
 

Semileptonic DðsÞ-meson decays in the light of recent data
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Inspired by recent improved measurements of charm semileptonic decays at BESIII, we study a large set
of DðDsÞ-meson semileptonic decays where the hadron in the final state is one of D0, ρ, ω, ηð0Þ in the case
of Dþ decays, and D0, ϕ, K0, K�ð892Þ0, ηð0Þ in the case of Dþ

s decays. The required hadronic form factors
are computed in the full kinematical range of momentum transfer by employing the covariant confined
quark model developed by us. A detailed comparison of the form factors with those from other approaches
is provided. We calculate the decay branching fractions and their ratios, which show good agreement with
available experimental data. We also give predictions for the forward-backward asymmetry and the
longitudinal and transverse polarizations of the charged lepton in the final state.
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I. INTRODUCTION

Semileptonic DðDsÞ-meson decays provide a good plat-
form to study both the weak and strong interactions
in the charm sector (for a review, see e.g., Ref. [1]).
Measurements of their decay rates allow a direct determi-
nation of the Cabibbo-Kobayashi-Maskawa (CKM) matrix
elements jVcsj and jVcdj. In particular, the average of the
measurements of BABAR [2,3], Belle [4], BESIII [5], and
CLEO [6] of the decays D → πðKÞlν was used to extract
the elements jVcdðsÞj, as recently reported by the Particle
Data Group (PDG) [7]. Such extraction of the CKM matrix
elements from experiments requires theoretical knowledge
of the hadronic form factors which take into account the
nonperturbative quantum chromodynamics (QCD) effects.

The elements jVcsj and jVcdj can also be determined
indirectly by using the unitarity constraint on the CKM
matrix. This method was very useful in the past when the
direct measurements still suffered from large uncertainties,
both experimental and theoretical. Once these matrix
elements are determined, whether directly or indirectly,
one can in reverse study the strong interaction effects in
various charm semileptonic channels to reveal the decay
dynamics. One can also test the predictions of different
theoretical approaches, such as the form factors and the
branching fractions. In this manner, the study of semi-
leptonic charm decays can indirectly contribute to a more
precise determination of other CKM matrix elements such
as jVubj, in the sense that constraints provided by charm
decays can improve the theoretical inputs needed for
extracting jVubj from exclusive charmless B semileptonic
decays.
Recent progresses in experimental facilities and theo-

retical studies have made more and more stringent tests of
the standard model (SM) available in the charm sector and
have opened a new window through which to look for
possible new physics effects beyond the SM. These tests
include the CKM matrix unitarity, charge-conjugation-
parity violation, isospin symmetry, and lepton flavor
universality (LFU). Notably, the BESIII collaboration
has reported recently measurements of many semimuonic
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charm decays [8–10], some for the first time and some with
much improved precision. This paves the way to the search
for signals of LFU violations in these channels. In addition,
the study of the decays Ds → ηð0Þlþνl provides informa-
tion about the η − η0 mixing angle and helps probe the
interesting η − η0-glueball mixing [11,12].
From the theoretical point of view, the calculation of

hadronic form factors plays a crucial role in the study of
charm semileptonic decays. This calculation is carried out
by nonperturbative methods including lattice QCD
(LQCD) [13–15], QCD sum rules [16–18], light-cone
sum rules (LCSR) [19–25], and phenomenological quark
models. Regarding the quark models used in studies of
semileptonic D decays, one can mention the Isgur-Scora-
Grinstein-Wise (ISGW) model [26] and its updated version
ISGW2 [27], the constituent quark model (CQM) [28], the
relativistic quark model based on the quasipotential
approach [29], the chiral quark model [30], the light-front
quark model (LFQM) [31–33], and the model based on the
combination of heavy meson and chiral symmetries
(HMχT) [34,35]. Several semileptonic decay channels of
the DðsÞ mesons were also studied in the large energy
effective theory [36], chiral perturbation theory [37], the so-
called chiral unitary approach (χUA) [38], and a new
approach assuming pure heavy quark symmetry [39].
Recently, a simple expression for D → K semileptonic
form factors was studied in Ref. [40]. We also mention here
early attempts to account for flavor symmetry breaking in
pseudoscalar meson decay constants by the authors of
Ref. [41]. It is worth noting that each method has only a
limited range of applicability, and their combination will
give a better picture of the underlined physics [28].
In this paper, we compute the form factors of

the semileptonic DðDsÞ decays in the framework
of the covariant confined quark model (CCQM) [42–45].
To be more specific, we study the decays Dþ→
ðD0;ρ0;ω;η;η0Þlþνl, Dþ

s →ðD0;ϕ;K0;K�ð892Þ0;η;η0Þlþνl,
and D0 → ρ−lþνl. This paper follows our previous study
[46] in which some of us have considered the decays D →
Kð�Þlþνl and D → πlþνl in great detail. Our aim is to
provide a systematic and independent study of DðsÞ semi-
leptonic channels in the same theoretical framework. This
will shed more light on the theoretical study of the charm
decays, especially on the shape of the corresponding form
factors, since the CCQM predicts the form factors in the
whole physical range of momentum transfer without using
any extrapolations. Besides, many of the studies mentioned
in the previous paragraph were done about a decade ago,
with the main focus on the branching fraction. In light of
recent data, more up-to-date predictions are necessary, not
only for the branching fraction but also for other physical
observables such as the forward-backward asymmetry and
the lepton polarization. Finally, such a systematic study is
necessary to test our model’s predictions and to better
estimate its theoretical error.

