22967287
http://dx.doi.org/10.1016/S0168-3659(03)00240-2
http://dx.doi.org/10.1073/pnas.0803728105
http://www.ncbi.nlm.nih.gov/pubmed/18607000
http://dx.doi.org/10.1039/C5RA19711B
http://dx.doi.org/10.1080/10611860802368966
http://dx.doi.org/10.1088/0957-4484/21/41/415103
http://dx.doi.org/10.1016/j.ijpharm.2014.04.001
http://dx.doi.org/10.1007/s11095-005-5646-0
http://www.ncbi.nlm.nih.gov/pubmed/16028012
http://dx.doi.org/10.1080/10611860410001728040
http://www.ncbi.nlm.nih.gov/pubmed/15512776
http://dx.doi.org/10.1016/j.ijpharm.2008.09.016
http://www.ncbi.nlm.nih.gov/pubmed/18835580
http://dx.doi.org/10.1002/jlac.198619860508
http://dx.doi.org/10.1007/BF00119142


Molecules 2019, 24, 351 26 of 27

137. Haubner, R.; Gratias, R.; Diefenbach, B.; Goodman, S.; Jonczyk, A.; Kessler, H. Structural and functional
aspects of RGD-containing cyclic pentapeptides as highly potent and selective integrin v 3 antagonists.
J. Am. Chem. Soc. 1996, 118, 7461–7472. [CrossRef]

138. Wang, Y.; Wang, X.; Zhang, Y.; Yang, S.; Wang, J.; Zhang, X.; Zhang, Q. RGD-modified polymeric micelles as
potential carriers for targeted delivery to integrin-overexpressing tumor vasculature and tumor cells. J. Drug
Target. 2009, 17, 459–467. [CrossRef] [PubMed]

139. Kazuki, N.; TambetTeesalu, S.; Karmali, P.P.; Kotamraju, V.R.; Agemy, L.; Girard, O.M.; Hanahan, D.;
Mattrey, R.F.; Ruoslahti, E. Tissue-Penetrating Delivery of Compounds and Nanoparticles into Tumors.
Cancer Cell 2009, 6, 510–520. [CrossRef]

140. Gao, F.; Zhang, J.; Fu, C.; Xie, X.; Peng, F.; You, J.; Tang, H.; Wang, Z.; Li, P.; Chen, J. iRGD-modified
lipid–polymer hybrid nanoparticles loaded with isoliquiritigenin to enhance anti-breast cancer effect and
tumor-targeting ability. Int. J. Nanomed. 2017, 12, 4147–4162. [CrossRef]

141. Jiang, Y.; Pang, X.; Liu, R.; Xiao, Q.; Wang, P.; Leung, A.W.; Luan, Y.; Xu, C. Design of an AmphiphilicRGD
Peptide and Self-Assembling Nanovesicles for Improving Tumor Accumulation and Penetration and the
Photodynamic Efficacy of the Photosensitizer. ACS Appl. Mater. Interfaces 2018, 10, 31674–31685. [CrossRef]

142. Hu, H.; Wan, J.; Huang, X.; Tang, Y.; Xiao, C.; Xu, H.; Yang, X.; Li, Z. iRGD-decorated reduction-responsive
nanoclusters for targeted drug delivery. Nanoscale 2018, 10, 10514–10527. [CrossRef] [PubMed]

143. Lamberts, S.W. Octreotide: The Next Decade; BioScientifica: Bristol, UK, 1999.
144. Melacini, G.; Zhu, Q.; Goodman, M. Multiconformational NMR Analysis of Sandostatin (Octreotide):

Equilibrium between beta-Sheet and Partially Helical Structures. Biochemistry 1997, 36, 1233–1241. [CrossRef]
[PubMed]

145. Cuttitta, F.; Carney, D.N.; Mulshine, J.; Moody, T.W.; Fedorko, J.; Fischler, A.; Minna, J.D. Bombesin-like
peptides can function as autocrine growth factors in human small-cell lung cancer. Nature 1985, 16, 823–826.
[CrossRef]

