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Abstract
In the present paper we prove some uniqueness results for weak solutions to a class of problems, whose

prototype is {
−div ((ε+ |∇u|2)

p−2
2 ∇uϕ) = f ϕ in Ω

u = 0 on ∂Ω,

where ε ≥ 0, 1 < p < +∞, ϕ (x) is the density of the N -dimensional Gauss measure, Ω is an open subset of

RN (N > 1) with Gauss measure less than one and datum f belongs to the natural dual space. When p ≤ 2 we

obtain a uniqueness result for ε = 0. While for p > 2 we have to consider ε > 0 unless the sign of f is constant.

Some counterexamples are given too.

1 Introduction

We consider the following class of nonlinear elliptic homogeneous Dirichlet problems{
−div a(x, u,∇u) = f ϕ in Ω
u = 0 on ∂Ω,

(1.1)

where ϕ (x) = (2π)−
N
2 exp

(
− |x|

2

2

)
is the density of the N -dimensional Gauss measure γ, Ω is an

open subset of RN (N ≥ 1) not necessary bounded with γ(Ω) < 1, the datum has a suitable summa-
bility and a : Ω × R× RN → RN is a Carathéodory function fulfilling the following degenerated
ellipticity condition

a (x, s, ξ) ξ ≥ λ |ξ|p ϕ(x) ∀s ∈ R, ξ ∈ RNa.e. x ∈ Ω,

with 1 < p <∞ and λ > 0, the following growth condition

|a (x, s, ξ)| ≤
[
ν1 |s|p−1 + ν2 |ξ|p−1

]
ϕ(x) ∀s ∈ R, ξ ∈ RN a.e. x ∈ Ω, (1.2)

with ν1, ν2 positive constants and the following monotonicity condition(
a (x, s, ξ)− a

(
x, s, ξ′

)) (
ξ − ξ′

)
≥ 0 ∀s ∈ R, ξ ∈ RN a.e. x ∈ Ω. (1.3)

We observe that the equation in (1.1) is related to Ornstein-Uhlenbeck operator.
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We take into account weak solutions to problem (1.1). The natural space for searching them is
the weighted Sobolev space W 1,p

0 (Ω, γ) with 1 < p <∞, defined as the closure of C∞0 (Ω) under the
norm

‖u‖
W 1,p

0 (Ω,γ)
=

(∫
Ω
|∇u|p dγ

) 1
p

.

We precise that a weak solution to problem (1.1) is a function u ∈W 1,p
0 (Ω, γ) such that∫

Ω
a(x, u,∇u)∇ψ dx =

∫
Ω
fψ dγ, ∀ψ ∈W 1,p

0 (Ω, γ). (1.4)

We consider f belonging to Zygmund space Lp
′
(logL)−

1
2 (Ω, γ). As shown in [13] this hypothesis

assures that the datum belongs to the natural dual space.
Under previous assumptions on function a, the operator −div a(x, u,∇u) is monotone and coercive
on the weighted Sobolev space W 1,p

0 (Ω, γ), then there exists (see e.g. [19]) at least a weak solution

u ∈W 1,p
0 (Ω, γ) to problem (1.1).

The purpose of this paper is to deal with uniqueness of weak solution to problem (1.1). In
the case where ϕ(x) ≡ 1 and Ω is bounded, uniqueness results for elliptic problems are proved for
example in [1], [2], [3], [4], [6], [7], [8], [9], [11], [12], [18] and [20].

As in the classical case, to guarantee uniqueness the main hypotheses are a strongly monotonicity
and a Lipschitz continuity of the involved operator. More precisely we suppose that the function a
satisfies(
a (x, s, ξ)− a

(
x, s, ξ′

))(
ξ − ξ′

)
≥ α

(
ε+|ξ|+

∣∣ξ′∣∣)p−2 ∣∣ξ − ξ′∣∣2 ϕ ∀s ∈ R, ξ ∈ RN, a.e. x ∈ Ω, (1.5)

with α > 0, ε ≥ 0 and∣∣a (x, s, ξ)− a
(
x, s′, ξ

)∣∣ ≤ [β |ξ|p−1 + θ
(
1 + |s|+

∣∣s′∣∣)q] ∣∣s− s′∣∣ϕ ∀s ∈ R, ξ ∈ RN, a.e. x ∈ Ω,

(1.6)
with q ≥ 0, β > 0, θ ≥ 0.
As the following example shows, Lipschitz continuity condition (1.6) is necessary to get the unique-
ness of a solution (see e.g. [11] for a counterexample in a bounded domain when ϕ(x) ≡ 1). Indeed,

it is easy to check that w(s) = s2

4 is a solution to

w′ −
√
w = 0 in (0,+∞) w(0) = 0.