The rest of the paper is organized as follows. In Sec. II,
we briefly provide the definitions of the semileptonic
matrix element and hadronic form factors. Then we give
the decay distribution in terms of the helicity amplitudes. In
Sec. III, we introduce the essential ingredients of the
covariant confined quark model and describe in some
detail the calculation of the form factors in our approach.
Numerical results for the form factors, the decay branching
fractions, and other physical observables are presented in
Sec. IV. We compare our findings with other theoretical
approaches as well as experimental data including recent
LQCD calculations and BESIII data. Finally, the conclu-
sion is given in Sec. V.

II. MATRIX ELEMENT AND DECAY
DISTRIBUTION

Within the SM, the matrix element for semileptonic
decays of the DðsÞ meson to a pseudoscalar (P) or a vector
(V) meson in the final state is written as

MðDðsÞ → ðP;VÞlþνlÞ

¼ GFffiffiffi
2

p VcqhðP;VÞjq̄OμcjDðsÞi½lþOμνl�; ð1Þ

where Oμ ¼ γμð1 − γ5Þ, and q ¼ d, s. The hadronic part in
the matrix element is parametrized by the invariant form
factors which depend on the momentum transfer squared q2

between the two mesons as follows:

hPðp2Þjq̄OμcjDðsÞðp1Þi¼Fþðq2ÞPμþF−ðq2Þqμ;

hVðp2;ϵ2Þjq̄OμcjDðsÞðp1Þi¼
ϵ†2α

M1þM2

½−gμαPqA0ðq2Þ

þPμPαAþðq2ÞþqμPαA−ðq2Þ
þ iεμαPqVðq2Þ�; ð2Þ

where P ¼ p1 þ p2, q ¼ p1 − p2, and ϵ2 is the polariza-
tion vector of the vector meson V, so that ϵ†2 · p2 ¼ 0. The
mesons are on shell: p2

1 ¼ m2
DðsÞ ¼ M2

1, p
2
2 ¼ m2

P;V ¼ M2
2.

For later comparison of the form factors with other
studies, we relate our form factors defined in Eq. (2) to the
well-known Bauer-Stech-Wirbel (BSW) form factors [47],
namely, Fþ;0 for DðsÞ → P and A0;1;2 and V for DðsÞ → V.
Note that in Ref. [47] the notation F1 was used instead of
Fþ. The relations read

Ã2 ¼ Aþ; Ṽ ¼ V; F̃þ ¼ Fþ;

Ã1 ¼
M1 −M2

M1 þM2

A0; F̃0 ¼ Fþ þ q2

M2
1 −M2

2

F−;

Ã0 ¼
M1 −M2

2M2

�
A0 − Aþ −

q2

M2
1 −M2

2

A−

�
: ð3Þ
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Here, the BSW form factors are denoted with a tilde to
distinguish from our form factors. However, for simplicity,
we will omit the tilde in what follows. In all comparisons of
the form factors to appear below, we use the BSW ones.
Once the form factors are known, one can easily

calculate the semileptonic decay rates. However, it is more
convenient to write down the differential decay width in
terms of the so-called helicity amplitudes which are
combinations of the form factors. This is known as the
helicity technique, first described in Ref. [48] and further
discussed in our recent papers [49,50]. One has

dΓðDðsÞ→ ðP;VÞlþνlÞ
dq2

¼G2
FjVcqj2jp2jq2
96π3M2

1

�
1−

m2
l

q2

�
2

×

��
1þm2

l

2q2

�
ðjHþj2þjH−j2þjH0j2Þþ

3m2
l

2q2
jHtj2

�
; ð4Þ

where jp2j ¼ λ1=2ðM2
1;M

2
2; q

2Þ=2M1 is the momentum of
the daughter meson in the rest frame of the parent meson.
Here, the helicity amplitudes for the decays DðsÞ → Vlþνl
are defined as

H� ¼ 1

M1 þM2

ð−PqA0 � 2M1jp2jVÞ;

H0 ¼
1

M1 þM2

1

2M2

ffiffiffiffiffi
q2

p ½−PqðM2
1 −M2

2 − q2ÞA0

þ 4M2
1jp2j2Aþ�;

Ht ¼
1

M1 þM2

M1jp2j
M2

ffiffiffiffiffi
q2

p ½Pqð−A0 þ AþÞ þ q2A−�: ð5Þ

In the case of the decays DðsÞ → Plþνl one has

H� ¼ 0; H0 ¼
2M1jp2jffiffiffiffiffi

q2
p Fþ;

Ht ¼
1ffiffiffiffiffi
q2

p ðPqFþ þ q2F−Þ: ð6Þ

In order to study the lepton-mass effects, one can define
several physical observables such as the forward-backward
asymmetry Al

