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November 08th, 2018 

Journal: Bioresource Technology 

Manuscript Number: BITE-D-18-06634 

Manuscript Title: Effect of feed glucose and acetic acid on continuous biohydrogen 

production by Thermotoga neapolitana 

 

Dear Prof. Ashok Pandey, 

Editor-in-Chief, Bioresource Technology 

On behalf of the co-authors, I would like to thank the reviewers who have helped us greatly 

to improve the quality of our research contribution. We have carefully revised the 

manuscript according to their comments and suggestions. The responses to the reviewers’ 

comments and questions were addressed as described below.  

 
Reviewer #1:  
The study focused on the influence of feed glucose and acetic acid on biohydrogen by 
Thermotoga neapolitana under continuous-flow condition. This study is meaningful for the 
practical application of biohydrogen and the quality of the article also meet BT level.  
 
Specific comments: 
1. P7L16: The concentration of inoculation should be added.  

RESPONSE: The biomass concentration of the inoculum was approximately 0.4 g 
CDW/L. However, we decided not to report this information in the text of the 
manuscript, as the actual biomass concentration in the continuous-flow reactor was 
the result of an equilibrium between the growth and washout rates of the biomass 
and, therefore, independent from the initial concentration. Indeed, the biomass 
concentration in the reactor was continuously monitored and described throughout 
the continuous-flow operation. 

 
2. P16L50: It can be known from Fig.1, 11.1 mM is the favorable glucose concentration, but 
author investigated the effect of acetic acid on biohydrogen using about 20 Mm glucose. 
please explain the reason? 

RESPONSE: 27.8 mM which equals 5 g/L is the most common glucose concentration 
used with Thermotoga neapolitana in literature and was chosen to allow a 
comparison to other studies. Furthermore, the final concentration used to investigate 
the effect of feed glucose without addition of AA was also 27.8 mM which revealed 
the considerable improvement of the process compared to the beginning of the 
experiment due to an acclimatization of the culture. Hence, we decided to continue 
with this glucose concentration, which allowed us to simultaneously investigate the 
further acclimatization of the culture and the effect of AA addition in the feed.  

 
3. P18 3.4 Mechanisms for end product inhibition. I think the mechanism is not the result 
from the present experiment. This content can be considered as discussion section.  

RESPONSE: We agree with the reviewer but, since the manuscript was written with a 
combined results and discussion section, as encouraged by the Guide for Authors of 
Bioresource Technology, a separation was not possible. Nonetheless, the section 

*Detailed Response to Reviewers
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“Mechanisms for end product inhibition” has been numbered as 3.5 in the revised 
version of the manuscript, in order to first discuss the acclimatization of the culture 
under the different operating conditions (i.e. section 3.4 “Improved culture 
performance due to acclimatization at prolonged cultivation” according to the new 
numbering) and then the possible mechanisms of inhibition by acetate. 
 

 
Reviewer #2: 
Here are my comments and suggestions: 
 

1. Line 53 Referring to experimental design, I can't see any proper experimental design, it 
would be advisable to include your experimental matrix as well as a brif explanation of 
the employed analysis. For instance, it would be important to have a clear perspective on 
how you decided about glucose levels. In the graphical abstracts you claim for 
optimization is not possible to make an optimization without a proper statistical analysis.  

RESPONSE: The employed experimental design was based on a “one-factor-at-a-
time” method. Indeed, at each experimental condition we varied only one parameter 
(e.g. feed glucose or feed acetic acid concentration) per time. A new sentence was 
added to the revised manuscript (Lines 123 – 124): “The effect of glucose and acetic 
acid concentration on dark fermentation by T. neapolitana was investigated by using 
a “one-factor-at-a-time” method”. 
We started with a feed glucose concentration of 27.8 mM (i.e. 5 g/L) because it was 
already used in most other scientific articles on T. neapolitana. In this regard, a 
reference to the study of Pradhan et al. (2015) was added to the manuscript (Lines 
126 - 128). Then, we decided to decrease or increase the feed glucose concentration 
to study its effect on the performance of the microbial species and the continuous-
flow reactor. 
Furthermore, we applied an unpaired t-test to our data to demonstrate that the 
improvement of the HY caused by the prolonged cultivation in the continuous process 
was statistically significant (Lines 366 and 370). Additionally, we used this statistical 
to confirm that an increase from 27.8 to 41.6 mM of feed glucose concentration did 
not significantly affect the HPR (Lines 198 – 200).  
 

2. Line 48 it is stated that glucose concentration was maintained constant at 27.8 mM and 
AA was increased from 30 to 240 mM, how you decided to kept 27.8 mM glucose?  

RESPONSE: As addressed based on the 2nd comment of reviewer 1, we decided to 
keep 27.8 mM of feed glucose as it is the most common glucose concentration used 
with T. neapolitana in previous studies. Furthermore, the final concentration used to 
investigate the effect of feed glucose without addition of AA was also 27.8 mM which 
revealed the considerable improvement of the process compared to the beginning of 
the experiment due to an acclimatization of the culture. Maintaining this feed glucose 
while increasing the AA concentration in the feed allowed us to both investigate the 
further acclimatization of the culture and the effect of AA addition in the feed.  
 
 

3. Line 53 it is reported that glucose and AA fed into the bioreactor was changed after 
steady state and this was determined by the hydrogen production, but it is not clear for 
me how this was related. I mean, hoy you decided how much to vary, upon what?  
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RESPONSE: Based on the results of the batch bioassays at increasing feed AA 
concentrations, we assumed that the AA concentration was the inhibiting factor that 
prevented an increasing hydrogen production when increasing the feed glucose 
concentration. We expected that adding AA in the feed would have led to a 
considerable shift towards the LA pathway and, thus, a reduced hydrogen production. 
The increase of feed AA concentration was based on the AA concentration (i.e. 
approximately 30 mM) obtained in the broth when only glucose was fed at 27.8 mM. 
As we did not observe an impairment of the hydrogen production, we continued to 
stepwise increase AA by 30 mM till reaching 240 mM. 

 
4. Until this is not clear I can't have a real picture of your results. It looks like you previosuly 

knew the inflexion points in the fermentation and then acted, but as readears we don't 
know what you did before. The results looks like many parallel experiments and I can't 
see clearly what is the main focus or the sequence in your results, I understand your are 
explaining the graphs you included, but I think that it would be important to guide the 
reader a little thru your results. I recommend a little more structured section of results to 
be easier to understand what you are intending to do. Again, I don't see an optimization 
approach but a sequence of actions which in experimental desing theory is called: 
experiment one-factor at a time. 

