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Abstract The rank aggregation problem can be summarized as the problem of 
aggregating individua! preferences expressed by a set of judges to obtain a ranking 
that represents the best synthesis of their choices. Several approaches for handling 
this problem have been proposed and are generally linked with either axiomatic 
frameworks or alternative strategies. In this paper, we present a new definition of 
median ranking and frame it within the Kemeny's axiomatic framework. Moreover, 
we show the usefulness of our approach in a practical case about triage prioritization. 

Keywords Tied rankings · Median ranking · Kemeny distance · Triage prioritiza­
tion 

1 Introduction 

Preference rankings are data that express an individual's preferences in terms of 
a set of available alternatives. These data can be expressed either through order 
vectors (or orderings; when alternatives are placed in order from best to worst) 
or rank vectors (or rankings; when alternatives are fixed in any prespecified order 
and preferences are expressed by using integers to indicate the rank of each alter­
native) (Marden, 1996). As the meaning is the same, we will use both terms as 
synonymous with rankings. Suppose a set of n items must be ranked by m judges. 
When a judge gives a complete and strict precedence ranking of the items, thus 
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2 Antonio D'Ambrosia et al. 

producing a permutation of the first n integers, the resulting ranking is called com­

plete (or full). lndividuals could assign the same integer to two or more items. In 
this case, the resulting ordering is called tied (or weak). When judges are asked 
to rank only a subset of the entire set of objects ( or when the rank associated 
with some items is missing), the resulting ordering is called partial ranking (Heiser 
and D'Ambrosia, 2013). Sometimes tied rankings are called bucket orders (Gionis 
et al., 2006; Ukkonen et al., 2009; Kenkre et al., 2011), when a set of items is tied 
for a given location. Many statistical analyses can be performed with preference 
rankings and paired comparison rankings; examples include inference on top-k lists 
(Hall and Schimek, 2012; Sampath and Verducci, 2013), cluster analysis and relateci 
techniques (Murphy and Martin, 2003; Busse et al., 2007; Heiser and D'Ambrosia, 
2013; Brentari et al., 2016), supervised classification methods (D'Ambrosia, 2008; 
Lee and Yu, 2010; D'Ambrosia and Heiser, 2016; Plaia and Sciandra, 2017), multi­
variate analysis (Cohen and Mallows, 1980; Busing et al., 2005; Busing, 2006; Yu 
et al., 2013), and probability models (Bradley and Terry, 1952; Fienberg and Larntz, 
1976; Dittrich et al., 2000; Yu et al., 2016). For a detailed overview of statistical 
methods and models for preference rankings, refer to Marden (1996). 
One of the problems when dealing with preference rankings is the identification of 
the so-called consensus ranking, i.e., the ranking that best synthesizes the consensus 
opinion. Depending on the reference framework, this problem is known as a social 
choice problem, a rank aggregation problem, a median ranking problem, a central 
ranking detection, or a Kemeny problem (Kemeny and Snell, 1962; Marden, 1996; 
Fiirnkranz and Hiillermeier, 2010; Amodio et al., 2016). This (NP-hard) problem 
has received increasing importance over the years, both as a main research task and 
as an essential starting point for other types of analysis (Corain and Salmaso, 2007; 
Fields et al., 2013; Heiser and D'Ambrosia, 2013; Desarkar et al., 2016; D'Ambrosia 
and Heiser, 2016; Telcs et al., 2016; Sciandra et al., 2017; Dopazo and Martfnez­
Céspedes, 2017; Svendova and Schimek, 2017). The rank aggregation problem has 
been approached using several different approaches, some of which work only when 
complete rankings are used as the input and produce an output that is a full con­
sensus ranking (Meila et al., 2007; Aledo et al., 2013; D'Ambrosia et al., 2015). 
Other proposals work with complete, tied and partial rankings and produce an out­
put solution that either can contain ties (Emond and Mason, 2002; Gionis et al., 
2006; Lin and Ding, 2009; Ukkonen et al., 2009; Lin, 2010; Amodio et al., 2016; 
D'Ambrosia et al., 2017; Aledo et al., 2017b) or cannot contain ties ( Aledo et al., 
2017a; Badal and Das, 2018). By following the classification made by Cook (2006), 
there are two broad classes of approaches to consensus ranking: the so-called ad hoc