FBðq2Þ and the longitudinal Pl
Lðq2Þ and

transverse Pl
Tðq2Þ polarization of the charged lepton in

the final state. This requires the angular decay distribution,
which was described elsewhere [50]. In short, one can write
down these observables in terms of the helicity amplitudes
as follows:

Al
FBðq2Þ ¼ −

3

4

jHþj2 − jH−j2 þ 4δlH0Ht

ð1þ δlÞ
P jHnj2 þ 3δljHtj2

; ð7Þ

Pl
Lðq2Þ ¼ −

ð1 − δlÞ
P jHnj2 − 3δljHtj2

ð1þ δlÞ
P jHnj2 þ 3δljHtj2

; ð8Þ

Pl
Tðq2Þ ¼ −

3π

4
ffiffiffi
2

p
ffiffiffiffiffi
δl

p ðjHþj2 − jH−j2 − 2H0HtÞ
ð1þ δlÞ

P jHnj2 þ 3δljHtj2
; ð9Þ

where δl ¼ m2
l=2q

2 is the helicity-flip factor, and the index
n runs through (þ, −, 0). The average of these observables
over the q2 range is better suited for experimental mea-
surements with low statistics. To calculate the average one
has to multiply the numerator and denominator of e.g.,
Eq. (7) by the phase-space factor Cðq2Þ ¼ jp2jðq2 −
m2

lÞ2=q2 and integrate them separately. These observables
are sensitive to contributions of physics beyond the SM and
can be used to test LFU violations [51–57].

III. FORM FACTORS IN THE COVARIANT
CONFINED QUARK MODEL

In this study, the semileptonic form factors are calculated
in the framework of the CCQM [42,43]. The CCQM is an
effective quantum field approach to the calculation of
hadronic transitions. The model is built on the assumption
that hadrons interact via constituent quark exchange only.
This is realized by adopting a relativistic invariant
Lagrangian that describes the coupling of a hadron to its
constituent quarks. This approach can be used to treat not
only mesons [58–62], but also baryons [63–65], tetraquarks
[66–68], and other multiquark states [69] in a consistent
way. For a detailed description of the model and the
calculation techniques we refer the reader to the references
mentioned above. We list below only several key features
of the CCQM for completeness.
For the simplest hadronic system, i.e., a meson M, the

interaction Lagrangian is given by

Lint ¼ gMMðxÞ
Z

dx1dx2FMðx; x1; x2Þ

× q̄2ðx2ÞΓMq1ðx1Þ þ H:c:; ð10Þ
where gM is the quark-meson coupling and ΓM is the Dirac
matrix. For a pseudoscalar (vector) meson ΓM ¼ γ5
(ΓM ¼ γμ). The vertex function FMðx; x1; x2Þ effectively
describes the quark distribution in the meson and is given by

FMðx; x1; x2Þ ¼ δ

�
x −

X2
i¼1

wixi

�
·ΦMððx1 − x2Þ2Þ; ð11Þ

where wqi ¼ mqi=ðmq1 þmq2Þ such that w1 þ w2 ¼ 1. The
function ΦM depends on the effective size of the meson. In
order to avoid ultraviolet divergences in the quark loop
integrals, it is required that the Fourier transform of ΦM has
an appropriate falloff behavior in the Euclidean region. Since
the final results are not sensitive to the specific form of ΦM,
for simplicity, we choose a Gaussian form as follows:
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Φ̃Mð−p2Þ ¼
Z

dxeipxΦMðx2Þ ¼ ep
2=Λ2

M ; ð12Þ

where the parameter ΛM characterizes the finite size of
the meson.
The coupling strength gM is determined by the compos-

iteness condition ZM ¼ 0 [70], where ZM is the wave
function renormalization constant of the meson. This
condition ensures the absence of any bare quark state in
the physical mesonic state and, therefore, helps avoid
double counting and provides an effective description of
a bound state.
In order to calculate the form factors, one first writes

down the matrix element of the hadronic transition. In the
CCQM, the hadronic matrix element is described by the
one-loop Feynman diagram depicted in Fig. 1 and is
constructed from the convolution of quark propagators
and vertex functions as follows:

hPðp2Þjq̄OμcjDðsÞðp1Þi ¼ NcgDðsÞgP

Z
d4k

ð2πÞ4i Φ̃DðsÞ ð−ðkþ w13p1Þ2ÞΦ̃Pð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞγ5S2ðkþ p2Þ�; ð13Þ

hVðp2; ϵ2Þjq̄OμcjDðsÞðp1Þi ¼ NcgDðsÞgV

Z
d4k

ð2πÞ4i Φ̃DðsÞ ð−ðkþ w13p1Þ2ÞΦ̃Vð−ðkþ w23p2Þ2Þ

× tr½OμS1ðkþ p1Þγ5S3ðkÞ=ϵ†2S2ðkþ p2Þ�; ð14Þ

where Nc ¼ 3 is the number of colors, wij ¼
mqj=ðmqi þmqjÞ, and S1;2 are quark propagators, for which
we use the Fock-Schwinger representation