RESPONSE: Substrate and end product inhibition is a very common phenomenon in 
fermentation processes. There were merely 2 sets of experiments. One continuous-
flow experiment, consecutively investigating the effect of feed glucose (days 0-82) 
and acetic acid (days 83-110) concentration as described in section 2.2.1. The batch 
experiments described in 2.2.2 were run parallelly to the continuous to determine 
whether a different impact of feed AA occurred on T. neapolitana compared to what 
observed in the continuous-flow experiment. We obtained different results and, thus, 
we concluded that an optimization of the process was achieved under continuous-
flow conditions rather than batch assays, mainly due to an acclimatization of the 
microbial culture at increasing stressing factors. 

 
 
Reviewer #3:  
The manuscript focuses on a very important, interesting and up to date subject. It is well 
written, clear, detailed, well supported on literature discussion and well organized. It has 
quality to be published. 
 
A few comments to the authors are: 
 
1. Page 9 - Equations (1) and (2) - what is the difference between "exp" and the Euler's 

number "e"? The position / place / site of the "e" in both equations is not clear! 
RESPONSE: “exp” stands for exponential function, i.e. “e to the power of …”, whereas 
“e” is the Euler´s number with a value of 2.7183 (approximated). The format of the  
equation was changed in the revised manuscript to assure a better understanding.  
 

2. Page 15 - line 16 - the value 0.27 OD540 /h is not marked / shown in Fig 4A (it is missing). 
RESPONSE: Fig. 4A was corrected in the revised version of the manuscript by adding 
the missing data point.  
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3. Page 16 - line 58 - the values 77.9 mL/L/h and 694 mg CDW /L, associated to Table 3, are 
not presented in Table 3 - at least they could be associated to Table 2, but they are not 
shown in Table 2 as well!  

RESPONSE: The values of each individual operating condition are indicated in Table 2. 
The reference was corrected, and this section rephrased as follows for a better 
understanding: “The elevated concentrations of AA had no negative impact on the 
HPR and the biomass concentration, which varied only slightly between 75.3 (± 2.9) 
and 83.8 (± 2.6) mL/(L h) and 621 (± 19) and 710 (± 26) mg CDW/L, respectively (Table 
2). Similarly, the H2 percentage in the produced biogas remained unaffected by AA 
reaching a value of 69 (± 1)% (data not shown).” 

 
4. Also the use of the "/" twice is not correct - it would be better to write 77.9 mL L-1 h-1 or 

77.9 mL/(L h). 
RESPONSE: The unit was changed to mL/(L h) in the revised version of the manuscript. 
 

5. Page 19 - line 34 - (Fig 1A and 4A) - the reference to Fig 4A is not correct - maybe Fig 5A 
but, anyway, the increase of HY by 47% at the day 110 is not evident in Fig 5A. … In fact, I 
realise now that it is OK but it is missing to say somewhere that Fig 5 is the follow up of 
Fig 1, both of them associated to Table 1. 

RESPONSE: We thank the reviewer for this and, in fact, the correct reference is Fig. 
5A. Additionally to correcting this error, we added a reference to Table 1 in the 
captions of Fig. 4 and 5. The fact that only one continuous-flow reactor was run and 
the conditions were changed sequentially, is described in chapter 2.2.1 and indicated 
by the continuing numbering of the X-Axis of Fig. 1 and 5.  

 
 
Editor's note:  
 

1. "Abbreviations" is not usual for the journal, except in the case of intensive modelling, 
which is not the case here. So, please remove this section and make sure each 
abbreviation is defined at its first appearance in the text 

RESPONSE: The “Abbreviations” section was deleted in the revised manuscript. 
 
2. The overall document is not in BITE format 

(http://www.elsevier.com/journals/bioresource-technology/0960-8524/guide-for-
authors). Please check all the document 

RESPONSE: The format of the document was changed to A4 with wide margins (3 
cm). 
 

3. References list: number them, it is an editorial requirement. Please ensure that you 
follow the maximum limit of references allowed.  

RESPONSE: The manuscript contains 41 references which is below the maximum limit 
of 50.  
 

4. Journal names should be abbreviated according to the List of title word abbreviations: 
http://www.issn.org/2-22661-LTWA-online.php. Check carefully all references, several 
errors are detected. 

http://www.elsevier.com/journals/bioresource-technology/0960-8524/guide-for-authors
http://www.elsevier.com/journals/bioresource-technology/0960-8524/guide-for-authors
http://www.issn.org/2-22661-LTWA-online.php
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RESPONSE: We carefully checked the abbreviations of journal names in the reference 
list and revised where needed. 

 
5. Revise the format of equations 
 RESPONSE: The format of the equations was revised. 
 

6. Format line numbers 
RESPONSE: The line numbers present in the previous submission were added  
automatically by the online submission portal of BITE. In the revised manuscript  
continuous line numbering was added in the word file. 

 
 
Hoping that the revised version meets the criteria for publication in Bioresource Technology, 

I would like to thank you again for the opportunity to revise and resubmit the manuscript. 

 

Sincerely, 

 

Gilbert Dreschke 

on behalf of all the co-authors 



FEED 

Continuous 

H2 - Rate H2 - Yield 

Optimization 

Glucose 

Batch 

H2 - Rate H2 - Yield 

Acetic Acid 

FEED 

Continuous 

H2 - Rate H2 - Yield 

Acetic Acid 

Graphical Abstract (for review)



Highlights 

 Hydrogen production rate increased with increasing feed glucose until 27.8 mM 

 Hydrogen yield was negatively correlated with feed glucose concentration 

 Process performance was unaffected by continuously-fed acetic acid up to 240 

mM 

 Acetic acid reduced the hydrogen yield and production rate in batch bioassays 

 Hydrogen yield increased by 47% in 110 d of continuous operation 

 

*Highlights (for review)



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

1 
 

Effect of feed glucose and acetic acid on continuous 1 

biohydrogen production by Thermotoga neapolitana 2 

 3 

Gilbert Dreschkea*, Stefano Papiriob, Désirée M.G. Sisinnia, Piet N.L. Lensc, Giovanni 4 

Espositob 
5 

 6 

aDepartment of Civil and Mechanical Engineering, University of Cassino and Southern 7 

Lazio, Via Di Biasio, 43, 03043 Cassino, FR, Italy. (E-mail: desiree.sisinni@gmail.com) 8 

bDepartment of Civil, Architectural and Environmental Engineering, University of 9 