Then u(x1, ..., xN ) = w(x1) is a solution to{
−div (∇uϕ−

√
ue1ϕ) = 0 in Ω

u = 0 on ∂Ω,
(1.7)

where e1 = (1, 0, .., 0) and Ω = (0,+∞)×RN−1, but (1.7) admits a null solution as well. Indeed in
this example Lipschitz continuity condition (1.6) is not fulfilled.

As far as the strong monotony condition concerns, if p > 2 we have to take into account only
the case ε > 0 in (1.5), because there is no uniqueness in general (as for the p−Laplace operator).
Indeed, considering Ω = (0,+∞)× RN−1, the following problem (p = 3){

−div (|∇u| ∇uϕ− ue1ϕ) = 0 in Ω
u = 0 on ∂Ω

has two solutions: u(x1, ..., xN ) = 0 and u(x1, ..., xN ) = w(x1). Consequently uniqueness can fail
when function a fulfills (1.5) just for ε = 0. Then assumption ε > 0 seems to be necessary to get a
uniqueness result (see also the counterexample in [1] for a bounded domain when ϕ(x) ≡ 1). Indeed
in Section 2 we prove the following result.
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Theorem 1.1 Let p > 2. Let us assume that (1.5) holds with ε > 0 and (1.6) holds with 0 ≤ q ≤ p
2 ,

then problem (1.1) has at most one weak solution in W 1,p
0 (Ω, γ).

The restriction ε > 0 can be avoided if the datum doesn’t change sign (see [12] and [15] in
the classical case). With this assumption we obtain the following uniqueness result holding for the
model operator −div (|∇u|p−2∇uϕ) with p > 2, which does not fulfill (1.5) with ε > 0.

Theorem 1.2 Let p > 2. Let us assume (1.2) with ν1 = 0, (1.5) with ε = 0, (1.6) with θ = 0 and
the sign of f is constant on Ω. Then problem (1.1) has at most one weak solution in W 1,p

0 (Ω, γ).

Finally in the case 1 < p ≤ 2 we prove the following result.

Theorem 1.3 Let 1 < p ≤ 2. Let us assume that (1.5) holds with ε = 0 and (1.6) holds with q = 0.
Then problem (1.1) has at most one weak solution in W 1,p

0 (Ω, γ).

2 Proofs of main results

In this section we give the proofs of theorems stated above.
The proof of Theorem 1.1 and Theorem 1.3 follows the idea of [1], where uniqueness results for

non degenerate elliptic operators are obtained using classical Sobolev inequality. In the gaussian
framework the same role is played by the following Logarithmic Sobolev inequality (see [17], [16]
and references therein):

‖u‖
Lp(logL)

1
2 (Ω,γ)

:=

(∫ γ(Ω)

0

[
u~ (s)

]p
(1− log s)

p
2 ds

) 1
p

≤ CS ‖∇u‖Lp(Ω,γ) (2.1)

for every u ∈W 1,p
0 (Ω, γ), where CS is a positive constant depending on p and Ω and

u~ (s) = inf {t ≥ 0 : γ ({x ∈ Ω : |u| > t}) ≤ s} for s ∈ ]0, 1] (2.2)

is decreasing rearrangement with respect to Gauss measure of u (for more details see e.g. [14]).
Inequality (2.1) implies the following Poincaré inequality

‖u‖Lp(Ω,γ) ≤ CP ‖∇u‖Lp(Ω,γ) (2.3)

for every u ∈ W 1,p
0 (Ω, γ), where CP is a positive constant depending on p and Ω. Inequality (2.3)

is one of the main ingredients of our proofs.

2.1 Proof of Theorem 1.1

Let u and v be two weak solutions to problem (1.1). Let (u− v)+ := max {0, u− v}, D ={
x ∈ Ω : (u− v)+ > 0

}
, Dt =

{
x ∈ D : (u− v)+ < t

}
for t ∈

[
0, sup (u− v)+[ and let us suppose

that D has positive measure. Let Tt(s) be the truncation function at level t, i.e.