methods, which are generally based on counting such as Borda or Condorcet-like 
tools, and the distance-based approaches, for which the detection of the consensus 
ranking is based on the minimization of a distance measure that is suitably defined 
for preference rankings. Recently, 'distance-free' methods have been introduced in 
the literature (Hall and Schimek, 2012; Svendova and Schimek, 2017). Within the 
category of distance-based techniques, several axiomatic approaches have been pro­
posed (Kemeny and Snell, 1962; Cook et al., 1997; Gionis et al., 2006; Biernacki and 
Jacques, 2013), including both MCMC and Bayesian methods (Dwork et al., 2001; 
Deng et al., 2014; Asfaw et al., 2017). We apply in the Kemeny's axiomatic frame­
work (Kemeny and Snell, 1962) and assume that the geometrical space of preference 
rankings is the permutation polytope (Thompson, 1993). When dealing with tied 
rankings, our reference geometrica! space is the generalized permutation polytope 
(Heiser and D'Ambrosia, 2013; D'Ambrosia et al., 2017), for which the natural dis­
tance measure is the Kemeny distance. We assume that the consensus ranking is 
the median ranking defined as that ranking ( or those rankings) that minimizes the 
sum of the Kemeny distance between itself and each of the rankings expressed by 
a set of m judges. For an extensive discussion on this approach, refer to (Emond 
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and Mason, 2002; Heiser and D'Ambrosia, 2013; Amodio et al., 2016; D'Ambrosia 
et al., 2017). 
In this paper, we define a novel problem of rank aggregation: finding the median 
ranking under the constraint that the final solution must contain a prespecified 
number of buckets. Our proposal has been motivateci by the search for a solution to 
a real problem concerning the choices made by a set of nurses within the so-called 
triage prioritization. 
It is worth noting that we are introducing a special situation of rank aggregation 
that, as far we know, has never been approached in the literature. Tied rankings 
( or bucket orders) were considered as indifferent declarations until a few years ago. 
For a long time, ranking data have been synonymous with permutations. Currently, 
dealing with tied rankings is the rule rather than an exception in many real sit­
uations. We show that one may be interested in constrained solutions in certain 
situations. For instance, according to the Bordeaux Official Wine Classification, 
wines are ranked in quality from their first growth to their fifth (Premier Cru, ... , 
Cinquieme Cru). In that wine tasting experiment, the final solution is requested to 
be constrained into five buckets. We propose a solution to the stateci problem by 
modifying some tools that were originally designed to solve the rank aggregation 
problem without any limitation in terms of the nature of the solution, in the sense 
that the solution can be either a full ranking or a tied ranking. 
The paper is organized as follows: Section 2 introduces the median ranking prob­
lem, and Section 3 describes the modified algorithms to cope with the prespecified 
bucket orders. In Section 4 we show the potential of our proposal both on some 
well-known datasets and on the triage dataset. We conclude the paper with some 
critical discussions in Section 5. 

2 Kemeny distance and median ranking 

Cardinality of the universe of rankings with n items is equal to 

(1) 

where {;} indicates the Stirling number of the second kind, which corresponds to 
the number of ways to partition a set of n objects into b nonempty subsets. These 
b nonempty subsets correspond to the buckets. Table 1 shows the cardinality of the 
universe of rankings from n = 1 to 5 items. 

Table 1 Cardinality of the universe of rankings that contain ties for n = 1, 2, ... , 5 (last col­
umn). The columns that indicate the buckets (b) show the cardinality of the rankings of n items 
constrained in b buckets 

n \b 1 2 3 4 5 . . . zn 

1 1 - - - - - 1

2 1 2 - - - - 3

3 1 6 6 - - - 13 

4 1 14 36 24 - - 75

5 1 30 150 240 120 - 541 

. . . . . . . . . . . . . . . . . . . . .

Let Y and X be two rankings of n items. The Kemeny distance can be  computed 
as follows: build two 1 by n x (n - 1) vectors y and x in which each column 
represents one pair of objects. After the computation of Y[KL] = sign(yK - YL) and 
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4 Antonio D'Ambrosia et al. 