SiðkÞ ¼ ðmqi þ =kÞ
Z

∞

0

dαi exp½−αiðm2
qi − k2Þ�: ð15Þ

It should be noted that all loop integrations are carried out
in Euclidean space.
Using various techniques described in our previous

papers, a form factor F can be finally written in the form
of a threefold integral

F ¼ NcgDðsÞgðP;VÞ

Z
1=λ2

0

dtt
Z

1

0

dα1

×
Z

1

0

dα2δð1 − α1 − α2Þfðtα1; tα2Þ; ð16Þ

where fðtα1; tα2Þ is the resulting integrand corresponding
to the form factor F, and λ is the so-called infrared cutoff
parameter, which is introduced to avoid the appearance of
the branching point corresponding to the creation of free
quarks and taken to be universal for all physical processes.
The model parameters, namely, the meson size param-

eters, the constituent quark masses, and the infrared cutoff
parameter are determined by fitting the radiative and
leptonic decay constants to experimental data or LQCD
calculations. The model parameters required for the cal-
culation in this paper are listed in Tables I and II. Other
parameters such as the mass and lifetime of mesons and
leptons, the CKM matrix elements, and physical constants
are taken from the recent report of the PDG [7]. In
particular, we adopt the following values for the CKM
matrix elements: jVcdj ¼ 0.218 and jVcsj ¼ 0.997.
Once the model parameters are fixed, the form factors are

obtained by calculating the threefold integral in Eq. (16).

FIG. 1. Quark model diagram for the DðsÞ-meson semileptonic
decay.

TABLE I. Meson size parameters in GeV.

ΛD ΛDs
ΛK ΛK� Λϕ Λρ Λω Λqq̄

η Λss̄
η Λqq̄

η0 Λss̄
η0

1.600 1.750 1.014 0.805 0.880 0.610 0.488 0.881 1.973 0.257 2.797
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This is done by using MATHEMATICA as well as FORTRAN

code. In the CCQM, the form factors are calculable in
the entire range of momentum transfer. The calculated
form factors are very well represented by the double-pole
parametrization

Fðq2Þ ¼ Fð0Þ
1 − aŝþ bŝ2

; ŝ ¼ q2

m2
DðsÞ

: ð17Þ

Our results for the parameters Fð0Þ, a, and b appearing in
the parametrization Eq. (17) are given in Table III.
It is worth noting here that in the calculation of the

DðsÞ → ηð0Þ form factors one has to take into account the
mixing of the light and the s-quark components. By
assuming mu ¼ md ≡mq, the quark content can be written
as

�
η

η0

�
¼ −

�
sin δ cos δ

− cos δ sin δ

��
qq̄

ss̄

�
;

qq̄≡ uūþ dd̄ffiffiffi
2

p : ð18Þ

The angle δ is defined by δ ¼ θP − θI, where θI ¼
arctanð1= ffiffiffi

2
p Þ is the ideal mixing angle. We adopt the

value θP ¼ −15.4° from Ref. [71].

IV. RESULTS AND DISCUSSION

A. Form factors

In this subsection, we compare our form factors with
those from other theoretical approaches and from exper-
imental measurements. For convenience, we relate all form
factors from different studies to the BSW form factors, as
mentioned in Sec. II. In the SM, the hadronic matrix
element between two mesons is parametrized by two form
factors (Fþ and F0) for the P → P0 transition and four form
factors (A0;1;2 and V) for the P → V one. However, in
semileptonic decays of D and Ds mesons, the form factors
F0 and A0 are less interesting because their contributions to
the decay rate vanish in the zero lepton-mass limit (the tau
mode is kinematically forbidden). Therefore, we focus
more on the form factors Fþ, A1, A2, and V. We note that
the uncertainties of our form factors mainly come from the
errors of the model parameters. These parameters are
determined from a least-squares fit to available experimen-
tal data and some lattice calculations. We have observed
that the errors of the fitted parameters are within 10%. We
then calculated the propagation of these errors on the form
factors and found the uncertainties on the form factors
to be of order 20% at small q2 and 30% at high q2. At
maximum recoil q2 ¼ 0, the form factor uncertainties are of
order 15%.
We start with the DðsÞ → P transition form factor

Fþðq2Þ. In Table IV, we compare the maximum-recoil
values Fþðq2 ¼ 0Þ with other theoretical approaches. It is
observed that our results are in good agreement with other
quark models, especially with the CQM [28] and the
LFQM [32]. Besides, quark model predictions for Fþð0Þ
of the DðsÞ → ηð0Þ channels are in general higher than those
obtained by LCSR [22,24] and LQCD [14]. This suggests
that more studies of these form factors are needed. For
example, a better LQCD calculation of Fþð0Þ is expected.
Note that the authors of Ref. [14] considered their LQCD
calculation as a pilot study rather than a conclusive one.
Regarding the DðsÞ → V transition form factors A1, A2,

and V, it is more interesting to compare their ratios at
maximum recoil. The ratios are defined as follows:

r2 ¼
A2ðq2 ¼ 0Þ
A1ðq2 ¼ 0Þ ; rV ¼ Vðq2 ¼ 0Þ

A1ðq2 ¼ 0Þ : ð19Þ

In Table V, we compare these ratios with the world average
given by the PDG [7] and with other theoretical results
obtained in CQM [28], LFQM [32], HMχT [35], and
LQCD [13]. Our results for the form factor ratios r2 and rV
agree well with the PDG data within uncertainty except for
the ratio rVðDþ

s → ϕÞ, for which our prediction is much
lower than that from PDG. Note that our prediction
rVðDþ

s → ϕÞ ¼ 1.34 is close to the value 1.42 from the
LFQM [32]. It is also seen that for most cases, the HMχT
predictions [35] for the ratios at q2 ¼ 0 are largely different