146. Patel, O.; Shulkes, A.; Baldwin, G.S. Gastrin-releasing peptide and cancer. Biochim. Biophys. Acta 2006, 1766,
23–41. [CrossRef] [PubMed]

147. Smith, C.J.; Volkert, W.A.; Hoffman, T.J. Radiolabeled peptide conjugates for targeting of the bombesin
receptor superfamily subtypes. Nucl. Med. Biol. 2005, 32, 733–740. [CrossRef] [PubMed]

148. Parry, J.J.; Kelly, T.S.; Andrews, R.; Rogers, B.E. In vitro and in vivo evaluation of 64Cu-labeled
DOTA-linker-bombesin(7–14) analogues containing different amino acid linker moieties. Bioconjug. Chem.
2007, 18, 1110–1117. [CrossRef] [PubMed]

149. Jamous, M.; Tamma, M.L.; Gourni, E.; Waser, B.; Reubi, J.C.; Maecke, H.R.; Mansi, R. RPEG spacers of
different length influence the biological profile of bombesin-based radiolabeled antagonists. Nucl. Med. Biol.
2014, 41, 464–470. [CrossRef]

150. Bernhard, Y.; Gigot, E.; Goncalves, V.; Moreau, M.; Sok, N.; Richard, P.; Decréau, R.A. Direct
subphthalocyanine conjugation to bombesin vs. indirect conjugation to its lipidic nanocarrier. Org. Biomol.
Chem. 2016, 14, 4511–4518. [CrossRef] [PubMed]

151. Pellegrini, M.; Mierke, D.F. Molecular complex of cholecystokinin-8 and N-terminus of the cholecystokinin
A receptor by NMR spectroscopy. Biochemistry 1999, 38, 14775–14783. [CrossRef] [PubMed]

152. Morelli, G.; De Luca, S.; Tesauro, D.; Saviano, M.; Pedone, C.; Dolmella, A.; Visentin, R.; Mazzi, U. CCK8
peptide derivatized with diphenylphosphine for rhenium labelling: Synthesis and molecular mechanics
calculations. Pept. Sci. 2002, 8, 373–381. [CrossRef] [PubMed]

153. Accardo, A.; Morisco, A.; Palladino, P.; Palumbo, R.; Tesauro, D.; Morelli, G. Amphiphilic CCK peptides
assembled in supramolecular aggregates: Structural investigations and in vitro studies. Mol. Biosyst. 2011, 7,
862–870. [CrossRef] [PubMed]

154. Tesauro, D.; Accardo, A.; Gianolio, E.; Paduano, L.; Teixeira, J.; Schillen, K.; Aime, S.; Morelli, G. Peptide
derivatizedlamellar aggregates as target-specific MRI contrast agents. Chembiochem 2007, 8, 950–995.
[CrossRef] [PubMed]

155. Accardo, A.; Tesauro, D.; Aloj, L.; Tarallo, L.; Arra, C.; Mangiapia, G.; Vaccaro, M.; Pedone, C.; Paduano, L.;
Morelli, G. Peptide-containing aggregates as selective nanocarriers for therapeutics. Chem. Med. Chem. 2008,
3, 594–602. [CrossRef] [PubMed]