Napoli Federico II, Via Claudio 21, 80125 Napoli, Italy. (E-mail: 10 

giovanni.esposito@unicas.it, stefano.papirio@unina.it) 11 

cUNESCO - IHE Institute for Water Education, Westvest 7, 2611-AX Delft, The 12 

Netherlands. (E-mail: p.lens@unesco-ihe.org) 13 

 14 

 15 

 16 

 17 

*Corresponding author 18 

Gilbert Dreschke MSc 19 

Present address:  20 

Department of Civil and Mechanical Engineering, University of Cassino and Southern 21 

Lazio, Via Di Biasio 43, 03043 Cassino, FR, Italy  22 

Email: g.dreschke@unicas.it  23 

*Manuscript
Click here to view linked References

http://ees.elsevier.com/bite/viewRCResults.aspx?pdf=1&docID=111305&rev=1&fileID=2072862&msid={B99DAD3F-8182-42BF-A3D0-6885FC0D774F}


 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 

2 
 

Abstract 24 

This study focused on the effect of feed glucose and acetic acid on biohydrogen 25 

production by Thermotoga neapolitana under continuous-flow conditions. Increasing 26 

the feed glucose concentration from 11.1 to 41.6 mM decreased the hydrogen yield 27 

from 3.6 (± 0.1) to 1.4 (± 0.1) mol H2/mol glucose. The hydrogen production rate 28 

concomitantly increased until 27.8 mM of feed glucose but remained unaffected when 29 

feed glucose was further raised to 41.6 mM. Increasing the acetic acid concentration 30 

from 0 to 240 mM hampered dark fermentation in batch bioassays, diminishing the 31 

cumulative hydrogen production by 45% and the hydrogen production rate by 57%, 32 

but induced no negative effect during continuous operation. Indeed, throughout the 33 

continuous flow operation the process performance improved considerably, as 34 

indicated by the 47% increase of hydrogen yield up to 3.1 (± 0.1) mol H2/mol glucose 35 

on day 110 at 27.8 mM feed glucose. 36 

 37 

 38 

 39 

 40 

 41 

 42 

 43 

Key words: Thermotoga neapolitana; Hydrogen; Continuous-flow dark fermentation; 44 

Acetic acid; Feed concentration; Inhibition 45 
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1. Introduction 46 

In the past decades, our society has been primarily fueled by fossil resources, which 47 

are non-sustainable and polluting energy sources, releasing green-house gases and 48 

other toxic compounds upon combustion (Elbeshbishy et al., 2017). The resulting 49 

aggravation of air pollution, global warming and extreme weather phenomena in 50 

recent years have indicated that a continuing excessive use of fossil fuels will have 51 

devastating results on the climate, sea levels and the quality of living for a large part of 52 

the population worldwide. To counteract this negative trend, an increasing amount of 53 

research is being dedicated to find and establish sustainable sources for clean energy. 54 

Hydrogen has been identified as a highly versatile energy carrier, providing high energy 55 

density, a good conversion efficiency, without creating further pollution upon 56 

combustion (Baykara, 2018). In this regard, biological processes have gained increased 57 

attention, representing a green and sustainable alternative to produce hydrogen. 58 

Among these, dark fermentation is considered the most promising (Arimi et al., 2015), 59 

resulting in a high productivity with a flexible and simple operation (Sivagurunathan et 60 

al., 2016), while allowing the use of waste streams as a substrate.  61 

Thermotoga neapolitana is a hyperthermophilic bacterium which has a high potential 62 

for dark fermentative hydrogen production (Chou et al., 2008; Pradhan et al., 2015). 63 

Hydrogen yields (HY) approaching the theoretical value of 4 mol H2/mol hexose, fast 64 

growth kinetics and a large range of potential substrates are its main advantages 65 

(Pradhan et al., 2015). Up to now, T. neapolitana has been exclusively studied in batch 66 

or semi batch operation with the aim of identifying the optimal range of operating 67 
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parameters such as temperature, pH and mixing (Munro et al., 2009; Nguyen et al., 68 

2008; Pradhan et al., 2015).  69 

However, in large scale applications, a continuous-flow process is generally preferred 70 

(Balachandar et al., 2013; Kumar et al., 2014). Besides the hydraulic retention time 71 

(HRT), one of the most important parameters in a continuous process is the organic 72 

loading rate (OLR), which is defined by the ratio between the influent substrate 73 

concentration and the HRT (Arimi et al., 2015; Elbeshbishy et al., 2017; Sivagurunathan 74 

et al., 2016). The increase of the OLR within a certain range allows a more energy-75 

efficient operation (Jung et al., 2011) and has shown to enhance H2 production in dark 76 

fermentation (Arimi et al., 2015; Elbeshbishy et al., 2017; Hawkes et al., 2007; Lin et 77 

al., 2012; Sivagurunathan et al., 2016).  78 

High feed substrate concentrations do not only lead to an increased hydrogen 79 

production, but also to higher concentrations of fermentation end products, e.g. 80 

volatile fatty acids (VFAs) and alcohols. When these products exceed a certain 81 

threshold level, which is specific to the microbial culture and the particular substrate 82 

used (Lin et al., 2012), inhibition of dark fermentation can occur (Lin et al., 2012; 83 

Sivagurunathan et al., 2016) resulting in changes of the H2 producing pathways as well 84 

as the microbial activity (Ciranna et al., 2014; Jung et al., 2011). Feedback inhibition, 85 

which acts on the HY as well as the hydrogen production rate (HPR) (Tang et al., 2012), 86 

is considered one of the main challenges in dark fermentation (Boodhun et al., 2017). 87 

Therefore, it is essential for a dark fermentative hydrogen production process to find 88 

the substrate concentrations that allow for the highest HPR and efficiency, while 89 

minimizing the effect of inhibitory compounds. 90 
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In the present study, we established for the first time a continuous hydrogen 91 

production process using a pure culture of T. neapolitana. The main goal of this study 92 

was to initially determine the impact of different feed glucose concentrations on the 93 

process yields and rates. Secondly, the inhibition by acetic acid (AA), i.e. the main 94 

fermentation end product, on H2 production and biomass growth was investigated in 95 

both batch and continuous experiments.  96 

2. Material and Methods 97 

2.1. Bacterial culture and medium 98 

A pure culture of Thermotoga neapolitana purchased from DSMZ (Deutsche Sammlung 99 

von Mikroorganismen und Zellkulturen, Braunschweig, Germany) was cultivated and 100 

stored according to Dreschke et al. (2018) and subsequently used in all experiments. 101 

The medium was based on a modified ATCC 1977 medium (Dreschke et al., 2018), in 102 

which glucose and AA concentrations were varied as specified in section 2.2. The 103 

medium was autoclaved at 110 °C for 5 min, pH-adjusted to 7 and sparged with N2 for 104 

