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Abstract

Through-the-thickness (TT) confinement of masonry and concrete panels by compos-

ite or steel reinforcements, aiming at seismic retrofit of existing structures, has recently

growth in popularity. However, structural design of transversal reinforcements, mod-

eled as an homogeneized material, is often performed by neglecting the cyclic nature

of seismic actions and by using static approaches. For this reason, a proper strength

hierarchy between the confined core material and the confining devices should be ac-

counted for in order to ensure that the retrofit system remains effective until the crisis

of the core material is attained. This research introduces strength hierarchy conditions

for TT-confinement systems, made of materials exhibiting a nonlinear behavior, aim-

ing at determining the minimum strength required for uniaxial confining devices. The

relevant relationships, theoretically derived by assuming a Drucker Prager constitu-

tive model for the confined material and by enforcing equilibrium and compatibility

conditions between the core and the confining devices, are characterized by simple

mechanical parameters, usually available in common practice applications, familiar to

most of the designers. Numerical examples confirm the effectiveness of the proposed

provisions.

Keywords: Through-the-thickness confinement; fiber-reinforced masonry; strength

hierarchy.
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1. Introduction

Use of confining devices for retrofitting reinforced concrete (rc) or masonry struc-

tures has become a very popular technique because of the well known positive effect

induced by confinement on strength and ductility of the core material. In particular,

confinement devices introduce a binding effect that enhances the deformative capacity

of confined material and induces a transversal stress component able to increase the

compressive spherical part of the stress tensor [1, 2, 3]; this last effect, in particular, is

highly beneficial for the strength capacity of a large variety of building materials. As a

matter of fact, such a strategy turns out to be very efficient for the retrofit of reinforced

concrete beams and columns [4, 5, 6] as well as for masonry [7, 8, 9, 10].

With reference to the latter issue, retrofit of masonry columns by FRP confine-

ment devices has proved to be an efficient strategy, particularly feasible for existing

structures [7, 8]. Nevertheless, the design of one-dimensional confined elements is

addressed by strategies taking benefit of radial symmetry conditions of the confining

stress, such as the Mander’s model for confined concrete [9], which holds only for

cylindrical confinement.

Recent applications concerning the reinforcement of two-dimensional structural el-

ements have been devoted to characterize confinement effects on stone masonry [10,

11, 12] and brick walls [13], with particular emphasis on the use of Fiber-Reinforced

Polymer (FRP) materials as confining devices [14]. Although, in common design prac-

tice strength and ductility increment induced by confining devices is accounted for by

adopting increased values for the uniaxial failure stress and strain [15]. Such an ap-

proach discards both the real multi-axial stress-strain state of plane structural elements

[16, 17] as well as the interaction between the confined core of the reinforced elements

and the confining devices.

This last aspect is of particular interest since premature failures either of the con-

fining devices or of their anchorages to the core material dramatically compromise the

strength capacity of the reinforced elements. In particular, while confinement is eas-

ily accounted for by enhancing the mechanical properties of the confined materials,

the cyclic behavior of confining material is neglected even for structures subjected to
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seismic actions.

An important aspect concerning the mutual relationship between the confining de-

vices and the confined core concerns a proper design of the strength of both com-

ponents. In particular, it is desirable that confining devices are sufficiently resistant

to avoid premature failure with respect to the collapse of the confined core. Such a

strength hierarchy should prevent dangerous drops of ductility and subsequent fragile

collapses, especially in presence of cyclic actions. Actually, as discussed in Section

2, strength of the confining devices, although sufficient from a static point of view,

could not be adequate in the case of cyclic loading. For this reason, it is important to

develop a proper design rule in order to ensure that the confined core attains its ulti-

mate strength before that confining elements collapse. However, current research has

not yet focused on the definition of appropriate strength hierarchy provisions between

confined material and confining devices.

Aiming at filling this gap, the present research proposes capacity requirements for

confinement devices and their anchorages to the core material. Provisions are derived

by simple and reliable theoretical models based on the use of a limited number of

constitutive parameters. Hence, two strength hierarchy equations referring to the op-

erative conditions of active and passive confinement are presented in Section 3. Both

expressions furnish the minimum yield stress required by confining devices and their

anchorages as a functions of the constitutive parameters of the confined core. These

conditions are obtained by considering a Drucker-Prager constitutive relationship [18]

for the confined material and either an elastic-fragile or an elastic-plastic model for the

the confinement devices, which are schematized as transversal one-dimensional ties.

Such an approach is based on the finite element formulation of confined shells, pro-

posed in [19, 20], which enforces equilibrium and compatibility conditions along the

transversal direction of the confined elements.

The proposed strength hierarchy provisions are discussed in Section 4, where a

physical interpretation of the mathematical terms relevant to the proposed expressions

is also reported. Moreover, the influence of the constitutive parameters, such as the

Poisson’s ratio of the confined material and the stiffness of the confining devices, is

investigated.
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The effectiveness of the provided relationships is investigated in Section 5 by means

of two numerical applications. Reported results show the behavior of an elementary

specimen subject to biaxial static loads and the response of a masonry panel subject to

a two-components in-plane ground motion.

Finally, conclusions are drawn in Section 6 where directions of future researches

are also discussed.