X[KL] = sign(xK - XL), K > L = 1, ... , n, the Kemeny distance is 
½n(n-1) 

d(Y, X) = L IY[KL] -X[KL] 1- (2) 
[KL]=l 

Kemeny and Snell (1962) proved that this measure is the unique distance that 
satisfies a set of axioms1 that a distance metric defined on preference rankings 
should satisfy. Heiser and D'Ambrosio (2013) pointed out that, when ties are not 
allowed, the Kemeny distance and the Kendall's T distance are equivalent. Let X 
be a m x n data matrix containing m rankings of n objects. The median ranking Y 
is that ranking for which: 

m 

Y = arg min Ld(Xk, Y). 
YEZn k=l

(3) 

Emond and Mason (2000, 2002) defined a rank correlation coefficient called Tx that 
can deal with tied rankings and proved that it is naturally linked to the Kemeny 
distance in this way: 

d(X, Y) Tx(X, Y) = 1-2 (n(n _ l)) .
They conceived a branch-and-bound algorithm that can find the median ranking 
by maximizing the Tx instead of minimizing the Kemeny distance. Their starting 
point was the definition of a matrix representation of a ranking called score matrix 
by considering each possible pairwise comparison of the n items to be ranked. A 
score matrix was already defined by both Kendall (1938) and Kemeny and Snell 
(1962), but Emond and Mason (2002) slightly modified the coding of the pairs of 
items in a tie. Let Y be a ranking and Y be the corresponding n x n score matrix 
with elements Yij, i,j = 1, ... , n. Emond and Mason assigned the score 1 if the i-th 
object is either ranked ahead of or in a tie with the j-th item and -1 otherwise. In 
this way, they defined the rank correlation coefficient between two rankings X and 
Y as 

(X Y) = L�j=l XijYij (4) Tx ' n(n -1) · 
Let x(l), ... , x(h) be a set of rankings that are not necessarily distinct, each with
an associated weight Wh, with I:�=l Wh = m. Emond and Mason proposed their 
branch-and-bound algorithm by first defining the combined input matrix C with 
elements Cij, i.e., a score matrix that aggregates the individuai score matrices of the 
mjudges: 

k 

C = L x�7)wh. (5) 
h=l 

Then, they stated the rank aggregation problem as the identification of that ranking 
( or those rankings) Y for which: 

YA L�j=l CijYij= arg max k 
YEZn 

Lh=l Wh (n (n - 1))
(6) 

Thus, the right-hand side of Equation 6 corresponds to the average of the Tx rank 
correlation coefficient computed between the median ranking Y and all the rankings 
stated by the m judges. 

1 The first axiom states that the distance measure must be a metric. The second axiom is about 
the invariance of the distance under a random permutations of the items. The third axiom is about 
consistency in measurement: the distance between two rankings does not change after deleting a set 
of items that agrees in rank for both rankings. The last axiom is the statement of a measurement 
unit: the minimum distance is equa! to one. 
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Median constrained bucket arder rank aggregation 5 

3 Median constrained bucket orders 

The so-called optimal bucket order problem (Gionis et al., 2006; Ukkonen et al., 
2009; Kenkre et al., 2011; Aledo et al., 2017b), i.e., dealing with rank aggregation 
while allowing ties in the solution, is a recent description of the problem originally 
stateci by Kemeny and Snell (1962) when defined the median ranking. Within the 
Kemeny's axiomatic approach, both exact (Emond and Mason, 2002) and heuristic 
algorithms (Amadio et al., 2016; D'Ambrosia et al., 2017) have been proposed. 
These algorithms, no matter the nature of the rankings input, search for the best 
solution in zn

. Here, we introduce a modification of both the Emond and Mason's 
branch-and-bound algorithm and the differential evolution algorithm of D'Ambrosia 
et al. to produce a consensus ranking by searching for the solution only in a subset 
of zn that contains exactly b buckets. We call this solution the median constmined

bucket order. The problem can be formalized as follow: let xci), . . .  , x(k) be a set of 
rankings of n items, each bearing a weight Wh, with L�=l Wh = m. The constrained 
median bucket arder is that ranking ( or those rankings) Y for which 

k "'n A • " ( (h) ) L..Ji,j=l CijYij 
Y =argmmL.,whdX , Y =arg max 

( ( )) 'YEzn\b h=l YEzn\b m n n - 1 (7) 

where zn\b is the subset of zn in which there are exactly b buckets. Note that, 
theoretically, there are no restrictions on the nature of the input rankings, in the 
sense that input rankings do not necessarily have to be bucket orders. 