10 min to establish anaerobic conditions. 105 

2.2. Experimental design 106 

The continuous and batch experiments were run using a working volume of 2 L, a 107 

constant temperature of 80 °C and a pH of 7, automatically adjusted by adding 5M 108 

NaOH in a 3-L fully controlled, continuously stirred tank reactor (CSTR) (Applikon 109 

Biotechnology, the Netherlands). To avoid pressure build-up, the produced biogas was 110 

continuously released from the headspace of the reactor. 111 
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2.2.1. Continuous process 112 

After the inoculation with 6% (v/v) of storage culture, the reactor was run in batch 113 

mode for 16 h to allow the culture to grow and acclimatize. After this initial phase, the 114 

feeding was started in continuous mode at a flow rate of 83.3 mL/h to maintain an HRT 115 

of 24 h. The feed medium was stored at 4 °C after autoclaving and removing the 116 

oxygen by sparging the headspace of the container with N2 for 10 min. The working 117 

volume was controlled using a level probe. Twice a day, liquid samples were drawn for 118 

the determination of turbidity (OD540), glucose, AA and lactic acid (LA) concentrations. 119 

Furthermore, 200 mL of effluent was taken to determine the cell dry weight (CDW). 120 

The biogas production rate was measured by measuring the time to fill a 500 mL water 121 

displacement system.  122 

The effect of glucose and acetic acid concentration on dark fermentation by T. 123 

neapolitana was investigated by using a “one-factor-at-a-time” method. Initially, the 124 

reactor was operated to investigate the effect of the OLR on dark fermentation by 125 

varying only the glucose concentration in the feed as reported in Table 1. The range of 126 

the feed glucose concentration was based on previous studies using T. neapolitana 127 

(Pradhan et al., 2015). From day 83 onwards, the feed glucose was maintained 128 

constant at 27.8 mM, while only the AA concentration was gradually increased from 30 129 

to 240 mM (Table 1) to evaluate the effect of increasing AA concentrations on the 130 

process. The feed glucose and AA concentrations were changed when a steady state 131 

was reached, determined by a variation of the hydrogen production by less than 10%. 132 

2.2.2. Batch bioassays 133 
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Simultaneously to the continuous-flow operation, batch bioassays were run in order to 134 

assess the effect of the AA concentration (i.e. 0, 30, 60, 90, 120, 180 and 240 mM) on 135 

dark fermentation by T. neapolitana. Prior to investigating each condition, the reactor 136 

was inoculated with 1% (v/v) of storage culture and stirred at 100 rpm for 15 h to allow 137 

the culture to grow and acclimatize. After 15 h, the agitation speed was increased to 138 

500 rpm to accelerate the process. The produced biogas was captured in a 500 mL 139 

water displacement system and quantified every hour. Liquid samples of 2 mL were 140 

drawn every hour to measure turbidity as well as the glucose, AA and LA 141 

concentrations. The fermentation was terminated after 23 h or previously, when the 142 

reactor ceased to produce further biogas. Duplicates were used for each operating 143 

condition.  144 

2.3. Analytical methods 145 

The biomass concentration of batch bioassays was quantified by measuring the optical 146 

density (OD540) at 540 nm (8453 UV-Visible Spectrophotometer, Agilent Technologies, 147 

USA), whereas in the continuous experiment 200 mL of effluent was dried at 105 °C 148 

until constant weight to determine the CDW. Subsequently, the samples were 149 

centrifuged (10,000 rpm at 5 min) and the supernatant was used to measure the 150 

concentrations of glucose, AA and LA applying the method described by Mancini et al. 151 

(Mancini et al., 2018) with an HPLC (Prominence LC-20A Series, Shimadzu, Japan), 152 

equipped with UV/Vis (SPD-20A, Shimadzu Japan) and refractive index (RID-20A, 153 

Shimadzu, Japan) detectors and 0.0065 M of sulfuric acid as the mobile phase. The 154 

hydrogen concentration of the biogas was measured with a Varian 3400 gas 155 

chromatograph (GC), equipped with a thermal conductivity detector (TCD) and a 156 

https://www.labcompare.com/138-Agilent-Technologies/
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Restek packed column using argon as the carrier gas. The hydrogen production was 157 

converted from volumetric to molar by using the ideal gas law (O-Thong et al., 2008). 158 

2.4. Kinetic study of biohydrogen production and biomass growth 159 

The rates of biomass growth and hydrogen production were determined by fitting the 160 

batch experimental data with the Gompertz model as described by Dreschke et al. 161 

(2018). Equations 1 and 2 were applied for biomass growth and hydrogen production, 162 

respectively:  163 

                                       (1) 164 

                                     (2) 165 

where B [OD540] is the biomass concentration at fermentation time t [h]; B0 [OD540] is 166 

the biomass concentration at time 0 h; Bm [OD540] is the gain of biomass concentration 167 

throughout the fermentation; RB is the volumetric biomass growth rate (BGR) 168 

[OD540/h]; and λB is the lag phase of biomass growth [h]; H [mL] is the cumulative 169 

hydrogen at time t [h]; Hm [mL] is the hydrogen produced throughout the 170 

fermentation; RH [mL/(L h)] is the volumetric hydrogen production rate; and λH is the 171 

lag phase of hydrogen production [h]; and e is the Euler's number, i.e. 2.7183. 172 

2.5. Microbial community analysis 173 

On day 82 and 102 of the continuous operation, 3 mL of liquid sample were extracted 174 

for the determination of the microbial community. DNA was extracted, stored and 175 

sequenced as explained by Kostrytsia et al. (2018). Quality filtering, sequence 176 

clustering, chimera removal and taxonomy assignment using the Silva (v.128) database 177 

(Glöckner et al., 2017; Pruesse et al., 2007) was applied on the raw sequence data 178 
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before generating an operational taxonomic unit (OTU) table via the Quantitative 179 

Insight into Microbial Ecology (QIIME v1.9) pipeline (Caporaso et al., 2010). A threshold 180 

of 0.1% was employed to distinguish rare from abundant taxa. 181 

2.6. Statistical analysis 182 

An unpaired t-test using Microsoft Excel 2016 (Microsoft Corporation, USA) was 183 

performed to compare the experimental data obtained under the varying operating 184 

conditions during the continuous-flow experimentation.  185 

3. Results and Discussion 186 

3.1. Effect of glucose concentration in a continuous system  187 

3.1.1. Limit of feed glucose concentration 188 

Fig. 1 shows the evolution of dark fermentation in continuous operation at different 189 

feed glucose concentrations. During phase G1, a feed glucose concentration of 27.8 190 

mM led to a stable process. Within 1 day, a HPR of 55.2 (± 4.7) mL/(L h) (Table 2), a HY 191 

of 2.1 (± 0.2) mol H2/mol glucose and a biomass yield of 26.9 (± 1.2) g CDW/mol 192 

glucose were reached (Fig. 1A) and the produced biogas contained 70 (± 4)% of H2 193 