2. Transverse confinement of shells

Retrofit of existing masonry by transverse confinement usually consists in reinforc-

ing both lateral surfaces of the core masonry by steel or FRP nets protected by a thin

concrete casting. In order to provide confinement, lateral reinforcements are connected

by transverse links crossing the masonry as shown in Figure 1, where a typical layout

of a confining retrofit is presented.

Nowadays a large variety of transverse connections is used in common practice; in

particular, steel stirrups are very popular because of their low cost and easy installation

and setup. Nevertheless, the use of Fiber-Reinforced Polymer (FRP) ropes, such as the

ones shown in Figure 2, has become attractive because of their capability of providing

reversible and low-impact retrofits of historic buildings.

In general, regardless of the nature of the tie materials, such devices present a

tensile-only behavior since they are barely capable of bearing compressive loads. Ac-

tually, the compressive strength of ties is very limited since such slender elements are

subject to buckling phenomena and because of the low strength of anchorages subjected

to pull-out actions. Therefore, it is reasonable to neglect the compressive contribution

of the transverse ties and to assume tensile-only behavior.

Confining action of the transverse ties increases masonry strength and ductility. In

particular, it enhances the compressive strength of masonry due to the beneficial effect

of the triaxial stress state. Such experimentally observed phenomenon represents the

theoretical basis of several strategies that model confinement in concrete and masonry

[9] by employing the Drucker-Prager yield criterion [18].

Compressive actions induced by transverse ties can be regarded as concentrated

4



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

x̂
ŷ
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Figure 1: Scheme of a masonry shell confined by Through-the-Thickness ties

Figure 2: Oly Rope Aramide Kevlar transverse ties type (courtesy of Olympus srl)

Figure 3: Neighborhood of a masonry chord confined by smeared Through-the-Thickness ties.

loads applied to the core and their effectiveness depends on the actual tie distribution.

However, analysis strategies dealing with the real ties distribution are complex and

computationally demanding; hence they are not easily used for the analysis real-scale

structural models.

To overcome this drawback, a smeared formulation of the confinement effects can

be used. Such an approach has been already implemented within a finite element-

based algorithm [19, 20] for the analysis of confined shells. Such a strategy analyzes

the neighborhood of a shell chord associated with a point P of the shell mid-plane, i.e

the plane x − y shown in Figure 3. This neighborhood includes an internal core of

thickness δ confined by a uniaxial transverse tie directed along the axis z, orthogonal
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to the shell mid-plane.

The smeared formulation characterizes the transverse tie by means of the confine-

ment ratio µ = Ωt/Ω between the area Ωt of the ties and the total area Ω of the

confined shell. In the adopted formulation the presence of external, unconfined, layers

is contemplated as well.

Confinement is modelled by means of equilibrium and compatibility conditions

enforced by

σz (P, z) + µσt (P ) = 0; z = ±δ/2 (1)∫ δ/2

−δ/2
εz (P, z) dz = δεt (P ) (2)

respectively.

Equation (1) expresses equilibrium along the z axis and includes the stress compo-

nent σz and the uniaxial stress of the transverse ties σt normalized by the confinement

area ratio µ. Note that the effect of the stress components τzx and τzy has not been

included within Eq. (1) since shear stresses associated with FRP or steel ties are negli-

gible with respect to the shear stiffness of the external layers.

Equation (2) enforces compatibility between the tie and the confined core. In par-

ticular, assuming a constant uniaxial strain εt (P ) of the transverse tie and indicating

by εz (P, z) the strain component of the confined core along z, Equation (2) equates

the elongation δεt of the transverse tie and the stretching of the confined core along z.

The latter is computed as the integral of εz (P, z) along the core thickness.

Differently from typical approaches to the analysis of unconfined panels [21, 22,

23], which employ a plane stress assumption, the present formulation considers a tri-

axial stress state of the confined core accounting for confinement effects. Such an ap-

proach has been already been applied to static [19, 20], time-history dynamic [24, 25]

and reliability analyses [26, 27] showing that both strength and ductility of non-linear

shells are improved by the presence of transverse confinements.

2.1. Degradation of confinement devices under cyclic loading

Dynamic analyses presented in [24] and [25] prompted an issue which did not

emerge in static analyses [19] concerning the behavior of the transverse ties. In partic-
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ular, the presence of several load cycles has shown that the post-yielding behavior of

transversal ties can foster a progressive deterioration of the confinement action. Hence,

confining devices have to be designed with the goal of avoiding yielding or breakage

of these elements.

The importance of a proper design of the transverse ties strength is trivial for the

case of elastic-fragile materials such as carbon or kevlar fibers. In fact, the attainment

of the maximum strength of the confinement causes failure of the transverse ties or of

their anchorage; this compromises confinement of the core material.

For what concerns the employment of elastic-plastic confinement devices, cyclic

analyses have shown that yielding of the transverse ties causes cumulative residual

strain within these elements. Hence, the right-hand side of the compatibility Equation

(2) has to include the cumulated plastic strain within the tie as well. This implies that

confinement becomes effective only after that the transverse stretching of the core ma-

terial recovers such a cumulated plastic strain. This phenomenon can become critical

since a reduced confinement can significantly adulterate the behavior of the shell core

which, as an extreme consequence, could collapse before that the confinement system

becomes effective again.