Tt(s) = min{t,max{s,−t}}. (2.4)

Taking ψ = Tt((u−v)+)
t as test function in (1.4) written for u and v, making the difference of the two

equations, we obtain ∫
Dt

[a (x, u,∇u)− a (x, v,∇v)]∇ψ dx = 0.
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By (1.5) and (1.6) we get

αt

∫
Dt

(ε+ |∇u|+ |∇v|)p−2 |∇ψ|2 dγ

≤
∫
Dt

[a (x, u,∇u)− a (x, u,∇v)]∇ψ dx =

∫
Dt

[a (x, v,∇v)− a (x, u,∇v)]∇ψ dx

≤
∫
Dt

[
β |∇v|p−1 + θ (1 + |u|+ |v|)q

]
|u− v| |∇ψ| dγ,

then we have∫
Dt

(ε+ |∇u|+ |∇v|)p−2 |∇ψ|2 dγ ≤ 1

α

[∫
Dt

β |∇v|p−1 |∇ψ| dγ +

∫
Dt

θ (1 + |u|+ |v|)q |∇ψ| dγ
]
.

Let us estimate the right hand side. By using Hölder inequality we have∫
Dt

β |∇v|p−1 |∇ψ| dγ +

∫
Dt

θ (1 + |u|+ |v|)q |∇ψ| dγ

≤ β
(∫

Dt

|∇v|p dγ
)1/2(∫

Dt

|∇v|p−2 |∇ψ|2 dγ
)1/2

+ θ

(∫
Dt

(1 + |u|+ |v|)2q dγ

)1/2(∫
Dt

|∇ψ|2 dγ
)1/2

.

Then we get∫
Dt

(ε+ |∇u|+ |∇v|)p−2 |∇ψ|2 dγ ≤ 2β2

α2

∫
Dt

|∇v|p dγ (2.5)

+
2θ2

α2

1

εp−2

∫
Dt

(1 + |u|+ |v|)2q dγ := Λ(t).

It is easy to check that
lim
t→0

Λ(t) = 0. (2.6)

Moreover Young inequality and (2.5) imply∫
D
|∇ψ| dγ =

∫
Dt

|∇ψ| dγ ≤ 1

2
γ(Dt) +

1

2

∫
Dt

|∇ψ|2 dγ ≤ γ(Dt)

2
+

Λ(t)

2εp−2
. (2.7)

On the other side Poincaré inequality (2.3) gives

γ(D\Dt) =

∫
D\Dt

ψ dγ ≤
∫
D
ψ dγ ≤ CP

∫
D
|∇ψ| dγ,

then by (2.7) and (2.6) we conclude

γ(D) = lim
t→0

γ(D\Dt) = 0,

from which the conclusion follows.

Remark 2.1 Using Logarithmic Sobolev inequality (2.1), assumption (1.6) in Theorem 1.1 can be
replaced by the following weaker one∣∣a (x, s, ξ)−

(
x, s′, ξ

)∣∣ ≤ (β |ξ|p−1 + θ
[
1 + |s| (log(2 + |s|)1/2 +

∣∣s′∣∣ (log(2 +
∣∣s′∣∣)1/2]q) ∣∣s− s′∣∣ϕ(x)

∀s ∈ R, ξ ∈ RN, a.e.x ∈ Ω, with 0 ≤ q ≤ p

2
, β > 0 and θ ≥ 0. Indeed under this weaker assumption

the last integral in (2.5) is replaced by∫
Dt

(
1 + |u| log (2 + |u|)1/2 + |v| log (2 + |v|)1/2

)2q
dγ.

It is easy to check that it goes to zero as t → 0 by using Logarithmic Sobolev inequality (2.1) and
the relation between norms in Zygmund spaces written in terms of decreasing rearrangement (2.2)
or in term of a suitable Young function (see e.g. [5]).
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2.2 Proof of Theorem 1.2

Let u and v be two weak solutions to problem (1.1) and let (u− v)+ := max {0, u− v}, D ={
x ∈ Ω : (u− v)+ > 0

}
, Dt =

{
x ∈ D : (u− v)+ < t

}
for t > 0 and let us suppose that D has

positive measure. We proceed by steps.
Step 1. We prove

lim
t→0

1

t2

∫
Dt

(|∇u|+ |∇v|)p−2 |∇ (u− v)|2 dγ = 0. (2.8)

For t > 0, denoting by Tt the function defined as in (2.4), putting as test function Tt [(u− v)+] in
(1.4) we obtain ∫

Ω
[a(x, u,∇u)− a(x, v,∇v)]∇Tt

[
(u− v)+

]
dx = 0.