(data not shown). The process remained stable for the subsequent 10 days of 194 

operation producing 30.9 (± 0.7) mM of AA and 17.6 (± 1.1) mM of LA (Fig. 1B), with an 195 

AA/LA ratio of 1.8 (± 0.2) (Fig. 2A) and a residual glucose concentration of 2.1 (± 0.1) 196 

mM (Fig. 1B).  197 

Increasing the feed glucose concentration to 41.6 mM in phase G2 did not significantly 198 

improve the reactor performance exhibiting an HPR of 53.7 (± 4.0) mL/(L h) (p-value: 199 

0.35), similar to that observed in phase G1 (Table 2). The glucose concentration in the 200 
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effluent increased to 4.2 (± 0.6) mM, while the AA concentration remained unaffected 201 

at 28.2 (± 1.1) mM and the LA concentration significantly increased to 43.2 (± 2.3) mM 202 

(p- value: 1.7 * 10-13) (Fig. 1B), entailing an AA/LA ratio of 0.7 (± 0.1) (Fig. 2A). In T. 203 

neapolitana, only 2 pathways are involved to a relevant extent in the dark 204 

fermentation of glucose, i.e. the AA pathway yielding 4 moles of hydrogen and 4 moles 205 

of ATP per mole of glucose and the energetically less challenging LA pathway 206 

producing no hydrogen but 2 moles of ATP (Balachandar et al., 2013; Pradhan et al., 207 

2015). The AA/LA ratio is, thus, tightly linked to the HY as shown in Fig. 2A and 208 

represents another indicator for the conversion efficiency to hydrogen. Consequently, 209 

the decrease of the AA/LA ratio in phase G2 was accompanied by the reduction of the 210 

HY to 1.4 (± 0.1) mol H2/mol glucose (Fig. 1A and Fig. 2A). 211 

The lower H2 production efficiency at 41.6 mM of feed glucose strongly suggests a 212 

substrate overload of T. neapolitana, which is commonly observed in dark 213 

fermentation (Akutsu et al., 2009; Hafez et al., 2010). For instance, Zhang et al. (2013) 214 

raised the feed glucose concentration from 5 to 15 g/L in a CSTR at an HRT of 6 h using 215 

Clostridium bifermentans 3AT-ma. Similar to our results, this induced a decrease of the 216 

HY and AA concentration from 1.1 to 0.7 mol H2/mol glucose and from 10.0 to 6.8 mM, 217 

respectively, with a sharp increase of the LA and butyric acid concentrations. Zhang et 218 

al. (2013) assumed the VFA accumulation responsible for the HY decrease. Due to the 219 

low residual glucose concentration, i.e. between 2.2 (± 0.0) and 4.2 (± 0.6) mM in the 220 

effluent (Fig. 1B), we assume a similar effect (Elbeshbishy et al., 2017; Zhang et al., 221 

2013) prevented the further AA formation and subsequently limited the hydrogen 222 

production.  223 
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3.1.2. Effect of feed glucose concentration on the hydrogen and biomass 224 

yield 225 

To better study the effect of the glucose concentration on dark fermentation, lower 226 

feed glucose concentrations (i.e. 16.7, 11.1 and 22.2 mM) were used in phases G4, G5 227 

and G6, respectively. The reduction of the feed concentration increased the HY to 3.3 228 

(± 0.2), 3.6 (± 0.1) and 2.9 (± 0.2) mol H2/mol glucose and biomass yield to 39.3 (± 1.8), 229 

47.2 (± 2.3) and 31.6 (± 1.4) g CDW/mol glucose, in phases G4, G5 and G6, respectively 230 

(Fig. 1A). Concomitantly, the AA/LA ratio increased to 4.6 (± 1.1), 6.0 (± 0.7) and 3.8 (± 231 

0.9) (Fig. 2A). This revealed an almost linear negative correlation between the HY and 232 

feed glucose concentration (Fig. 2A), with a maximum yield of 3.6 (± 0.1) mol H2/mol 233 

glucose at the lowest feed (i.e. 11.1 mM) and the concomitant shift from AA to LA at 234 

increasing feed glucose concentrations (Fig. 1B). A similar correlation was observed for 235 

the biomass yield (Fig. 2A). The biomass concentration increased with the feed glucose 236 

concentration until reaching a plateau at 687 (± 21) mg CDW/L above 22.2 mM of feed 237 

glucose (Table 2). It is unclear why the biomass concentration did not increase further 238 

at higher glucose concentrations. 239 

Up to now, the effect of substrate concentration on T. neapolitana activity has 240 

exclusively been studied in batch operation, most commonly in 120 mL closed serum 241 

bottles without pH control (Ngo et al., 2012; Nguyen et al., 2010; Nguyen et al., 2008). 242 

While reporting a notable increase of the HY with increasing glucose (Nguyen et al., 243 

2010; Nguyen et al., 2008) or xylose (Ngo et al., 2012) concentrations up to a certain 244 

threshold level, the results obtained under these conditions are generally highly 245 

affected by the decrease of pH (Brynjarsdottir et al., 2013) and the build-up of the 246 
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hydrogen partial pressure (Ngo et al., 2012). Mars et al. (2010) used T. neapolitana in a 247 

pH-controlled reactor using headspace sparging. When increasing the glucose 248 

concentration from 10 to 27 g/L, the HY and HPR remained similar at 2.9 and 3.0 mol 249 

H2/mol glucose as well as 12.3 and 12.4 mmol/(L h), respectively. However, the 250 

fermentation time increased from 20 to over 71 h. Similarly, the general HPR increased 251 

and HY decreased when increasing the substrate concentration of a continuous-flow 252 

reactor with mixed cultures, using glucose (van Ginkel and Logan, 2005b) or organic-253 

containing wastewater (Lin et al., 2012) as substrates. 254 

3.2. Impact of the initial AA concentration in batch bioassays  255 

3.2.1. Effect on hydrogen production and yield  256 

The batch fermentation of 27.8 mM of glucose by T. neapolitana without AA addition 257 

resulted in a HY of 2.8 (± 0.0) mol H2/mol glucose and an AA/LA ratio of 2.3 (Table 3). 258 