3. Computation of the transverse ties limit stress

In order to avoid premature crisis of the transverse ties, suitable design boundaries

capable of enforcing a strength hierarchy between transverse ties and the confined core

are introduced. In particular, stress limit of the ties should be sufficiently high to en-

sure that shell core can attain its limit state before that failure of the ties compromises

the confinement. To this end, it is useful to define the Transverse Reinforcement Re-

quired Strength (TRRS), denoted by σ◦TT and σ?TT for the case of active and passive

confinement, respectively, as the minimum value that the stress limit of the transverse

confinement system (depending on the strength of the reinforcements and/or of their

anchorages) must assume in order not to collapse or yield before that the confined

core fails. The values of σ◦TT and σ?TT will be estimated below by assuming either

an elastic-fragile or elastic-plastic stress-strain relationship characterized by Young’s
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modulus Es and a stress limit σs for the transverse ties. Confined core is assumed to

have an elastic-plastic behavior with Young’s modulus Ec, Poisson’s ratio νc and yield

condition described by Drucker-Prager limit surface [18]. Such a constitutive model

is very popular for modelling multiaxial behavior of existing masonry [28, 29] and re-

quires the determination of a limited set of parameters easily identifiable in practical

applications. Hence, it is particularly suitable for the application at hand.

Denoting by σ1, σ2 and σ3 the principal stress components, the Drucker Prager

limit surface is defined as:

fl (σ) =

√
(σ1 − σ2)

2
+ (σ2 − σ3)

2
+ (σ3 − σ1)

2

√
3

− ρI − σy ≤ 0 (3)

where I = (σ1 + σ2 + σ3) is the first stress invariant while σy and ρ are constitutive

parameters given by:

σy =
2 |σc|σt
|σc| − σt

(4)

ρ =
σt + |σc|
|σc| − σt

√
2

3
(5)

σc and σt denoting the compressive and tensile uniaxial stress limits, respectively.

A stress cap defined by

fp (σ) = py − I ≤ 0 (6)

is used to introduce a boundary py < 0 to the spherical stress I . Although several

formulations are available in the literature for defining the cap of the Drucker Prager

surface [30, 31, 32, 33], we deliberately choose the form of Eq. (6) for the sake of

simplicity. Actually, it represents the equation a plane orthogonal to the hydrostatic

axis encompassing all the alternative cap formulations.

A geometrical interpretation of the Drucker-Prager criterion can be visualized in

the space of principal stress components, having unit basis vectors ê1, ê2 and ê3, see,

e.g., Figure 4. Here the yield surface is represented by a blue cone having its axis

laying on the hydrostatic axis, which is represented as a black dashed line having unit

vector î. The circular cross-section of the cone lies in the deviatoric plane which the

orthogonal unit vectors d̂ and d̂⊥ belong to, see, e.g. Figure 5.
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Figure 4: Drucker Prager yield surface and deviatoric reference system represented in the principal stress
space

Figure 5: Deviatoric plane and reference system

The unit vectors î, d̂ and d̂⊥ have components

î =


1√
3

1√
3

1√
3

 ; d̂ =


−1√
6

−1√
6√
2
3

 ; d̂⊥ =


1√
2

−1√
2

0

 (7)

so that d̂ is the unit vector obtained by projecting ê3 onto the deviatoric plane. The

vectors î and d̂ define a plane that contains the hydrostatic axis and the axis σ3; it is

represented by the green grid in Figure 4.

Denoting by σd the norm of the stress deviatoric stress σd and by θ the angle

between σd and d̂, the ith principal stress component can be expressed as a function

9
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of I , σd and θ as

σi = I/3 + σd

[
cos θd̂ + sin θd̂⊥

]
· êi i = 1 . . . 3 (8)

which specializes to

σ1 = I/3 + σd

(
1√
2

sin θ − 1√
6

cos θ

)

σ2 = I/3− σd
(

1√
2

sin θ +
1√
6

cos θ

)

σ3 = I/3 + σd

√
2

3
cos θ

(9)

This representation of the principal stress components allows one to rewrite the yield

condition (3) as:

fl (σ) = σd − σy

√
2

3
+ ρI ≤ 0 (10)

Both yield conditions (6) and (10) are independent from the actual order used to sort

the three principal stresses components σ1, σ2 and σ3; hence the three expressions in

Eqs. (9) are interchangeable.

The following two sub-section have the objective of providing suitable estimates

of the TRRS for the cases of active and passive confinement, respectively. Actually,

transversal stresses associated with active confinement devices are commonly defined

by the designer, while confining stresses associated with passive confinement devices

depend on the transverse stretching of masonry. Hence, these conceptually different

confinement techniques require distinct assumptions for a proper derivation of the rel-

evant strength requirements.

3.1. TRRS for active confinement

Active confinement techniques produce additional stress states within the core ma-

terial introduced by means of post-tensioned confining devices, such as the DIS-CAM

system [34], or more traditional Dividag bars and tendons. The additional stress state
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is superimposed to the one already acting within the confined structural elements and,

according to the equilibrium condition (1), the confinement stress σt will keep propor-

tional to the core stress component σz by means of the confinement area ratio µ.