TABLE II. Quark masses and infrared cutoff parameter in GeV.

mu=d ms mc mb λ

0.241 0.428 1.672 5.05 0.181

TABLE III. Parameters of the double-pole parametrization
Eq. (17) for the form factors.

F Fð0Þ a b F Fð0Þ a b

AD→ρ
þ 0.57 0.96 0.15 AD→ρ

− −0.74 1.11 0.22
AD→ρ
0 1.47 0.47 −0.10 VD→ρ 0.76 1.13 0.23

AD→ωþ 0.55 1.01 0.17 AD→ω
− −0.69 1.17 0.26

AD→ω
0 1.41 0.53 −0.10 VD→ω 0.72 1.19 0.27

ADs→ϕ
þ 0.67 1.06 0.17 ADs→ϕ

− −0.95 1.20 0.26
ADs→ϕ
0 2.13 0.59 −0.12 VDs→ϕ 0.91 1.20 0.25

ADs→K�
þ 0.57 1.13 0.21 ADs→K�

− −0.82 1.32 0.34
ADs→K�
0 1.53 0.61 −0.11 VDs→K�

0.80 1.32 0.33
FD→η
þ 0.67 0.93 0.12 FD→η

− −0.37 1.02 0.18
FD→η0
þ 0.76 1.23 0.23 FD→η0

− −0.064 2.29 1.71
FD→D0

þ 0.91 5.88 4.40 FD→D0

− −0.026 6.32 8.37
FDs→η
þ 0.78 0.69 0.002 FDs→η

− −0.42 0.74 0.008
FDs→η0
þ 0.73 0.88 0.018 FDs→η0

− −0.28 0.92 0.009
FDs→K
þ 0.60 1.05 0.18 FDs→K

− −0.38 1.14 0.24
FDs→D0

þ 0.92 5.08 2.25 FDs→D0

− −0.34 6.79 8.91
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from the PDG values, demonstrating the fact that this
model is more suitable for the high q2 region.
In order to have a better picture of the form factors in the

whole q2 range 0 ≤ q2 ≤ q2max ¼ ðmDðsÞ −mP=VÞ2 we plot
in Figs. 2–5 their q2 dependence from various studies. It is
very interesting to note that, in all cases, our form factors
are close to those obtained in the covariant LFQM [32], and
this is not for the first time such a good agreement is
observed. In a previous study of the semileptonic decays
Bc → J=ψðηcÞlν [72] it was seen that the corresponding
form factors agree very well between our model and the

covariant LFQM [73]. This suggests that a comparison of
the two models in more detail may be fruitful. It is also
worth noting that the HMχT [35] prediction for the form
factor A0ðq2Þ is systematically much higher than that from
other theoretical calculations.
Very recently, the ETM collaboration has provided the

lattice determination [75] for the full set of the form factors
characterizing the semileptonic D → πðKÞlν and rare
D → πðKÞll decays within and beyond the SM, when
an additional tensor coupling is considered. As mentioned
before, the decays D → πðKÞlν have been studied in our
model already [46]. However, we compute the D →
πðKÞlν form factors including the tensor one in this paper,
in order to compare with the recent ETM results. This
demonstrates the fidelity of the CCQM predictions for the
hadronic form factors and helps us better estimate the
theoretical uncertainties of our model. Moreover, the tensor
and scalar form factors are essential for the study of
possible new physics in these decays [for more detail we
refer to a similar calculation of the full set of B → Dð�Þ and
B → πðρÞ form factors in our model [76,77]].
The new tensor form factor is defined by

hPðp2Þjq̄σμνð1 − γ5ÞcjDðp1Þi

¼ iFTðq2Þ
M1 þM2

ðPμqν − Pνqμ þ iεμνPqÞ: ð20Þ

Note that we obtained F0ðq2Þ by using the form factors
Fþðq2Þ and F−ðq2Þ defined in Eq. (2), with the help of the
relation

TABLE IV. Comparison of Fþð0Þ for DðsÞ → P transitions.

D → η D → η0 Ds → η Ds → η0 Ds → K0

Present 0.67� 0.10 0.76� 0.11 0.78� 0.12 0.73� 0.11 0.60� 0.09
CQM [28] � � � � � � 0.78 0.78 0.72
LFQM [32] 0.71 � � � 0.76 � � � 0.66
LQCDMπ¼470 MeV[14] � � � � � � 0.564(11) 0.437(18) � � �
LQCDMπ¼370 MeV[14] � � � � � � 0.542(13) 0.404(25) � � �
LCSR [22] 0.552� 0.051 0.458� 0.105 0.432� 0.033 0.520� 0.080 � � �
LCSR [24] 0.429þ0.165

−0.141 0.292þ0.113
−0.104 0.495þ0.030

−0.029 0.558þ0.047
−0.045 � � �

TABLE V. Ratios of the DðsÞ → V transition form factors at maximum recoil.