Increasing the initial AA concentration from 0 to 240 mM gradually reduced the total 259 

hydrogen production by 45% from 1739 (± 12) to 950 (± 29) mL/L (Table 3). Up to 120 260 

mM of AA, glucose was completely consumed within 23 h with a 30% decrease of the 261 

HY to 2.0 (± 0.0) mol H2/mol glucose, accompanied by a decline of the AA/LA ratio 262 

(Table 3). 263 

The reduction of the HY at elevated concentrations of fermentation end products is 264 

commonly observed in dark fermentation (Jones et al., 2017; Tang et al., 2012; van 265 

Ginkel and Logan, 2005a; Wang et al., 2008). For example, Ciranna et al. (2014) 266 

reported the decrease of HY from 3.0 (± 0.2) to 0.6 (± 0.4) mol H2/mol glucose when 267 
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increasing the AA concentration from 40 to 225 mM in a batch fermentation of 55 mM 268 

glucose using Caloramator celer in 120 mL closed serum bottles.  269 

In this study, a further increase of the feed AA to 180 and 240 mM led to an elevated 270 

residual glucose concentration, i.e. 7.8 (± 1.2) and 11.0 (± 1.6) mM, in the effluent after 271 

23 h and a slight increase of the HY to 2.1 (± 0.0) and 2.3 (± 0.0) mol H2/mol glucose, 272 

respectively (Table 3). A more detailed analysis revealed that the AA/LA ratio was 161 273 

(± 84) % higher from 15 to 18 h than from 18 to 22 h in all batch bioassays. This 274 

indicates that the HY was higher in the early stages of the experiment. A possible cause 275 

for this effect is the higher initial glucose concentration. Nguyen et al. (2010) reported 276 

a considerable increase of the HY when increasing the initial glucose concentration 277 

from 1 to 4 g/L in batch fermentation by T. neapolitana. Therefore, we assume that the 278 

slightly higher HY at 180 and 240 mM AA was not linked to the AA concentration, but 279 

rather caused by the evolution of the process.  280 

3.2.2. Dark fermentation kinetics 281 

In a continuous-flow operation, the process rate is strongly determined by the 282 

substrate feeding rate. Therefore, batch bioassays were performed to study the effect 283 

of AA on the biomass growth and hydrogen production kinetics of T. neapolitana.  284 

As indicated by the incomplete glucose consumption at 180 and 240 mM AA, an 285 

elevated initial AA concentration notably decreased the dark fermentation rate. To 286 

better compare the results obtained at different AA feed concentrations, a modified 287 

Gompertz model was used to fit the data of hydrogen production and biomass growth 288 

(Fig. 3A and B). Under all operating conditions, the quality of the fit was confirmed by 289 
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an R2 of 0.99 (± 0.00) for hydrogen production and 0.98 (± 0.01) for biomass growth. 290 

Without AA in the medium, the HPR and BGR reached 265 (± 7) mL/(L h) and 0.27 (± 291 

0.03) OD540/h, respectively (Fig. 4A). The low BGR obtained at 0 mM AA was 292 

presumably caused by the high biomass growth already achieved after 15 h (Fig. 3B), 293 

leading to a distorted value from the Gompertz model. 294 

In the range between 30 - 240 mM, the initial AA concentration was found to be 295 

negatively correlated to the BGR and the HPR, which decreased from 0.42 (± 0.06) to 296 

0.24 (± 0.04) OD540/h and from 230 (± 7) to 115 (± 0) mL/(L h), respectively (Fig. 4A). 297 

This corresponds to a deceleration of hydrogen production and biomass growth by 50 298 

and 43%, respectively. The slowdown of the fermentation was furthermore confirmed 299 

by an increase of the lag phase from 14.0 (± 0.3) to 15.7 (± 0.4) h for biomass growth 300 

and from 15.7 (± 0.1) to 18.0 (± 0.1) h for hydrogen production (Fig. 4B). Both lag 301 

phases were similarly affected by the AA concentration increase by approximately 2.5 302 

h in the studied AA concentration range (i.e. 0 - 240 mM) (Fig. 4B). However, the 303 

hydrogen production initiated about 2.2 h after the biomass growth according to the 304 

Gompertz analysis.  305 

Mars et al. (2010) previously investigated the effect of increased AA concentrations on 306 

the performance of T. neapolitana using closed 120 mL serum bottles without pH 307 

control. They reported biomass growth at up to 300 mM AA with a decreasing amount 308 

of total VFAs produced with increasing initial AA concentration. However, they did not 309 

present detailed information on the production of AA and hydrogen or the evolution of 310 

the fermentation. 311 
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The effect of AA on dark fermentation of pure cultures was studied in more detail by 312 

Van Niel et al. (2003) and Ciranna et al. (2014) in 120 mL closed serum bottles without 313 

pH control. Van Niel et al. (2003) added sodium acetate in the exponential growth 314 

phase of the extreme thermophile Caldicellulosiruptor saccharolyticus obtaining 315 

concentrations from 0 to 300 mM AA, while Ciranna et al. (2014) investigated the 316 

effect of an initial AA concentration up to 350 mM on Caloramator celer. Both studies 317 

observed a drastic decrease of the process rate, revealed by a reduction of the HPR 318 

and the BGR. Concomitantly, they reported no further biomass growth above 200 mM 319 

AA for Caldicellulosiruptor saccharolyticus (van Niel et al., 2003) and approximately 320 

150 mM AA for Caloramator celer (Ciranna et al., 2014). In both studies, increasing the 321 

undissociated AA fraction in the fermentation broth due to a pH decrease did not alter 322 

the inhibitory effect. Furthermore, Van Niel et al. (2003) found the inhibition of sodium 323 

chloride and sodium acetate to be identical. Therefore, both studies concluded that 324 

ionic strength was responsible for the inhibition of dark fermentation rather than the 325 

free AA.  326 

3.3. Effect of acetic acid concentration in a continuous system  

In the second stage of the continuous process, the feed AA concentration was 327 

gradually increased from 0 to 240 mM. The elevated concentrations of AA had no 328 

negative impact on the HPR and the biomass concentration, which varied only slightly 329 

between 75.3 (± 2.9) and 83.8 (± 2.6) mL/(L h) and 621 (± 19) and 710 (± 26) mg 330 