Due to Equations (6) and (10), Drucker-Prager yield condition imposes a precise

limit to the stress values within the confined material. Accordingly, σz , or equivalently

σt, turns out to be limited by the yielding of confined core. This limit value, indi-

cated by σ−z , represents the maximum confinement action that the confined core can

withstand.

It is worth noting that the above mentioned formulas of the yield surface are ex-

pressed in terms of the principal stress components σ1, σ2 and σ3, while the limit

stress σ−z is the normal stresses orthogonal to the shell mid plane. In general, the stress

component σz does not coincide with a principal stress due to the presence of tangen-

tial components τzy and τzx, see, e.g, Figure 3. However, a generic normal stress σn̂,

computed on a plane of unit normal n̂, always fulfils the condition:

min (σ1, σ2, σ3) ≤ σn̂ ≤ max (σ1, σ2, σ3) ∀n̂

Thus, being σ−z the absolute maximum compressive stress acting on the confined core,

it must coincide with the lower principal stress component. Accordingly, when such

a limit is attained, z becomes a principal stress direction and σz = µσt = σ−z is the

corresponding principal stress.

Employing the third formula in Eq. (9) to express such a principal stress value, the

theoretical boundary of the transverse stress can be determined by minimizing σ3 for all

possible values of I , σd and θ. It is easy to verify that such a minimum is attained when

both yielding conditions (10) and (6) are fulfilled with the equal sign and cos θ = −1;

hence

σ−z = min(σ3) =
py
3
− 2

3
σy + pyρ

√
2

3
(11)

Therefore, the corresponding hierarchy condition for the active-confinement TRRS

stress σ◦TT is

µσs ≥ σ◦TT =
2

3
σy + |py|

(
1

3
+ ρ

√
2

3

)
(12)

11



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

where σs denotes the limit stress of transverse ties.

Note that condition (11) has been obtained by employing only equilibrium and

yield conditions. Although conservative, it represents the ultimate value that the com-

pressive stress can reach within the confined core. Therefore, Equation (12) represents

a physical boundary for the stress acting in the transverse ties regardless of the actual

stress state associated with the confined core.

3.2. TRRS for passive confinement

The theoretical boundary of the transverse stress computed by Equation (12) turns

out to be excessively conservative for the case of passive confinement. Actually, in this

case, transversal stress is generated by the contrast between the confining device and

the lateral expansion associated with the Poisson effect in the confined core. Hence,

for passively confined shells, the value of the transverse stress does depend upon the

actual stress state acting within the confined core.

Differently from the TRRS computed for active confinements, the limit stress asso-

ciated with passive confinement devices also depends upon the compatibility condition

(2) which is used to express the contrast between taut ties and expanding confined

core. Assuming that stresses within the confined core and within the transverse ties lay

in the elastic range, the transversal strain associated with these structural elements is

computed as

εt =
σt
Es

εz =
σz
Ec
− νc
Ec

(σx + σy)

(13)

where dependence upon P has been omitted for brevity. Here, Es represents the

Young’s modulus of the transverse ties while Ec and νc are the Young’s modulus and

the Poisson’s ratio of the shell core material, respectively. Equations (13) are used in

(2) which is then solved for σt. The resulting expression of σt is then used within the

equilibrium Equation (1), yielding:

− σz
µEs

=
σz
Ec
− νc
Ec

(σx + σy) (14)

12
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where dependence upon P has been omitted for brevity.

Stress components in (14) are required to fulfil the Drucker Prager limit conditions

expressed by Eqs. (3) and (6). These conditions are written in terms of pricipal stress

components, while Eq. (14) contains the normal stress components referred to the

Cartesian reference frame laying in the shell mid-plane, where also the shear stress

components τzy and τzx are present (see, e.g., Fig. 3). However, the maximum stress

within passive ties is activated when the core material expands constantly along the

transversal direction. This happens when σ3 is constant along the shell chord so that, by

equilibrium, τzy = τzx = 0. Incidentally, this phenomenon has been already pointed

out in [19], where it has been shown how the highest effect of transversal confinement

is achieved when the shell is subjected to in-plane loadings.

Accordingly, for estimating the maximum tensile stress activated in the ties by the

transversal elongation of the confined core, it is conservative to assume that z is a

principal direction of the stress. Thus, the remaining two principal stress directions

and the relative principal stresses, namely σ1 and σ2, lay onto the shell mid-plane. As

a result, Eq. (14) can be rewritten as

σz =
µEsνc

µEs + Ec
(σ1 + σ2) (15)

Employing he first two formulas in Eq. (9) to express σ1 and σ2 as a function of the

hydrostatic and deviatoric stress norms, Eq. (15) becomes

σz =
µEsνc

µEs + Ec

[
2

3
I − 2√

6
σd cos(θ)

]
(16)

The TRRS of the passive confining ties is attained when σz reaches its global mini-

mum, i.e. when cos(θ) = 1 and when both yielding conditions (10) and (6) are fulfilled

with the equal sign. Accordingly, one has

σ−z =
µEsνc

µEs + Ec

[
2

3
py +

2√
6
ρI − 2

3
σy

]
(17)

13



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

Figure 6: Transverse Reinforcement Required Strengths σ◦
TT and σ?