3.1 Modification of branch-and-bound and BB-like algorithms 

Emond and Mason (2000, 2002) conceived a branch-and-bound (BB) algorithm to 
maximize Equation 6 by defining an upper limit on the value of the dot product of 
the right side of the equation. The combined input matrix, as defined in Equation 
5, plays a key role in the BB algorithm because it contains ali the information that 
a sample of judges can provide in the rank aggregation problem. Regardless of the 
number of judges, the dimensionality of the problem is governed by the number of 
items and the form of the combined input matrix. The origina! Emond and Ma­
son's algorithm can be summarized as follows: starting from an initial solution Y,

the algorithm starts by creating three mutually exclusive branches based on the 
relative position of the first two objects, with either one preferred to the other or 
in a tie. An initial penalty is then computed as V - B, with V = L�j ICiil and 
B = L�j=l YijCij relative to the initial solution. Then an incrementa! penalty JP

for each of the branches is computed by considering the corresponding elements Cij 

and Cji of C as summarized by the following schema: 

- object i is preferred to object j (Branch 1):
if Cii > O and Cji < O, then JP = O
if Cij > O and Cji > O, then JP = Cji 

if Cij < O and Cji > O, then JP = Cji - Cij 

- object i is tied with object j (Branch 2):
if Cii > O and Cji < O, then JP = -Cji 

if Cii > O and Cji > O, then JP = O
if Cij < O and Cji > O, then JP = -Cii 

- object j is preferred to object i (Branch 3):
if Cij > O and Cji < O, then JP = Cij - Cji 

if Cij > O and Cji > O, then JP = Cij 

if Cii < O and Cji > O, then JP = O.
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6 Antonio D'Ambrosia et al. 

Each branch with a penalty is greater than ( or equal to) the initial penalty, is 
skipped and not considered. The remaining branches are processed by placing the 
third highest ranked object in all possible positions relative to the objects already 
considered. This process continues until all remaining objects are evaluated. The 
penalty is iteratively updated according to either the concordance or the discordance 
of the values of the score matrix of the candidate median ranking with the ones of the 
combined input matrix. To find the solution in the restricted ranking universe that is 
constrained to be in a prespecified number of buckets, we restrict the searching space 
in the ranking universe to n items by cutting all branches that contain a number of 
groups of ties larger than b, thereby supposing a number b of buckets. The algorithm 
then continues as in the original formulation. The result is the median ranking, i.e., 
the ranking ( or rankings) with the highest average Tx. For a detailed discussion 
of the BB algorithm, refer to Emond and Mason (2000, 2002). As highlighted by 
Brusco and Stahl (2006), BB algorithms guarantee to find the optimal solution, but 
in the worst case the complexity is as high as that of exhaustive search. 
Amodio et al. (2016) proposed a modification of Emond and Mason's BB algorithm 
that achieves remarkable savings in terms of computational burden. Given an input 
ranking X and the combined input matrix C, the algorithm, called Quick, evaluates 
the penalty by considering all items in the input ranking; meanwhile, in the original 
BB formulation, the penalty is computed by considering only the elements of the 
combined input matrix associateci with the processed items. The input ordering X
is given as a random rank vector of length n that contains only the first b integers, 
i.e., a random candidate median constrained bucket order. Then, every time an
object is added in the iterative process, the algorithm stores the ranking, which
is constrained to b buckets, removes all other rankings in the processed branch,
and processes only the bucket order associateci with the minimum current penalty.
Algorithm 1 shows the pseudocode of the Quick algorithm for constrained bucket
order detection.

Algorithm 1: QUICK algorithm for constrained bucket order detection 

input : C,X 

1 initialize: fix the rank of the first ranked object in X; 
2 consider the next ranked object in X; 
a evaluate the penalty for ali the rankings obtained by placing that object in ali 

possible positions with respect to the fixed ranked objects; 
4 stare only the ranking constroined into b buckets associated with minimum penalty; 
5 fix the rank of the processed object and return to step 2 unti! ali objects in X are 

processed; 
6 obtain the update ranking Y, and repeat ali previous steps by replacing X with Y (once); 

output : Y = median constrained bucket arder 

The output of the Quick algorithm is sensitive to the random choice of the initial 
ranking. Moreover, it can get stuck in local optima. Thus, the algorithm is repeated 
several times and returns the best solution(s) among the iterations. For an extensive 
discussion of the behavior of the Quick algorithm and comparisons in terms of its 
performance with respect to the BB algorithm, refer to Amodio et al. (2016). 