http://dx.doi.org/10.1021/ja9603721
http://dx.doi.org/10.1080/10611860902974085
http://www.ncbi.nlm.nih.gov/pubmed/19527117
http://dx.doi.org/10.1016/j.ccr.2009.10.013
http://dx.doi.org/10.2147/IJN.S134148
http://dx.doi.org/10.1021/acsami.8b11699
http://dx.doi.org/10.1039/C8NR02534G
http://www.ncbi.nlm.nih.gov/pubmed/29799599
http://dx.doi.org/10.1021/bi962497o
http://www.ncbi.nlm.nih.gov/pubmed/9063871
http://dx.doi.org/10.1038/316823a0
http://dx.doi.org/10.1016/j.bbcan.2006.01.003
http://www.ncbi.nlm.nih.gov/pubmed/16490321
http://dx.doi.org/10.1016/j.nucmedbio.2005.05.005
http://www.ncbi.nlm.nih.gov/pubmed/16243649
http://dx.doi.org/10.1021/bc0603788
http://www.ncbi.nlm.nih.gov/pubmed/17503761
http://dx.doi.org/10.1016/j.nucmedbio.2014.03.014
http://dx.doi.org/10.1039/C6OB00530F
http://www.ncbi.nlm.nih.gov/pubmed/27097718
http://dx.doi.org/10.1021/bi991272l
http://www.ncbi.nlm.nih.gov/pubmed/10555959
http://dx.doi.org/10.1002/psc.400
http://www.ncbi.nlm.nih.gov/pubmed/12148786
http://dx.doi.org/10.1039/C0MB00238K
http://www.ncbi.nlm.nih.gov/pubmed/21157624
http://dx.doi.org/10.1002/cbic.200700077
http://www.ncbi.nlm.nih.gov/pubmed/17469087
http://dx.doi.org/10.1002/cmdc.200700269
http://www.ncbi.nlm.nih.gov/pubmed/18167625


Molecules 2019, 24, 351 27 of 27

156. Vincenzi, M.; Accardo, A.; Costantini, S.; Scala, S.; Portella, L.; Trotta, A.; Ronga, L.; Guillon, J.; Leone, M.;
Colonna, G.; et al. Intrinsically disordered amphiphilic peptides as potential targets in drug delivery vehicles.
Mol. Biosyst. 2015, 11, 2925–2932. [CrossRef] [PubMed]

157. Accardo, A.; Leone, M.; Tesauro, D.; Aufiero, R.; Bénarouche, A.; Cavalier, J.F.; Longhi, S.; Carriere, F.; Rossi, F.
Solution conformational features and interfacial properties of an intrinsically disordered peptide coupled to
alkyl chains: A new class of peptide amphiphiles. Mol. Biosyst. 2013, 9, 1401–1410. [CrossRef] [PubMed]

158. Vincenzi, M.; Costantini, S.; Scala, S.; Tesauro, D.; Accardo, A.; Leone, M.; Colonna, G.; Guillon, J.; Portella, L.;
Trotta, A.; et al. Conformational ensembles explored dynamically from disordered peptides targeting
chemokine receptor CXCR4. Int. J. Mol. Sci. 2015, 16, 12159–12173. [CrossRef] [PubMed]

159. Banta, S.; Megeed, Z.; Casali, M.; Rege, K.; Yarmush, M.L. Engineering protein and peptide building blocks
for nanotechnology. J. Nanosci. Nanotechnol. 2007, 7, 387–401. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1039/C5MB00358J
http://www.ncbi.nlm.nih.gov/pubmed/26263446
http://dx.doi.org/10.1039/c3mb25507g
http://www.ncbi.nlm.nih.gov/pubmed/23483086
http://dx.doi.org/10.3390/ijms160612159
http://www.ncbi.nlm.nih.gov/pubmed/26030674
http://dx.doi.org/10.1166/jnn.2007.153
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Peptide Self-Assembled Nanostructures 
	-Helical and -Sheet Peptides 
	Linear Peptides 
	Cyclic Peptides 
	Amphiphilic Peptides (PAs) 

	Self-Assembling PAs for Targeting in Nanostructures 
	Cell Penetrating Peptide (CPPs) and Smart Sequences 
	Peptide Able to Interact with Overexpressed Receptors 
	Peptide Target for Integrin Receptors 
	GPR Target Peptide 
	Supramolecular System Based on Disordered Linear Peptides 


	Conclusions 
	References