TT as functions of the confinement area
ratio µ

and the passive-confinement Transverse Reinforcement Required Strength is:

µσs ≥ σ?TT =
2

3

µEsνc
µEs + Ec

[
σy + |py|

(
1 + ρ

√
3

2

)]
(18)

which enforces yielding of the internal core before collapse of the passive confinement

system.

4. Physical interpretation of the Transverse Reinforcement Required Strength

Stress boundaries σ◦TT and σ?TT provided by Equations (12) and (18) ensure that

transverse ties and their anchorages do not yield nor fail before than the confined core

so as to avoid fragile collapse. However these limits attain different values due to the

different technology of confinement they refer to.

The limiting value σ◦TT depends on the maximum stress that the core material can

bear regardless of the physical confinement mechanism that induces the stress state. In

fact, the ratio of the active confinement consists in imposing an additional and arbi-

trary stress state by applying post-tensioned devices. Expression of σ◦TT in Eq. (12),

although dependent on the yield parameters of the internal core, is not influenced by

its stiffness parameters Ec and νc.

On the contrary, the boundary σ?TT , referring to passive confinement, is a function

of the core stiffness parameters since tensioning of the confining reinforcements is

generated by the transversal dilatation strain of the confined core.

14
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In order to understand the physical meaning of these two strength requirements,

it is useful to plot σ◦TT and σ?TT versus the ratio µ, see, e.g., Figure 6. These curves

have been computed by assuming a masonry core having constitutive parameters Ec =

900MPa, νc = 0.3 and yielding parameters σc = −1.4MPa, σt = 0.14MPa and

py = −4.2MPa. Such values correspond to a rubble stone masonry characterized by

the prescriptions of the Italian Structural Code [35]. Transverse ties are characterized

by Es = 107GPa and σs = 1574MPa corresponding to the Kevlar cable Oly Rope

Aramide manufactured by the Olympus Srl.

As expected, σ◦TT is significantly greater than σ?TT and does depend neither upon

the area of the confinement ties nor upon the value of the material constitutive parame-

ters. Moreover, its value is higher then the limit hydrostatic pressure py of the confined

core.

Conversely, σ?TT depends both on the yield conditions and the elastic parameters

of materials. Consistently with the concept of passive confinement, σ?TT is directly

proportional to the Poisson ratio of the core material, meaning that passive confinement

stresses are explicitly activated by the transversal elongation of shell chords generated

by in-plane stresses. It exhibits a monotonic dependence on the area ratio µ with an

asymptotic trend for increasing values of µ. When transverse ties are absent, i.e. when

µ = 0, the shell core is free to expand along the transversal direction, the stress state

within the shell is planar with σz = 0, and null strength is required for confining ties.

The asymptotic value of σ?TT can be easily computed from Equation (18) by evaluating

the limit:

lim
µ→∞

σ?TT =
2

3

Esνc
Es + Ec

[
py

(
1 + ρ

√
3

2

)
+ σy

]
(19)

As expected, such an asymptotic value does not depend on µ and it is significantly

smaller than the value of σ◦TT computed for the same materials.

It is worth pointing out that Equation (18) is not defined when µ = −Ec/Es since

the denominator vanishes in this case. Such a critical value of µ corresponds to a ver-

tical asymptote for σ?TT , laying on the negative part of the µ axis, which is physically

unfeasible. However, this observation suggests the fact that the relationship between

σ?TT and µ is described by an hyperbole centred at the crossing between these two
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asymptotes. Actually, rewriting Equation (18) by setting:

µ̄ = µ+ Ec/Es (20)

and:

f (µ̄) = σ?TT −
2νc
3

[
py

(
1 + ρ

√
3

2

)
+ σy

]
(21)

one has:

f (µ̄) =

constant︷ ︸︸ ︷
−2

3

EsEcνc

Es
2

[
py

(
1 + ρ

√
3

2

)
+ σy

]
1

µ̄
(22)

representing the canonic equation of an equilateral hyperbola in the [µ̄, f (µ̄)] plane.

5. Numerical application

In order to show the effectiveness of the proposed provisions, the results of two nu-

merical analyses are reported in the sequel. The first example regards a square masonry

panel, subjected to a monotonic load, for which the local behavior of the yield func-

tions and the effectiveness of the strength hierarchy condition provided by Equation

(18) are investigated. A further analysis, consisting of a masonry wall subject to in-

plane base excitation, aims at evaluating the evolution of the confinement stress under

cyclic loads.