3.2 Differential evolution algorithm 

The differential evolution algorithm for median ranking detection (DECoR) (D'Ambrosia 
et al., 2017) can be used for problems with a (very) large number of items to be 
ranked. The BB algorithm has an important limitation due to the number of the 
items to be ranked: if there are more than approximately 15 or 20 objects, the al­
gorithm can run for hours or days (Emond and Mason, 2000; Amodio et al., 2016). 
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Median constrained bucket arder rank aggregation 7 

The Quick algorithm is much faster than BB and works for problems up to 50 or 
even 100 objects. Recently, D'Ambrosio et al. (2017) proposed a discretization step 
for the differential evolution algorithms to allow for a discrete optimization prob­
lem such as the detection of the median ranking. Differential evolution algorithms 
consist of the following steps: initialization, mutation, crossover and selection. The 
DECoR algorithm starts by creating a population of rankings that provides random 
permutations of the first n integers. The adopted mutation strategy is the so-called 
/rand/1/bin, where rand means that the vector to be permuted is randomly cho­
sen, 1 is the number of difference vectors considered for perturbation and bin means 
that the type of crossover step is set as binomial (Storn and Price, 1995). For dis­
cretization step, the hierarchical approach (which considers the ranks of the values) 
has been preferred to the closest integer approach because the latter, considering 
the integer value closest to the real obtained value, can produce inconsistent values 
and further steps are required to fix this problem (Onwubolu and Davendra, 2009; 
D'Ambrosio et al., 2017). Equation 8 shows the cost function that is minimized by 
the DECoR algorithm, which can be directly computed by exploiting the properties 
of the combined input matrix using Equations 4 and 7: 

k n(n - 1)
cost(Y) = L Wh 

2 
(1- rx(C, Y)), 

h=l 

where rx(C, Y) represents the averaged Tx associateci with the ranking Y. 

(8) 

To allow the user to obtain the best median ranking with a prespecified number 
of buckets, we slightly modified the original DECoR algorithm. As an initialization 
step, we create a population of dimension P by randomly sampling vectors with 
n columns from a discrete uniform distribution with support 1, 2, ... , b, with b 
indicating the number of buckets. Then, we use the closest integer approach as 
a discretization step. The algorithm then continues as in the original formulation. 
The result is the ranking ( or rankings) associateci with the highest average Tx. As 
the DECoR algorithm is sensitive to the random initial population, the obtained 
solutions can be local optima. For this reason, the algorithm is run several times 
and returns the best solution among the iterations. For a detailed discussion on the 
DECoR algorithm and a comparison of DECoR and a large variety of proposals 
dealing with the rank aggregation problem within Kemeny's axiomatic framework, 
refer to D'Ambrosio et al. (2017). 

4 Median constrained bucket order in practice 

We evaluated our proposal using both simulation and applications on real data. 
Note that our proposal can be appreciated if there is motivation to restrict the 
search of the median ranking in a restricted universe. The simulation study is de­
voted to checking the behavior of the algorithms in terms of both computing time 
and accuracy. It is worth stressing that the main goal of this work is to introduce 
the concept of median constrained bucket order. For this reason, many algorithms 
and methods already known in the literature can be adapted to find the solution 
in the constrained restricted space of bucket orders, provided that they can deal 
with tied rankings. We show the behavior of the BB algorithm when possible, as 
well as that of both Quick and DECoR. A comparison with other proposals is not 
in the scope of this work because modifying the search space does not modify the 
already highlighted results (see, for example, the study conducted by D'Ambrosio 
et al. (2017) and Badal and Das (2018)). 
The first experiment on real data only shows the practical use of our approach 
without any theoretical reason for the choice of the number of buckets. The second 

A
C

C
E

P
T

E
D

 M
A

N
U

S
C

R
IP

T
 (

th
e 

fi
n

al
 p

u
b

li
ca

ti
o

n
 i

s 
av

ai
la

b
le

 a
t 

li
n

k
.s

p
ri

n
g

er
.c

o
m

) 
P

os
t-

p
ee

r-
re

vi
ew

, p
re

-c
op

ye
d

it
 v

er
si

on
 o

f 
th

e 
ar

ti
cl

e 
p

u
bl

is
h

ed
 in

 C
om

p
u

ta
ti

on
al

 S
ta

ti
st

ic
s.