Denoting

D1
t = {x ∈ Dt, |∇u| ≤ |∇v|}

D2
t = {x ∈ Dt, |∇v| ≤ |∇u|} ,

we get∫
D1

t

[a(x, v,∇u)− a(x, v,∇v)]∇(u− v) dx+

∫
D2

t

[a(x, u,∇u)− a(x, u,∇v)]∇(u− v) dx

≤ −
∫
D1

t

[a(x, u,∇u)− a(x, v,∇u)]∇(u− v) dx−
∫
D2

t

[a(x, u,∇v)− a(x, v,∇v)]∇(u− v) dx

for every t > 0. By (1.5) and (1.6) we have

α

∫
Dt

(|∇u|+ |∇v|)p−2 |∇ (u− v)|2 dγ ≤ β
∫
D1

t

|∇u|p−1 |∇ (u− v)| |u− v| dγ (2.9)

+ β

∫
D2

t

|∇v|p−1 |∇ (u− v)| |u− v| dγ ≤ βt
∫
Dt

[min {|∇u| , |∇v|}]p−1 |∇ (u− v)| dγ.

By Hölder inquality we get

α

∫
Dt

(|∇u|+ |∇v|)p−2 |∇ (u− v)|2 dγ ≤ βt
∫
Dt

(|∇u|+ |∇v|)p−1 |∇ (u− v)| dγ

≤ βt
(∫

Dt

(|∇u|+ |∇v|)p−2 |∇ (u− v)|2 dγ
) 1

2
(∫

Dt

(|∇u|+ |∇v|)p dγ
) 1

2

.

Since the second term in the previous estimates goes to zero as t goes to zero, (2.8) follows.

Step 2. We prove ∫
D
a (x, u,∇u)∇Ψ dx = lim

t→0

∫
Ω
f
Tt [(u− v)+]

t
Ψ dγ (2.10)∫

D
a (x, v,∇v)∇Ψ dx = lim

t→0

∫
Ω
f
Tt [(u− v)+]

t
Ψ dγ

for every Ψ ∈ L∞(Ω) ∩W 1,p(Ω, γ).

Take
Tt[(u−v)+]

t Ψ as test function in (1.4), we obtain∫
Ω

a (x, u,∇u)∇Ψ
Tt [(u− v)+]

t
dx+

1

t

∫
Dt

a (x, u,∇u)∇ (u− v) Ψ dx =

∫
Ω
f
Tt [(u− v)+]

t
Ψ dγ.
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We easily pass to the limit in the first term by using Lebesgue dominated convergence theorem. For
the second term using (1.2) and Hölder inequality we get

1

t

∫
Dt

a (x, u,∇u)∇ (u− v) Ψ dx

≤ ν2 ‖Ψ‖L∞(Ω)

(
1

t2

∫
Dt

(|∇u|+ |∇v|)p−2 |∇ (u− v)|2 dγ
) 1

2
(∫

Dt

(|∇u|+ |∇v|)p dγ
) 1

2

,

which tends to zero by (2.8). Then we obtain (2.10).

Step 3. D has zero measure.

Take Ψ = 1 in (2.10) we obtain

lim
t→0

∫
Ω
f
Tt [(u− v)+]

t
dγ = 0.

Since the sign of f is constant we get

fχD = 0 a.e. in Ω

and the right-hand side of (2.10) is zero.
Now taking ψ = Tk(u) in (2.10) and passing to the limit as k →∞, we get∫

D
a (x, u,∇u)∇u dx = 0.

By (1.5) with ε = 0 and (1.2) with ν1 = 0 we obtain∫
D
|∇u|p dγ = 0,

then
∇u = 0 a.e. on D. (2.11)

By (2.9) and (2.11) it follows that ∇v = 0 a.e. on Dt for every t > 0 and then in D.
Then ∇ (u− v) = 0 a.e. on D. Since u = v = 0 on ∂Ω, by Poincaré inequality (2.3)∫

D
|u− v|p dγ =

∫
Ω

∣∣(u− v)+
∣∣p dγ ≤ CP ∫

D
|∇ (u− v)|p dγ = 0.

Then the conclusion follows.