Channel Ratio Present PDG [7] LQCD [13] CQM [28] LFQM [32] HMχT [35]

D → ρ r2 0.93� 0.19 0.83� 0.12 � � � 0.83 0.78 0.51
rV 1.26� 0.25 1.48� 0.16 � � � 1.53 1.47 1.72

Dþ → ω r2 0.95� 0.19 1.06� 0.16 � � � � � � 0.84 0.51
rV 1.24� 0.25 1.24� 0.11 � � � � � � 1.47 1.72

Dþ
s → ϕ r2 0.99� 0.20 0.84� 0.11 0.74(12) 0.73 0.86 0.52

rV 1.34� 0.27 1.80� 0.08 1.72(21) 1.72 1.42 1.80
Dþ

s → K�0 r2 0.99� 0.20 � � � � � � 0.74 0.82 0.55
rV 1.40� 0.28 � � � � � � 1.82 1.55 1.93

FIG. 2. Form factor Fþðq2Þ forDþ
s → K0 in our model, LFQM

[32], LCSR [20], and CQM [28].
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F0ðq2Þ ¼ Fþðq2Þ þ
q2

M2
1 −M2

2

F−ðq2Þ: ð21Þ

Meanwhile, the ETM collaboration directly calculated the
scalar matrix element hPðp2Þjq̄cjDðp1Þi and then deter-
mined F0ðq2Þ using the equation of motion. In this way, the
final result becomes sensitive to the quark mass difference.
In Fig. 6 we compare the form factors F0ðq2Þ, Fþðq2Þ,

and FTðq2Þ of the D → πðKÞlν transitions with those
obtained by the ETM collaboration. It is seen that our
F0ðq2Þ agrees well with the ETM only in the low q2 region.
However, our results for Fþðq2Þ are very close to those of
the ETM. Note that the determination of Fþðq2Þ by the
ETM is dependent on F0ðq2Þ. It is interesting that the
tensor form factors between the two studies are in perfect
agreement. Even though this form factor does not appear
within the SM, this agreement has an important meaning
because, in both approaches, the tensor form factor is
determined directly from the corresponding matrix element
without any additional assumptions. In Table VI, we
present the values of the form factors and their ratios at

maximum recoil. One sees that our results agree with the
ETM calculation within uncertainty.

B. Branching fractions and other observables

In Tables VII and VIII, we summarize our predictions for
the semileptonic branching fractions of the D and Ds
mesons, respectively. For comparison, we also list results of
other theoretical calculations and the most recent exper-
imental data given by the CLEO and BESIII collaborations.
Note that the uncertainties of our predictions for the
branching fractions and other polarization observables
are of order 50%, taking into account only the main source
of uncertainties related to the form factors.
In general, our results for the branching fractions are

consistent with experimental data as well as with other
theoretical calculations. It is worth mentioning that,
for such a large set of decays considered in this study,
our branching fractions agree very well with all available
experimental data except for one channel, the
Dþ

s → K0lþνl. In this case, our prediction is nearly twice

FIG. 3. Form factor Fþðq2Þ for Dþ
ðsÞ → ηð0Þ in our model, LCSR [20,22,24], and CQM [28].
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FIG. 4. Form factors for Dþ
s → ϕ (left) and Dþ

s → K�ð892Þ0 (right) in our model, LFQM [32], HMχT [35], and CQM [28].
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FIG. 5. Form factors for D → ρ (left) and Dþ → ω (right) in our model, LFQM [32], HMχT [35], CQM [28], and CLEO data [74].
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as small as the CLEO central value [83] and about 30%
smaller than the LFQM prediction [33].
We also give prediction for the ratio ΓðD0 →

ρ−eþνeÞ=2ΓðDþ → ρ0eþνeÞ which should be equal to
unity in the SM, assuming isospin invariance. Our

calculation yields 0.98, in agreement with CLEO’s result
of 1.03� 0.09þ0.08

−0.02 [74]. Besides, our ratio of branching
fractions BðDþ

s → η0eþνeÞ=BðDþ
s → ηeþνeÞ ¼ 0.37 coin-

cides with the result 0.36� 0.14 obtained by CLEO [85]
and the more recent value 0.40� 0.14 by BESIII [84].

FIG. 6. D → πðKÞlν form factors obtained in our model (solid lines) and in lattice calculation (dots with error bars) by the ETM
collaboration [75].

TABLE VI. D → πðKÞlν form factors and their ratios at q2 ¼ 0.

fDπþ ð0Þ fDKþ ð0Þ fDπ
T ð0Þ fDK

T ð0Þ fDπ
T ð0Þ=fDπþ ð0Þ fDK

T ð0Þ=fDKþ ð0Þ
Present 0.63 0.78 0.53 0.70 0.84 0.90
ETM [75] 0.612(35) 0.765(31) 0.506(79) 0.687(54) 0.827(114) 0.898(50)
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TABLE VII. Branching fractions of DþðD0Þ-meson semileptonic decays.