 T
h

e 
fi

n
al

 a
u

th
en

ti
ca

te
d

 v
er

si
on

 is
 a

va
il

ab
le

 o
n

li
n

e 
at

: h
tt

p
s:

//
d

oi
.o

rg
/1

0.
10

07
/s

00
18

0-
01

8-
08

58
-z

 



8 Antonio D'Ambrosia et al. 

experiment is an example of a correct choice of the number of buckets and shows a 
decision support strategy aimed to improve the performance of a given service. 
Analysis were performed on a laptop with an Intel Core i7 5500U processor with 
8.00 GB of RAM. Algorithms have been implemented in both MATLAB and R en­
vironments. The version of R will be soon available as an extension of the R package 
ConsRank (D'Ambrosia et al., 2016). The version of MATLAB can be downloaded 
from http:/ /wpage. unina. i t/ antdambr /Software/Matlab/BucketConsRank. 

4.1 Simulation study 

We generateci datasets by considering a number of objects n equal to 10 and 50. 
When n = 10 we considered two levels of buckets: b = 3 and b = 5. When n = 50, 
we considered two levels of buckets: b = 5 and b = 7. The number of judges m was 
randomly chosen between m = 15 and m = 75. We considered theoretical situations 
in which the sample of rankings are all generateci with the same prespecified number 
of buckets to try to reproduce an experiment in which a set of m judges is asked 
to rank n items in exactly b buckets. We designed three levels of noise, i.e., high, 
moderate and low, according to these rules: 

- n = 10;
- generate ranking universe z1D/b of 10 elements constrained into b buckets;
- randomly select a ranking Y from the universe and compute the Kemeny

distance between it and all the rankings in the universe;
- compute the probability of each ranking to be sampled according to the ex­

ponential function P(Xi) = exp(->.d(Y,Xi))/I:
x

,Eznf• exp(->.d(C,Xi)),
where Xi is the i-th ranking in the universe. Similar to the Mallows model
(Mallows, 1957), the parameter À governs the spread ofthe rankings around
the theoretical center Y. We set the values of À equal to 0.1, 0.4 and 0.8 for
the cases of high, moderate and low noise, respectively;

- generate the dataset by sampling from z1D/b according to the distribution
P.

- n = 50;
- randomly generate a rank vector Y of length 50 containing only the first b

integers;
- iteratively generate a random rank vector X of length 50 containing only

the first b integers and compute the Kemeny distance between Y and X. If
d(X, Y) ::; k stare the ranking X, otherwise continue. Stop the procedure
when the dataset counts m distinct rankings. The value of k governs the
level of noise. As the maximum Kemeny distance is equal to md= n(n -1),
we set the values of k equal to 0.5md, 0.25md and 0.15md for the cases of
high, moderate and low noise, respectively.

For each level of noise, each value n and each level of b, we generateci 10 datasets, 
for a total of 120 datasets. The BB algorithm was run only in the case of 10 items. 
In this case, the branch-and-bound algorithm serves as a benchmark for the other 
algorithms. Table 2 shows the average of both the computing time and the Tx 
rank correlation coefficient associateci with the median constrained bucket arder. 
As expected, the lower the noise, the larger the rx, indicating that rankings are 
more concentrateci around the true median constrained bucket arder. Regarding the 
heuristic algorithms, DECoR outperforms the Quick algorithm because it always 
finds the same solution as BB. Both DECoR and Quick were run 100 times. 
Table 3 shows the performances ofDECoR and Quick in the simulations with n = 50 
items. In this case, DECoR works better because, on average, the rx rank correlation 
coefficient associateci with the solution has results that are equal or greater than 
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Median constrained bucket arder rank aggregation 9 

Table 2 Simulation setting with n = 10 items: performance of BB, Quick and DECoR. zn/bH, 
znlbM and znlbL indicate the conditions with n items, b buckets and situations with high (H), 
moderate (M) and low (L) noise. 

Setting zw1a H z•u1 a M zw1a L z•ui u H zw10 M z•u1 u L 

Computing BB 0.26 0.29 0.14 0.52 1.26 0.67 
time in Quick 3.84 3.78 3.79 5.14 5.16 5.20 
seconds DECoR 14.40 14.54 14.47 15.22 15.47 15.71 

Averaged 
BB 0.37 0.78 0.97 0.30 0.64 0.91 

Quick 0.36 0.78 0.97 0.29 0.64 0.91 
TX DECoR 0.37 0.78 0.97 0.30 0.64 0.91 

those recorded for Quick. In terms of computing time, the Quick algorithm is faster 
than DECoR. This result is already known: as highlighted in the study conducted 
by D'Ambrosia et al. (2017), the Quick algorithm should be preferred to DECoR for 
problems up to 50 items. Here, we observe that the algorithms are not equivalent 
in terms of accuracy unless we consider a 'standard' rank aggregation problem (see 
D'Ambrosia et al., 2017). 