2.3 Proof of Theorem 1.3

The proof runs as Theorem 1.1 but in this case ε = 0 is considered in (1.5). Arguing as in the proof
of Theorem 1.1 and using the same notations, (1.5) with ε = 0 and (1.6) with q = 0 yields∫

Dt

|∇ψ|2

(|∇u|+ |∇v|)2−p dγ ≤
1

α

∫
Dt

(
β |∇v|p−1 + θ

)
|∇ψ| dγ,

where ψ = Tt((u−v)+)
t . Using Hölder inequality we have∫

Dt

|∇ψ|2

(|∇u|+ |∇v|)2−p dγ ≤
β

α

(∫
Dt

(|∇v|+ |∇u|)p dγ
)1/2(∫

Dt

(|∇u|+ |∇v|)p−2 |∇ψ|2 dγ
)1/2

+
θ

α

(∫
Dt

(|∇v|+ |∇u|)2−p dγ

)1/2(∫
Dt

(|∇u|+ |∇v|)p−2 |∇ψ|2 dγ
)1/2

,
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then ∫
Dt

|∇ψ|2

(|∇u|+ |∇v|)2−p dγ ≤
2β2

α2

(∫
Dt

(|∇v|+ |∇u|)p dγ
)

(2.12)

+
2θ2

α2

(∫
Dt

(|∇v|+ |∇u|)2−p dγ

)
:= Γ(t).

Using Poincaré inequality (2.3), Young inequality and (2.12) we get

1

CP
γ(D\Dt) ≤

∫
Dt

|∇ψ| dγ ≤ 1

2

[∫
Dt

|∇ψ|2

(|∇u|+ |∇v|)2−p dγ +

∫
Dt

(|∇u|+ |∇v|)2−p dγ

]

≤ 1

2

[
Γ(t) +

∫
Dt

(|∇u|+ |∇v|)2−p dγ

]
for some positive constant c2 independent on t. The right hand side goes to zero as t goes to zero,
then

γ(D) = lim
t→0

γ(D\Dt) = 0,

from which the conclusion follows.

2.4 An alternative proof of Theorems 1.1 and 1.3

Proofs of Theorem 1.3 and Theorem 1.1 also run taking Λ(u−v) as test function, where Λ(t) = t
|t|+δ

with δ > 0 (see [10]). We will give a sketch of them.
By (1.3) and (1.6) we get

α

∫
Ω

|∇ (u− v)|2 (ε+ |∇u|+ |∇v|)p−2

(|u− v|+ δ)2 dγ ≤
∫

Ω

[
β|∇v|p−1 + θ (1 + |u|+ |v|)q

]
|u− v| |∇ (u− v) |

(|u− v|+ δ)2dγ.

Let 1 < p ≤ 2. Recalling that ε = 0, observing that |u−v|
|u−v|+δ ≤ 1 and using Hölder inequality we

have

α2

∫
Ω

|∇ (u− v)|2 (|∇u|+ |∇v|)p−2

(|u− v|+ δ)2 dγ ≤
∫

Ω
(θ2 + β2|∇v|2(p−1)) (|∇u|+ |∇v|)2−p dγ. (2.13)

If p = 2 inequality (2.13) can be rewritten as∫
Ω

∣∣∣∣∇ log

(
|u− v|
δ

+ 1

)∣∣∣∣2 dγ ≤ θ2

α2
γ(Ω) +

β2

α2

∫
Ω
|∇v|2dγ

and by Poincaré inequality (2.3) we get∫
Ω

∣∣∣∣log

(
|u− v|
δ

+ 1

)∣∣∣∣2 dγ ≤ θ2

α2CP
γ(Ω) +

β2

α2CP

∫
Ω
|∇v|2dγ

and conclusion follows putting δ → 0.
If 1 < p < 2 by Hölder inequality and (2.13) we obtain

∫
Ω

|∇ (u− v)|
(|u− v|+ δ)

dγ ≤

(∫
Ω

|∇ (u− v)|2 (|∇u|+ |∇u|)p−2

(|u− v|+ δ)2 dγ

) 1
2 (∫

Ω
(|∇u|+ |∇u|)2−p dγ

) 1
2

≤ 1

α

∫
Ω

(θ2 + β2|∇v|2(p−1)) (|∇u|+ |∇v|)2−p dγ.
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Arguing as in the case p = 2 we conclude.
In a similar way when p > 2 we obtain the analogue inequality of (2.13), namely

α2

∫
Ω

|∇ (u− v)|2 (ε+ |∇u|+ |∇u|)p−2

(|u− v|+ δ)2 dγ ≤
[
ε2−p

∫
Ω
θ2 (1 + |u|+ |v|)2q dγ+∫

Ω
β2|∇v|2(p−1) (|∇u|+ |∇u|)p−2 dγ

]
.