CDW/L, respectively (Table 2). Similarly, the H2 percentage in the produced biogas 331 

remained unaffected by AA reaching a value of 69 (± 1)% (data not shown). Glucose 332 

was completely consumed under all operating conditions (Fig. 5B), entailing that also 333 
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the hydrogen and biomass yields remained constant at 3.0 (± 0.2) mol H2/mol glucose 334 

and 27.1 (± 1.6) g CDW/mol glucose, respectively (Fig. 2B and 5A). Hence, contrary to 335 

the results obtained in the batch bioassays, the increase of the feed AA concentration 336 

had no effect on the continuous-flow dark fermentation. In particular, the HY of the 337 

continuous process increased by approximately 6% at 0 mM AA and 48% at 120 mM 338 

AA compared to the batch experiments. We assume that the prolonged cultivation at 339 

high AA concentrations allows T. neapolitana to adapt its metabolism and continue to 340 

ferment via the energetically more challenging AA pathway, which results in a higher 341 

yield of ATP (Pradhan et al., 2015).  342 

Van Ginkel (van Ginkel and Logan, 2005a) studied the effect of undissociated VFAs on 343 

continuous dark fermentation of a mixed culture operated at 30 °C, an HRT of 10 h and 344 

a stable pH of 5.5 with glucose (10 – 50 g/L) as a substrate. A total AA concentration of 345 

approximately 10, 100 and 165 mM, resulting in an undissociated AA concentration of 346 

2, 15 and 25 mM, induced HYs of about 2.5, 2.4 and 2.0 mol H2/mol glucose and HPRs 347 

of 0.29, 0.30 and 0.20 L/h, indicating a little effect of non-dissociated AA on H2 yields. 348 

Jones et al. (2017) ran a continuous hydrogen production reactor with a mixed culture 349 

(35 °C; pH 5.5; HRT 48 h and 40 g sucrose/L as a substrate) applying electrodialysis to 350 

remove VFAs from the liquid phase. When the AA concentration was decreased from 351 

3.08 to 1.77 g/L, the HY increased from 0.24 to 0.90 mol H2/mol hexose and the 352 

carbohydrate consumption from 12 to 25%, indicating a higher dark fermentation rate. 353 

3.4. Improved culture performance due to acclimatization at prolonged 354 

cultivation 355 
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Within the course of the continuous-flow operation, an initial glucose concentration of 356 

27.8 mM was repeatedly used in phases G1, G3 and G7 to confirm the reproducibility 357 

and investigate the acclimatization of the culture. After 26 days of cultivation, the 358 

reactor performance in phase G3 remained comparable to that previously observed in 359 

phase G1, as demonstrated by the similar values of hydrogen and biomass yield (Fig. 360 

1A) as well as fermentation end products (Fig. 1B). However, when using 27.8 mM as 361 

feed glucose again in phase G7 after 65 days of operation, an HY of 2.7 (± 0.1) mol 362 

H2/mol glucose (Fig. 1A) was obtained, which was significantly higher (i.e. by 363 

approximately 29%; p- value: 2.0 * 10-13) than that observed in phase G1. 364 

Concomitantly, the AA/LA ratio increased to 3.5 (± 0.8) (Fig. 2A), while the biomass 365 

yield remained constant at 27.8 (± 1.0) g CDW/mol glucose (Fig. 1A). The same trend 366 

continued when raising the feed AA concentration from 0 to 240 mM with the HY 367 

increasing by a further 12% from 2.8 (± 0.2) to 3.1 (± 0.1) mol H2/mol glucose (p- value: 368 

9.5 * 10-7) (Fig. 2B and 5A) and a simultaneous reduction of the LA concentration from 369 

11.1 (± 2.0) to 3.4 (± 0.2) mM (Fig. 5B). Hence, the HY increased by a total of 47% 370 

throughout the 110 days of continuous-flow operation (Fig. 1A and 5A). We presume 371 

that this substantial improvement of the process efficiency was directly correlated to 372 

an acclimatization of T. neapolitana. 373 

The importance of acclimatization has previously been demonstrated for mixed 374 

cultures (Haroun et al., 2016), where it is generally considered as a shift in the 375 

microbial community structure (Cisneros-Pérez et al., 2017; Dessì et al., 2017). 376 

However, this study demonstrates that acclimatization also occurs in pure cultures in 377 

terms of a metabolic shift and represents a large potential to enhance the process 378 
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performance in continuous fermentation. Acclimatization in pure cultures is still poorly 379 

understood and can require long operation times, which complicate the assessment of 380 

the culture potential.  381 

3.5. Mechanisms for end product inhibition  382 

Several effects have been discussed in the literature to explain the inhibition of high 383 

end product concentrations on dark fermentation (Elbeshbishy et al., 2017). The most 384 

common is the decrease of the extracellular pH until the normal functions of the cell 385 

cannot be kept active (Elbeshbishy et al., 2017; Srikanth and Venkata Mohan, 2014). 386 

This mechanism can be excluded in the present study, as the pH was continuously 387 

controlled at 7. At acidic pH, inhibition may also occur due to the presence of 388 

undissociated organic acids (Elbeshbishy et al., 2017; Srikanth and Venkata Mohan, 389 

2014), which penetrate the cells and disrupt the cell functions by changing the 390 

intracellular pH and osmolarity (Akutsu et al., 2009). In this study, a concentration of 391 

270 mM AA (240 mM fed + approximately 30 mM produced) was observed in the 392 

reactor at the highest AA feed. At pH 7, this results in an undissociated AA 393 

concentration below 2 mM, calculated via the equation presented by Akutsu et al. 394 

(2009), and its inhibitory effect on the process was therefore considered negligible. 395 

Ciranna et al. (2014) identified the increase of ionic strength to be responsible for the 396 

feedback inhibition. However, Pradhan et al. (2017) reported no effect of salinity on HY 397 

and biomass growth of T. neapolitana up to 855 mM of NaCl. Jones et al. (2017) 398 

ascribed dark fermentation inhibition by VFAs to be a thermodynamic limitation.  399 

3.6. Microbiological considerations 400 
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In the MiSeq, the bacterial community analysis after 102 days of continuous operation 401 

revealed 2 genera above 0.1% relative abundance, i.e. Thermotoga and Enterococcus 402 

with 98 and 2%, respectively. As Enterococci are mesophilic bacteria growing in the 403 

range from 10 to 45 °C (Sherman, 1937), their minor appearance in the community 404 

analysis was most likely caused by a contamination during sampling. Further evidence 405 

for an exclusive substrate degradation by T. neapolitana was provided by the 406 

composition of end products in the effluent. Throughout the 110 d of continuous 407 

operation the sum of AA and LA, constituted for 95 (± 10)% of the glucose consumed. 408 