Both structures have been modelled by employing the MITC-TTJS shell element

formulation described in [19, 20] in order to include transverse reinforcements. An

elastic-plastic constitutive law characterized by a Young modulus Ec = 900MPa and

a Poisson’s ratio νc = 0.3 has been assumed for the shell core. A Drucker Prager

yield criterion characterized by compressive σc = −1.4MPa and tensile yield stress

σt = 0.14MPa, respectively, and by the hydrostatic limit stress py = −4.2MPa has

been selected. These parameters are consistent with the ones prescribed by the Italian

Structural Code [35] for rubble stone masonry. Transverse reinforcements are charac-

terized by Es = 107GPa, which corresponds to a Kevlar cable Oly Rope Aramide

manufactured by the Olympus Srl.
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Figure 7: Model of the masonry panel analyzed by a static monotonic test

5.1. Square panel subjected to a static monotonic test

The first structural model consists of a series of 1m × 1m square panels having

thickness 0.1m and confined by transversal ties characterized by different values of the

area ratio µ, respectively equal to 0.001, 0.005, 0.01, 0.05 and +∞. These panels are

subjected to uniformly distributed compressive normal stresses σx and σy acting in the

plane of the panel, see, e.g., Figure 7. Static non linear analyses have been performed

by applying a displacement driven incremental procedure in which the strain εx has

been selected as control parameter and has been increased until the attainment of a

yield condition for the core material. Four sets of analyses have been conducted for

each panel by varying the value of the ratio σy/σx, which has been set equal to 0, 0.05,

0.25 and 1.00 for each analysis. Because of the symmetry of the Drucker Prager yield

surface, the role played by σx and σy is interchangeable so that there is no need to

consider value of σy/σx greater then 1. Also, due to the limited strength of the core

material with respect to tensile actions, the employment of negative values of the ratio

σy/σx produces premature yielding of the core material. Hence such situations are

irrelevant for testing the effectiveness of the proposed TRRS value.

The results of this first set of analyses are reported in Figure 8 where the value of

the ratio between the transverse stress σz = µσs and its limit value σ?TT , computed

by Equation (18), is plotted versus the maximum between the two yield functions fl

and fp relevant to the lateral surface and to the cap of the Drucker Prager domain,

respectively. In the same figures, vertical and horizontal black dashed lines indicate

the attainment of the yield condition for the core material and of the TRRS for the

confinement ties, respectively.
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(a) σy/σx = 0 (b) σy/σx = 0.05

(c) σy/σx = 0.25 (d) σy/σx = 1.00

Figure 8: Transverse stress ratio vs. maximum yield function max [fl(σ), fp(σ)]

Firstly, it is worth noting that all plotted paths are represented by two straight lines

characterized by negative and positive slopes, respectively. This is consistent with the

assumption of a yield surface characterized by two expressions, reported in Eqs. (6) and

(10), which are linearly dependent upon the first stress invariant I . Actually, the pre-

sented analyses are relevant to a progressive increment of both the stress components

σx and σy . As a consequence, the transversal normal stress σz = µσs also increases

because of the transversal confinement. The corresponding value of I increases as well

and directly influences the value attained by the stress functions fl(σ) and fp(σ). In

particular, while for lower values of I the value of the stress function fl(σ) is closer

than fp(σ) to the yield condition, the opposite happens when I is higher. Hence, the

lower branches of the stress paths shown in all plots of Figure 8 correspond to stress

states for which fl(σ) > fp(σ) while successive branches are relevant to cases in

which fl(σ) < fp(σ).

As a matter of fact, all paths are located below the threshold line µσs/σ?TT = 1,

meaning that the value of the transverse stress is always smaller than the corresponding
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TRRS. This is consistent with the hypothesis underlying the derivation of Equation

(18) which inhibits yielding of transversal ties before that of the confined core. This

numerically confirms the effectiveness of the proposed strength hierarchy rule.

5.2. Masonry wall subjected to base excitation

6.00 m

4.
00

 m

Pt

mt

ve
rt

ic
al

 tr
us

se
s

monitored
Gauss point

Figure 9: Mesh of the masonry wall subject to vertical loads and in-plane base excitation

In order to show the effectiveness of the provided strength hierarchy relationships

when the confined shell is subjected to real conditions, the results of a further numerical

example are reported hereafter. The test reproduces a typical retrofit intervention for

historical masonry where transverse confinement is used in conjunction with vertical

post-tensioned tendons.

The wall is schematized in Figure 9 and consists of a 6m × 4m masonry wall of

thickness 0.8m, discretized by a mesh of 12 × 8 shell elements, fully constrained at

the base edge. Transversal confinement has been modelled by adopting the Through-

Figure 10: White-noise Base excitation used in the dynamic analysis
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The-Thickness Jacketed Shell (TTJS) finite element formulation presented in [19, 20],

already used in the previous example. Vertical reinforcement has been modelled by

including vertical truss elements which superimpose to the shell mesh. These elements

are represented by the vertical blue lines in Fig. 9.

The wall material has density w = 2000 kg/m3. However, additional masses have

been applied to the nodes at the top of the model so as to simulate the presence of a

deck. These nodal masses have been computed by considering a line mass equal to

mt = 6000 kg/m uniformly distributed along the top edge of the wall.

Mechanical properties of the core material are defined in accordance to the Italian

structural code [35] and are relevant to rubble-stone masonry with Young’s modulus

Ec = 1.26 · 103MPa, Poisson’s ratio νc = 0.45 and uniaxial compressive strength

σc = −1.0MPa. It has been modelled by means of an elastic-perfectly plastic

Drucker-Prager constitutive law with parameters σy = 2.22 · 10−1MPa, ρ = 0.998

and py = −5.0MPa. A uniaxial tensile-only linear elastic constitutive behavior with

Young’s modulus Es = 1.07 ·105MPa relevant to connectors type Oly Rope Aramide

manufactured by Olympus s.r.l. has been used to model transverse confining devices.