Again Poincaré inequality (2.3) allows us to end up.

2.5 Some remarks

Arguing as in the the proofs of Theorems 1.1, 1.2 and 1.3, we can obtain some comparison principles
as well. More precisely under hypothesis of theorems above if we consider the weak solutions u1

and u2 of problem (1.1) with f = fi for i = 1, 2 respectively when f1 ≤ f2, then we have u1 ≤ u2.
Similar results hold when no homogeneous boundary conditions are taken into account as well.
Moreover if u1 and u2 are a weak subsolution and supersolution to problem (1.1) respectively, then
u ≤ v.

We observe that theorems of this paper hold if we consider f − div (gϕ) as datum with f ∈
Lp
′
(logL)−

1
2 (Ω, γ) and g ∈ (Lp

′
(Ω, γ))N as well.

As far as strongly monotone condition (1.5) concerns we remark that we can replace it by the
weaker monotony condition (1.3) an uniqueness result holds adding in problem (1.1) the zero order
term c(x, u)ϕ(x) with c strictly increasing with respect to u, namely{

−div a(x, u,∇u) + c(x, u)ϕ = f ϕ in Ω
u = 0 on ∂Ω.

Finally we stress that using Logarithmic Sobolev inequality (2.1) we are able to prove an unique-
ness result for our class of problems with the presence of a lower order term when p = 2. Let us
consider the following class of homogeneous Dirichlet problems{

−div a(x,∇u) +H(x,∇u) = fϕ in Ω
u = 0 on ∂Ω,

(2.14)

where function a does not depend on u and H : Ω× RN → R is a Carathéodory function fulfilling
the following growth condition

H(x, ξ) ≤ h1|ξ|ϕ(x) ∀ξ ∈ RN a.e. in Ω

with h1 > 0.
In order to obtain an uniqueness result we assume (1.5) with ε = 0 and the following Lipschitz

continuity condition on H∣∣H(x, ξ)−H(x, ξ′)
∣∣ ≤ h2

∣∣ξ − ξ′∣∣ϕ(x) ∀ξ ∈ RN a.e. in Ω (2.15)

with h2 > 0.

Proposition 2.1 If (1.5) and (2.15) are in force, then problem (2.14) has at most a weak solution.
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Proof. We suppose there exists two weak solutions u and v to problem (2.14), we use

wt =

{
w(x)− t if w(x) > t
0 otherwise

as test function in the difference of the equations for t ∈ [0, supw[, where w = (u− v)+. By (1.5)
and (2.15) we get ∫

Et

|∇wt|2 dγ ≤
h2

α

∫
Et

|∇wt|wt dγ,

where Et = {x ∈ Ω : t < w < supw} . Now Hölder inequality gives

∫
Et

|∇wt|wt dγ ≤
(∫

Et

|∇wt|2 dγ
)1/2

(∫ γ(Et)

0
(w~

t (s))2(1− log s) ds

)1/2

sup
s∈(0,γ(Et))

(1− log s)−1/2.

Finally (2.3) implies

1 ≤ CS
h2

α
sup

s∈(0,γ(Et))
(1− log s)−1/2

and then the contradiction if t→ supw.
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degli Studi di Napoli “Parthenope” - Sostegno alla ricerca individuale 2015-2017”.

References

[1] A. Alvino, M.F. Betta, A. Mercaldo, Comparison principle for some class of nonlinear
elliptic equations, J. Differential Equations 12 (2010), 3279–3290.

[2] A. Alvino, A. Mercaldo, Nonlinear elliptic problems with L1 data: an approach via sym-
metrization methods, Mediterr. J. Math. 5 (2008), 173–185.

[3] A. Alvino, A. Mercaldo, Nonlinear elliptic equations with lower order terms and sym-
metrization methods, Boll. Unione Mat. Ital. (9) 1 (2008), 645–661.
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[18] O. Guibé, A. Mercaldo, Uniqueness results for noncoercive nonlinear elliptic equations with
two lower order terms, Commun. Pure Appl. Anal. 7 (2008), 163–192.
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