Nguyen et al. (2010) reported that batch bioassays using T. neapolitana remained free 409 

of contamination due to the extreme growth temperature of 80 °C. Our results suggest 410 

that this finding also applied to a prolonged cultivation of 102 days in non-sterile 411 

continuous operation. 412 

Conclusions 413 

During dark fermentation by T. neapolitana, increasing feed glucose concentrations 414 

from 11.1 to 27.8 mM simultaneously led to higher HPR and lower HY. When further 415 

raised to 41.6 mM, the additional glucose was metabolized to LA without producing 416 

extra hydrogen, resulting in stable HPR and AA production. Increasing the feed AA 417 

concentration up to 240 mM induced no negative effect, suggesting that biohydrogen 418 

production was not hampered by end-product inhibition. Moreover, the HY improved 419 

by 47% throughout the 110 days of continuous cultivation, reaching a final value of 3.1 420 

(± 0.1) mol H2/mol glucose at 27.8 mM feed glucose.  421 
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Fig. 1: Continuous hydrogen production by T. neapolitana at varying feed glucose (Glu) 441 

concentrations (11.1 – 41.6 mM) and a HRT of 24 h (Table 1; G1-G7). Yields of biomass (BMY) 442 

and hydrogen (HY) (A) as well as residual Glu, acetic acid (AA) and lactic acid (LA) 443 

concentrations in the effluent (B). 444 

Fig. 2: Hydrogen yield (HY), biomass yield (BMY) and acetic acid to lactic acid ratio (AA/LA) of a 445 

continuous dark fermentation by T. neapolitana at (A) different feed glucose (11.1 – 41.6 mM) 446 

and (B) acetic acid (0 – 240 mM) concentrations. 447 

Fig. 3: Evolution of cumulative hydrogen (A) and biomass growth (B) in batch bioassays 448 

fermenting 27.8 mM glucose with T. neapolitana at different initial AA concentrations (0 – 240 449 

mM). The symbols depict the experimental data while the lines exhibit the Gompertz model.  450 

Fig. 4: Effect of different initial acetic acid (AA) concentrations on (A) biomass growth (BGR) 451 

and hydrogen production (HPR) rates and (B) the lag phases of hydrogen production (HP) and 452 

biomass growth (BG) during the batch dark fermentation of 27.8 mM of glucose as substrate 453 

with T. neapolitana.  454 

Fig. 5: Continuous hydrogen production by T. neapolitana at varying feed acetic acid (AA) 455 

concentrations (0 – 240 mM) at 27.8 mM of feed glucose (Glu) concentration and an HRT of 24 456 

h (Table 1; AA1-AA6). Yields of biomass (BMY) and hydrogen (HY) (A) as well as AA, lactic acid 457 

(LA) and residual Glu concentration in the effluent (B). 458 

459 
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Table 1: Feed glucose (Glu) and acetic acid (AA) concentrations used in the operation of the 

continuously stirred tank reactor aimed at dark fermentation by T. neapolitana. Seven (G1 - G7) 

and six (AA1 – AA6) experimental phases were used to assess the effect of Glu and AA, 

respectively. Feed Glu remained at 27.8 mM when increasing the feed AA. 

Phase Feed Glu [mM] Operation period [d]  Phase Feed AA [mM] Operation period [d] 

G1 27.8 0 - 14  AA1 30 83 - 87 

G2 41.6 15 - 25  AA2 60 88 - 92 

G3 27.8 26 - 36  AA3 90 93 - 96 

G4 16.7 37 - 47  AA4 120 97 - 107 

G5 11.1 48 - 54  AA5 180 102 - 106 

G6 22.2 55 - 64  AA6 240 107 - 110 

G7 27.8 65 - 82     

 

Table 1



 

 

Table 2: Hydrogen production rate (HPR) and biomass concentration (BM) obtained during the 

continuous dark fermentation by T. neapolitana at different feed glucose (phases G1 – G7) and 

acetic acid (phases AA1 – AA6) concentrations.  

Phase 
Feed Glu 

[mM] 

HPR 

[mL/(L h)] 

BM 

[mg CDW/L] 

 
Phase 

Feed AA 

[mM] 

HPR 

[mL/(L h)] 

BM 

[mg CDW/L] 

G1 27.8 55.2 (± 4.7) 698 (± 39)  AA1 30 79.7 (± 2.6) 701 (± 34) 

G2 41.6 53.7 (± 4.0) 703 (± 20)  AA2 60 78.3 (± 3.1) 678 (± 18) 

G3 27.8 54.7 (± 4.9) 679 (± 21)  AA3 90 75.3 (± 2.9) 621 (± 19) 

G4 16.7 50.3 (± 3.2) 574 (± 27)  AA4 120 78.5 (± 3.9) 694 (± 23) 

G5 11.1 33.8 (± 0.8) 440 (± 26)  AA5 180 83.8 (± 2.6) 703 (± 47) 

G6 22.2 61.2 (± 4.3) 655 (± 54)  AA6 240 80.8 (± 1.8) 710 (± 26) 

G7 27.8 72.8 (± 3.4) 702 (± 36)      

 

Table 2



 

 

Table 3: Cumulative hydrogen production and hydrogen yield (HY), final concentrations of 

glucose (Glu), acetic acid (AA) and lactic acid (LA) in the effluent and the molar AA/LA ratio after 

the batch dark fermentation of 27.8 mM of glucose by T. neapolitana at different initial AA 

concentrations (0 – 240 mM). 

 

Initial AA 

[mM] 

Cumulative H2  

[mL] 

HY  

[mol/mol] 

residual Glu  

[mM] 

AA  

[mM] 

LA  

[mM] 
AA/LA ratio 

0 1739 (± 12) 2.8 (± 0.0) 2.7 (± 0.1) 33.2 (± 0.2) 14.6 (± 0.9) 2.28 

30 1474 (± 112) 2.4 (± 0.2) 2.7 (± 0.1) 29.2 (± 0.1) 17.5 (± 1.6) 1.67 

60 1402 (± 27) 2.3 (± 0.0) 3.2 (± 0.2) 28.6 (± 2.1) 18.0 (± 2.4) 1.59 

90 1273 (± 54) 2.1 (± 0.0) 3.2 (± 0.1) 27.6 (± 0.6) 20.7 (± 0.6) 1.34 

120 1167 (± 34) 2.0 (± 0.0) 3.8 (± 1.0) 27.0 (± 1.1) 21.2 (± 2.3) 1.28 

180 1066 (± 67) 2.1 (± 0.0) 7.8 (± 1.2) 18.4 (± 1.8) 15.4 (± 1.4) 1.20 

240 950 (± 29) 2.3 (± 0.0) 11.0 (± 1.6) 16.5 (± 1.2) 11.2 (± 0.2) 1.48 

Table 3