The same five values of the transverse area ratio µ already considered in the previ-

ous example have been employed for the case at hand so as to produce five different

models. Vertical reinforcements are characterized by a linear-elastic uniaxial material

with Young’s modulus Et = 6.0 · 104MPa and circular cross section having diameter

φt = 8mm, relevant to kevlar-fiber pultrued bars (type Oly Rod Aramide manufactured

by Olympus s.r.l.).

The weight of the deck is modelled by applying nodal forces to the nodes of the

wall’s top edge. Their values have been estimated by considering a vertical load equal

to gmt, g = 9.81m/s2 being the gravitational acceleration, uniformly distributed on

the top edge of the model. Additionally, in order to account for post-tensioning of the

vertical bars, top nodes are subjected to an additional vertical force equal to 4.0 ·105N ,

which corresponds to a stress increment of 0.4σc at the base of the panel.

The model is subjected to a dynamic excitation lasting 10 s and acting along both

vertical and in-plane horizontal directions. Recalling the mechanical behaviors of the

confined walls highlighted in [19], the out-of-plane component of the dynamic excita-
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Figure 11: Lateral surface yield function

Figure 12: Hydrostatic pressure yield function

Figure 13: Limit state function of transverse reinforcements
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(a) Lateral surface yield function (b) Limit state of transverse reinforcements

Figure 14: Limit state functions of the cyclic analysis with elastic-fragile transverse ties

(a) Lateral surface yield function (b) Limit state of transverse reinforcements

Figure 15: Limit state functions of the cyclic analysis with elastic-plastic transverse ties

tion has been intentionally neglected in order to maximize stresses within transversal

ties.

The two components of the dynamic load correspond to banded white-noise sta-

tionary accelerograms having constant power spectral density of intensity Φ0 = 4.5 ·

10−6g2. They are shown in Figure 10 by the curves ah and av , respectively referred to

the horizontal in-plane and the vertical acceleration components. Accelerograms have

been discretized by adopting time steps ∆t = 0.01 s and determining a band cutoff at

the frequency fco = ±0.5∆t−1 = 50Hz. The two acceleration components ah and

av , represented in Figure 10, are oriented along the horizontal and vertical dimension

of the wall, respectively.

Results of the dynamic analysis are relevant to a monitored Gauss point positioned

22



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

at the lower-left corner of the structural model. It has been selected as the Gauss point

where higher values of stress are expected and is indicated by the red cross shown in

Figure 9.

Figures 11-13 refer to the value of the yield functions computed for the core mate-

rial and the transverse ties by considering all mentioned values of the transverse area

ratio µ. The black dashed lines represent the threshold value of the yield functions:

points lying above the threshold are physically unacceptable. In particular, Figure 11

reports the time variation of the yield function fl(σ) in Equation (10), which is rele-

vant to the lateral conic portion of the yield surface, while Figure 12 corresponds to the

hydrostatic pressure yield function fp(σ), defined by Equation (6).

It is worth pointing out that Figure 11 shows that, for lower values of the confine-

ment area ratio µ, the distance between the yield function fl(σ) is higher, hence closer

to the threshold value. On the contrary, the values of the yield function fp(σ), reported

in Figure 12, turn out to become closer to the threshold as long as the confinement

area ratio µ increases. This different behavior is due to the fact that higher values of µ

correspond to stiffer transverse reinforcement and, hence, higher values of confinement

stress. This produces higher values of I so that the stress state within the confined core

moves towards regions of the yield domain which are closer to the stress cap. There-

fore, fp(σ) increases while fl(σ) decreases because the Drucker-Prager cone becomes

wider.

Ratios between the computed stress in transversal reinforcements, computed as

µσt, and the TRRS σ?TT are plotted in Figure 13 for each time step of the analysis. The

mentioned ratio µσt/σ?TT always keeps lower than 1, meaning that the computed stress

within confining devices is always smaller than their prescribed strength σ?TT . This

happens for all considered area ratios, with a maximum when µ = 0.001; actually, in

such a case, the computed confining stress reaches values corresponding to about the

50% of the theoretical limit. This aspect confirms that the proposed estimate of σ?TT is

safe and consistent with more accurate numerical predictions.

In order to investigate the behavior of the considered specimen when the strength of

the confining devices is lower than the proposed TRRS, two additional analyses of the

same model have been performed by assuming either an elastic-fragile or an elastic-

23



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

plastic behavior of the confinement devices, respectively. In both the cases, the results

of three different assumptions have been compared

a unconfined wall, modeled by assuming µ = 0;

b wall confined by transversal ties fulfilling the proposed TRRS, modeled by assuming

µ = 0.01 and setting σy = σ?TT as strength of the transverse ties;

c wall confined by under-dimensioned transversal ties, modeled by assuming µ = 0.01

and assigning a strength of the transverse ties equal to σy = 0.3σ?TT .

Results relevant to the cases of elastic-fragile and elastic-plastic confinement de-

vices are respectively reported in Figures 14 and 15. Plots show the value attained

by the yield function fl(σ) and by the exploitation ratio µσt/σ?TT for each time step

of the analysis and for each of the mentioned three assumptions regarding transverse

confinement.