Table 3 Simulation setting with n = 50 items: performance of Quick and DECoR. znlbH, znlbM 
and znlbL indicate the conditions with n items, b buckets and situations with high (H), moderate 
(M) and low (L) noise. 

Setting zuu1 u H zou10 M zuu1 u L zoUFf H zoU/'f M zuu1 L 

Computing Quick 75.79 73.67 73.54 94.22 96.32 95.67 
time in seconds DECoR 115.55 125.49 124.33 152.31 147.27 142.36 

Averaged Quick 0.21 0.61 0.68 0.31 0.66 0.75 

TX DECoR 0.21 0.69 0.76 0.31 0.75 0.83 

4.2 Sushi dataset 

The PrefLib repository (Mattei and Walsh, 2013) is a reference library of preference 
data containing aver 3,000 freely available datasets. We test the performance of 
DECoR with the 'ED-00014-00000003.toi' dataset, also known as sushi dataset. 
The extension 'toi' means 'arder with ties - incomplete list'. There are 5,000 judges 
and 100 items (kind of sushi) to be ranked. Each judge ranks 10 sushi items. We 
used the DECoR algorithm by setting 5 buckets and 100 replications. The solution 
reported in Table 4 was found in 673.995 seconds with Tx = 0.0032. Note that a 
rank correlation coefficient close to zero means that, on average, the median ranking 
is uncorrelated with the orderings expressed by the judges (i.e., there is no consensus 
and thus no bucket arder). 

4.3 Application to triage prioritization data of hospital admissions 

The usefulness of this approach can be appreciated when there are experimental 
situations in which a number n of items must be ranked by some judges in such a 
way that their preferences have to be compressed into a number b of buckets, with 
1 < b < n. As a real example, we report the results attained by applied our novel 
procedure to an experiment conducted in the Emergency Department (ED) of two 
popular hospitals in Naples regarding triage, i.e., the admission phase of the ED. A 
sample of 18 nurses from Hospital a and a sample of 35 nurses from Hospital (3 had 
to place in arder n = 25 cases, according to severity, into b = 4 ordered codes: red 
(R), yellow (Y), green (G) and white (W), with R < Y < G < W. This experiment 
is equivalent to asking a set of m judges to rank n items and only b different ranks, 

A
C

C
E

P
T

E
D

 M
A

N
U

S
C

R
IP

T
 (

th
e 

fi
n

al
 p

u
b

li
ca

ti
o

n
 i

s 
av

ai
la

b
le

 a
t 

li
n

k
.s

p
ri

n
g

er
.c

o
m

) 
P

os
t-

p
ee

r-
re

vi
ew

, p
re

-c
op

ye
d

it
 v

er
si

on
 o

f 
th

e 
ar

ti
cl

e 
p

u
bl

is
h

ed
 in

 C
om

p
u

ta
ti

on
al

 S
ta

ti
st

ic
s.

 T
h

e 
fi

n
al

 a
u

th
en

ti
ca

te
d

 v
er

si
on

 is
 a

va
il

ab
le

 o
n

li
n

e 
at

: h
tt

p
s:

//
d

oi
.o

rg
/1

0.
10

07
/s

00
18

0-
01

8-
08

58
-z

 



10 Antonio D'Ambrosia et al. 

Table 4 Sushi dataset: median constrained bucket arder. Number of buckets: 5 

Bucket 1 Bucket 2 Bucket 3 Bucket 4 Bucket 5 

negi-toro roll ebi sayori aka-gai tori-gai 

anago inari-zushi kazunoko aoyagi 

maguro hamaguri shako barsashi 

ika urne-roll saba tobiuo 

uni zuke kohada karasumi 

tako kaiware miru-gai namako 

ikura kujira kapparroll 

tamago kyabia geso 

toro uni-kurage iwashi 

ama-ebi hokki-gai 

hotate-gai kani-miso 

tai takuwan-roll 

hamachi tobiko 

awabi ume&shiso roll 

sake komochi-konbu 

chu-toro sazae 

hirame hamo 

aji nasu 

kani nattou 

unagi ankimo 

tekkarmaki kanpyo-maki 

kanpachi gyu-sashi 

katsuo tsubu-gai 

shimaaji anarkyu-maki 

engawa hira,-gai-tairagi 

negi-toro okura 

nattou-maki shiso-maki 

botan-ebi ikarnattou 

mentaiko himo-clam 

sarada mekabu 

suzuki kue 

taraba-gani sawara 

tarako sasami 

toro-salmon kamo 

sanma himo-cuc 

shirauo hoya 

fugu battera 

saradarmaki karei 

mentaiko-maki shishamo 

buri kaki 

kurumarebi 

ishigaki-dai 

mamakari 

hiramasa 

with 1 < b < n. We used the DECaR algarithm with 100 repetitians. The median 
canstrained bucket arder for Haspital a is 

[3 24] [1 5 6 7 10 15 16 20] [8 9 11 12 14 17 19 21 22 25] [2 4 13 18 23]. 