Channel Unit Present Other Reference Data Reference

D0 → ρ−eþνe 10−3 1.62 1.97 χUA [38] 1.445� 0.058� 0.039 BESIII [78]
1.749þ0.421

−0.297 � 0.006 LCSR [25] 1.77� 0.12� 0.10 CLEO [74]
2.0 HMχT [35]

D0 → ρ−μþνμ 10−3 1.55 1.84 χUA [38]

Dþ → ρ0eþνe 10−3 2.09 2.54 χUA [38] 1.860� 0.070� 0.061 BESIII [78]
2.217þ0.534

−0.376 � 0.015 LCSR [25] 2.17� 0.12þ0.12
−0.22 CLEO [74]

2.5 HMχT [35]
Dþ → ρ0μþνμ 10−3 2.01 2.37 χUA [38] 2.4� 0.4 PDG [7]

Dþ → ωeþνe 10−3 1.85 2.46 χUA [38] 1.63� 0.11� 0.08 BESIII [79]
2.5 HMχT [35] 1.82� 0.18� 0.07 CLEO [74]

2.1� 0.2 LFQM [33]
Dþ → ωμþνμ 10−3 1.78 2.29 χUA [38]

2.0� 0.2 LFQM [33]

Dþ → ηeþνe 10−4 9.37 12� 1 LFQM [33] 10.74� 0.81� 0.51 BESIII [80]
24.5� 5.26 LCSR [22] 11.4� 0.9� 0.4 CLEO [81]

14.24� 10.98 LCSR [24]
Dþ → ημþνμ 10−4 9.12 12� 1 LFQM [33]

Dþ → η0eþνe 10−4 2.00 1.8� 0.2 LFQM [33] 1.91� 0.51� 0.13 BESIII [80]
3.86� 1.77 LCSR [22] 2.16� 0.53� 0.07 CLEO [81]
1.52� 1.17 LCSR [24]

Dþ → η0μþνμ 10−4 1.90 1.7� 0.2 LFQM [33]

TABLE VIII. Branching fractions of Ds-meson semileptonic decays (in %).

Channel Present Other Reference Data Reference

Dþ
s → ϕeþνe 3.01 2.12 χUA [38] 2.26� 0.45� 0.09 BESIII [9]

3.1� 0.3 LFQM [33] 2.61� 0.03� 0.08� 0.15 BABAR [82]
2.4 HMχT [35] 2.14� 0.17� 0.08 CLEO [83]

Dþ
s → ϕμþνμ 2.85 1.94 χUA [38]

2.9� 0.3 LFQM [33] 1.94� 0.53� 0.09 BESIII [9]

Dþ
s → K0eþνe 0.20 0.27� 0.02 LFQM [33] 0.39� 0.08� 0.03 CLEO [83]

Dþ
s → K0μþνμ 0.20 0.26� 0.02 LFQM [33]

Dþ
s → K�0eþνe 0.18 0.202 χUA [38] 0.18� 0.04� 0.01 CLEO [83]

0.19� 0.02 LFQM [33]
0.22 HMχT [35]

Dþ
s → K�0μþνμ 0.17 0.189 χUA [38]

0.19� 0.02 LFQM [33]

Dþ
s → ηeþνe 2.24 2.26� 0.21 LFQM [33] 2.30� 0.31� 0.08 BESIII [84]

2.00� 0.32 LCSR [22] 2.28� 0.14� 0.19 CLEO [83]
2.40� 0.28 LCSR [24]

Dþ
s → ημþνμ 2.18 2.22� 0.20 LFQM [33] 2.42� 0.46� 0.11 BESIII [9]

Dþ
s → η0eþνe 0.83 0.89� 0.09 LFQM [33] 0.93� 0.30� 0.05 BESIII [84]

0.75� 0.23 LCSR [22] 0.68� 0.15� 0.06 CLEO [83]
0.79� 0.14 LCSR [24]

Dþ
s → η0μþνμ 0.79 0.85� 0.08 LFQM [33] 1.06� 0.54� 0.07 BESIII [9]
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Finally, we predict BðDþ → η0eþνeÞ=BðDþ → ηeþνeÞ ¼
0.21, which agrees very well with the values 0.19� 0.05
and 0.18� 0.05 we got from experimental data by CLEO
[81] and BESIII [80], respectively. It is worth mentioning
here that very recently, the BESIII collaboration has
reported their measurement of BðD0 → K−μþνμÞ [86] with
significantly improved precision. In their paper, they also
approved the prediction of our model for the ratio BðD0 →
K−μþνμÞ=BðD0 → K−eþνeÞ provided in Ref. [46].
In Table IX, we present our results for the semileptonic

decays Dþ
ðsÞ → D0eþνe, which are rare in the SM due to

phase-space suppression. These decays are of particular
interest since they are induced by the light quark decay,
while the heavy quark acts as the spectator. Besides, the
small phase space helps reduce the theoretical errors. The
first experimental constraint on the branching fraction
BðDþ → D0eþνeÞ was recently obtained by the BESIII
collaboration [87]. However, the experimental upper limit
is still far above the SM predictions. The branching
fractions obtained in our model are comparable with other
theoretical calculations using the flavor SU(3) symmetry in
the light quark sector [88,89].
Finally, in Table X we list our predictions for the

forward-backward asymmetry hAl
FBi, the longitudinal

polarization hPl
Li, and the transverse polarization hPl

Ti
of the charged lepton in the final state. It is seen that, for the
P → V transitions, the lepton-mass effect in hAl

FBi is small,
resulting in a difference of only 10%–15% between the
corresponding electron and muon modes. For the P → P0
transitions, hAμ

FBi are about 104 times larger than hAe
FBi.