As expected, before the collapse of the confinement devices, the curves relevant to

under-dimensioned transversal ties superimposes to the one corresponding to a well-

designed confinement. However, as soon as the transversal stress reaches the limit

value µσt/σ?TT = 0.3, which is represented by the red dotted line in Figures 14(b) and

15(b), the curves relevant to the under-dimensioned transversal ties diverge from those

relevant to the well designed confinement.

When under-dimensioned ties obey to an elastic-fragile constitutive behavior, trans-

verse stress immediately drops to zero, see, e.g., Figure 14(b), and the confinement

becomes inactive. At the same time, stress state within the core material and the cor-

responding value of the yield function fl(σ) modifies by getting closer to the curve

corresponding to the unconfined specimen, see, e.g, Figure 14(a).

Such an abrupt change of behavior is mitigated by the plastic behavior of the con-

fining devices. Actually, as shown in Figure 15(b) for the case of elastic-plastic con-

finement devices, the attainment of the limit µσt/σ?TT = 0.3 does not corresponds to

a sudden drop of the transversal stress. Hence, elastic-plastic transversal ties continue

to confine the internal core even after yielding, yet with a lower efficiency. This is also

shown by Figure 15(b) where the curve corresponding to under-dimensioned ties ex-
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hibits a behavior which is intermediate between that corresponding to a well designed

confinement and the one relevant to an unconfined wall.

5.3. Discussion

Numerical results have proved the effectiveness of the theoretical stress boundary

defined in Eq. (18). This is not surprising, especially for the case regarding the static

test described in Subsection 5.1. Actually, the application of monotonic load paths

produces effects which are very adherent to the assumptions underlying the theoretical

derivation of the confinement stress boundary. The dynamic analyses reported in Sub-

section 5.2 are more significant for real applications. Indeed, even in this last case, the

value of the confining stress remains far below the theoretical boundary regardless of

the confinement ratio. However, an important remark concerns the conservative nature

of the computed theoretical boundary, what is imputable to different reasons.

A first issue concerns the assumption regarding the contemporary attainment of

both yield conditions (3) and (6) for the derivation of Equation (18). Although conser-

vative, this condition is rather unlike to occur. A further aspect concerns the assump-

tion regarding the stress state within the confined core, which, for the sake of safety,

has been assumed to be subjected to in-plane actions. In most cases, the actual stress

state within the confined core is likely to have an out-of-plane component as well.

While this latter assumption depends on the loading conditions, so that it cannot

be addressed by a general hierarchy condition based only on material properties, the

mutual correlation between the two considered yield functions can be dealt with by

assuming different and more refined yield conditions. Nevertheless, complex constitu-

tive models often require a larger amount of mechanical parameters than the Drucker

Prager yield condition adopted in this work. Hence, although extensions to different

constitutive models can be investigated, the present research aims to provide a simple

relationship based on theoretical concepts familiar to the majority of designers and re-

quiring a limited set of parameters easy to derive in common practice. For this reason,

the hypotheses adopted for the derivation of the TRRS seem the most immediate and

reliable at the present stage of the research. Nevertheless, further investigations are

worth being performed concerning the influence of more refined constitutive models.
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6. Conclusions

The present research has investigated the behavior of transverse reinforcements in

plane elements retrofitted by through-the-thickness confinement devices. Two hierar-

chy conditions have been proposed aiming to define peak values of the confinement

stress so that yielding and/or failure of the transverse reinforcements and of their an-

chorages will not forestall the crisis of the confined material.

Such a requirement is of particular importance when transverse confinement is used

in retrofitting structures subjected to seismic loads since the design of transverse rein-

forcements is often performed by static procedure that disregard the cyclic nature of

seismic responses. In particular, the establishment of a strength hierarchy between re-

inforcements and confined core avoids the possibility that confining devices, although

adequate during the first loading of the structural members, becomes ineffective for the

remaining loading cycles.

The proposed provisions consists of two relationships. The first condition deter-

mines the maximum value of the out-of-plane stress component acting in the con-

fined material. Such a condition is oriented to retrofit interventions presenting post-

tensioning of the transverse reinforcements. The second provision, relevant to the

case of passive confinement, determines the maximum value of the confinement stress

which can be attained by enforcing equilibrium and compatibility conditions between

the confined material and the confining devices.

The proposed provisions have been based on a few mechanical parameters famil-

iar to the majority of designers and usually adopted in common practice. Actually,

both hierarchy conditions have been derived by assuming an elastic-plastic behavior

of the confined material, obeying to a Drucker Prager yield condition, and consider-

ing linearly elastic confining devices. Additionally, the results of significant numerical

tests have been reported to prove the effectiveness of the proposed formulation so that,

although conservative, these provisions are suitable to be used in structural design in

order to ensure a proper strength hierarchy of the confinement setup.

Future research activities will focus on the extension of the proposed approach

to more refined constitutive models in order to obtain provisions more coherent with
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the mechanical behavior of materials, such as existing masonry, for which transverse

confinement has become a popular retrofit strategy. Moreover, future developments

will be focused on the setup of experimental tests oriented to investigating the actual

behavior of confinement devices.
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