The median canstrained bucket arder for Haspital f3 is 
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Median constrained bucket arder rank aggregation 11 

[3 24] [1 5 1 10 16 21 l [2 6 8 9 11 12 14 15 11 19 20 22 25] [4 13 18 23]. 

The cases ranked in a tie (the buckets) are in brackets. The buckets represent 
the cases coded R, Y, G and W, respectively. To these solutions, a weighted Tx 
rank correlation coeflìcient is associateci that equals 0.6865 and 0.6903, respectively. 
These averaged values indicate a good degree of internal agreement of the nurses 
within their assignment process. 
After the experiment, a supervisor revealed the 'true' coding of each case, which is: 

[3 24] [1 5 6 7 10 12 15 16 20] [8 9 11 14 17 19 21 22 25] [2 4 13 18 23]. 

The agreement between the true bucket order and the median constrained bucket 
orders is clear for Hospital a, as the Tx rank correlation coeflìcient between these 
orderings equals 0.917, which shows the good decision process of the nurses. The 
same measure for Hospital fJ is equal to 0.697, which shows a global decision process 
that is not as good as that of Hospital a. We can check the equality of the median 
constrained bucket orders by using the R2 statistic, as described in (Marden, 1996, 
Chapter 4, p. 102): 

.._,..L .._,..m <n d(X(li)y(l)) 
R2 = 1 - L..,!=1 L..,i=l 

.._,..L .,_..� (I) d(X(li)Y) '
L..,i=l L..,i=l 

(9) 

where L and m<l) are the groups and the sample size within each group, X(!i) is the 
i-th ranking of the l-th group, and y(!) and Y are the constrained median bucket
orders for the l-th group and for the entire sample respectively. If the bucket orders
in the two samples are equal, then R2 = O, which constitutes the null hypothesis of
the test. As highlighted by Marden (1996), even if the theoretical maximum value
of R2 equals one, it often achieves values that are practically dose to zero when the
sample size is quite large. In our case R2 = 0.0477. The test has been performed
by computing a randomized p-value with 1,000 replications (Feigin and Alvo, 1986;
Marden, 1996), which resulted in a value less than 0.001. We can conclude that
nurses at Hospital fJ need a more 'general' training phase than the ones working at
Hospital a.
This example shows the usefulness of both the Tx rank correlation coeflìcient as a
measure of general agreement and the novel approach of constraining the median
ranking to be expressed with a prespecified number of buckets.

5 Concluding remarks 

The paper deals with a special kind of consensus ranking problem, which is called 
median constrained bucket order. This problem is extended to address cases in which 
the solution must be restricted to a subset of the ranking universe that contains a 
prespecified number of buckets to form an a priori constraint of the setting. This 
kind of solution can be useful in practice when there is a good reason to find such 
a constrained solution. One possible application is when a group of judges is asked 
to place in order a set of n items by allowing exactly b buckets, and the solution to 
the problem must be a tied ranking with exactly b buckets. The Bordeaux Oflìcial 
Wine Classification example is a typical application. Sometimes, this experimental 
situation can be implicitly recognized, as in the case of the triage prioritization 
problem. 
Among the various axiomatic distance-based approaches proposed in the framework 
of the rank aggregation problem, we defined our approach under the Kemeny's 
axiomatic framework. Of course, other approaches have been introduced (see, for 
instance, Cook et al., 1997) and other ways to detect the median ranking have been 
proposed (see, for instance, Hall and Schimek, 2012; Asfaw et al., 2017; Aledo et al., 
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12 Antonio D'Ambrosia et al. 

2018); hence, our approach should be viewed within these frameworks. 
Both branch-and-bound and differential evolution algorithms have been specifically 
redesigned to cape with the bucket constraint, and a simulation comparative study 
showed that both can be effectively applied to a range of real problems. 
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