This is readily seen from Eq. (7): for P → P0 transitions the

two helicity amplitudes H� vanish and the forward-back-
ward asymmetry is proportional to the lepton mass squared.
Regarding the longitudinal polarization, the difference
between hPμ

Li and hPe
Li is 10%–30%. One sees that the

lepton-mass effect in the transverse polarization is much
more significant than that in the longitudinal one. This is
true for both P → P0 and P → V transitions. Note that the
values of hAe

FBi and hPe
LðTÞi for the rare decays Dþ

ðsÞ →
D0eþνe are quite different in comparison with other P →
P0 transitions due to their extremely small kinematical
regions.

V. SUMMARY AND CONCLUSION

We have presented a systematic study of the D and Ds
semileptonic decays within the framework of the CCQM.
All the relevant form factors are calculated in the entire
range of momentum transfer squared. We have also
provided a detailed comparison of the form factors with
other theoretical predictions and, in some cases, with
available experimental data. In particular, we have observed
a good agreement with the form factors obtained in the
covariant LFQM, for all decays. It is worth noting that our
tensor form factors for the D → πðKÞlν decays are in
perfect agreement with the recent LQCD calculation by the
ETM collaboration [75].
We have given our predictions for the semileptonic

branching fractions and their ratios. In general, our results
are in good agreement with other theoretical approaches
and with recent experimental data obtained by BABAR,
CLEO, and BESIII. In all cases, our predictions for the

TABLE X. Forward-backward asymmetry and lepton polarization components.

hAe
FBi hAμ

FBi hPe
Li hPμ

Li hPe
Ti hPμ

Ti
D0 → ρ−lþνl 0.21 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ρ0lþνl 0.22 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ωlþνl 0.21 0.19 −1.00 −0.92 1.4 × 10−3 0.22
Dþ → ηlþνl −6.4 × 10−6 −0.06 −1.00 −0.83 2.8 × 10−3 0.44
Dþ → η0lþνl −13.0 × 10−6 −0.10 −1.00 −0.70 4.2 × 10−3 0.59
Dþ → D0lþνl −0.10 � � � −0.72 � � � 0.56 � � �
Dþ

s → ϕlþνl 0.18 0.15 −1.00 −0.91 1.5 × 10−3 0.23
Dþ

s → K�0lþνl 0.22 0.20 −1.00 −0.92 1.4 × 10−3 0.22
Dþ

s → K0lþνl −5.0 × 10−6 −0.05 −1.00 −0.86 2.4 × 10−3 0.39
Dþ

s → ηlþνl −6.0 × 10−6 −0.06 −1.00 −0.84 2.7 × 10−3 0.42
Dþ

s → η0lþνl −11.2 × 10−6 −0.09 −1.00 −0.75 3.8 × 10−3 0.54
Dþ

s → D0lþνl −7.37 × 10−4 � � � −1.00 � � � 0.038 � � �

TABLE IX. Semileptonic branching fractions for Dþ
ðsÞ → D0lþνl.

Channel Present Other Reference Data Reference

Dþ → D0eþνe 2.23 × 10−13 2.78 × 10−13 [88] < 1.0 × 10−4 BESIII [87]
2.71 × 10−13 [89]

Dþ
s → D0eþνe 2.52 × 10−8 ð2.97� 0.03Þ × 10−8 [88] � � � � � �

3.34 × 10−8 [89]
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branching fractions agree with experimental data within
10%, except for the Dþ

s → K0lþνl channel. Our predic-
tions for the ratios of branching fractions are in full
agreement with experimental data. To conclude, we have
provided the first ever theoretical predictions for the
forward-backward asymmetries and lepton longitudinal
and transverse polarizations, which are important for future
experiments.
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Note added.—Recently, we became aware of the paper [90]
where the BESIII collaboration reported their new mea-
surements of the branching fractions for the decays
Dþ

s → K0eþνe and Dþ
s → K�0eþνe with improved preci-

sion. They also obtained for the first time the values of the
form factors at maximum recoil. Our predictions for the
branching fraction BðDþ

s → K�0eþνeÞ as well as the form
factor parameters fDsKþ ð0Þ, rDsK�

V ð0Þ, and rDsK�
2 ð0Þ agree

with the new BESIII results. Regarding their result
BðDþ

s → K0eþνeÞ ¼ ð3.25� 0.41Þ × 10−3, the central
value is closer to our prediction, in comparison with the
CLEO result [83]. However, the BESIII result is still at 1σ
larger than ours.
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