
A. Orlandini, M. Zimmermann (Eds.): 9th Symposium on
Games, Automata, Logics and Formal Verification (GandALF’18)
EPTCS 277, 2018, pp. 235–249, doi:10.4204/EPTCS.277.17

c© L. Bozzelli, A. Murano & A. Peron
This work is licensed under the
Creative Commons Attribution License.

Timed Context-Free Temporal Logics∗

Laura Bozzelli Aniello Murano Adriano Peron
University of Napoli “Federico II”, Napoli, Italy

The paper is focused on temporal logics for the description of the behaviour of real-time pushdown
reactive systems. The paper is motivated to bridge tractable logics specialized for expressing separately
dense-time real-time properties and context-free properties by ensuring decidability and tractability in
the combined setting. To this end we introduce two real-time linear temporal logics for specifying
quantitative timing context-free requirements in a pointwise semantics setting: Event-Clock Nested
Temporal Logic (EC NTL) and Nested Metric Temporal Logic (NMTL). The logic EC NTL is an
extension of both the logic CaRet (a context-free extension of standard LTL) and Event-Clock Temporal
Logic (a tractable real-time logical framework related to the class of Event-Clock automata). We
prove that satisfiability of EC NTL and visibly model-checking of Visibly Pushdown Timed Automata
(VPTA) against EC NTL are decidable and EXPTIME-complete. The other proposed logic NMTL is a
context-free extension of standard Metric Temporal Logic (MTL). It is well known that satisfiability
of future MTL is undecidable when interpreted over infinite timed words but decidable over finite
timed words. On the other hand, we show that by augmenting future MTL with future context-free
temporal operators, the satisfiability problem turns out to be undecidable also for finite timed words.
On the positive side, we devise a meaningful and decidable fragment of the logic NMTL which is
expressively equivalent to EC NTL and for which satisfiability and visibly model-checking of VPTA
are EXPTIME-complete.

1 Introduction

Model checking is a well-established formal-method technique to automatically check for global correct-
ness of reactive systems [8]. In this setting, temporal logics provide a fundamental framework for the
description of the dynamic behavior of reactive systems.

In the last two decades, model checking of pushdown automata (PDA) has received a lot of atten-
tion [26, 16, 7, 13]. PDA represent an infinite-state formalism suitable to model the control flow of typical
sequential programs with nested and recursive procedure calls. Although the general problem of checking
context-free properties of PDA is undecidable, algorithmic solutions have been proposed for interesting
subclasses of context-free requirements [3, 7, 16]. A relevant example is that of the linear temporal logic
CaRet [3], a context-free extension of standard LTL. CaRet formulas are interpreted on words over a
pushdown alphabet which is partitioned into three disjoint sets of calls, returns, and internal symbols.
A call denotes invocation of a procedure (i.e. a push stack-operation) and the matching return (if any)
along a given word denotes the exit from this procedure (corresponding to a pop stack-operation). CaRet
allows to specify LTL requirements over two kinds of non-regular patterns on input words: abstract paths
and caller paths. An abstract path captures the local computation within a procedure with the removal of
subcomputations corresponding to nested procedure calls, while a caller path represents the call-stack
content at a given position of the input. An automata theoretic generalization of CaRet is the class of
(nondeterministic) Visibly Pushdown Automata (VPA) [7], a subclass of PDA where the input symbols
∗The work by Adriano Peron and Aniello Murano has been partially supported by the GNCS project Formal methods for

verification and synthesis of discrete and hybrid systems and by Dept. project MODAL MOdel-Driven Analysis of Critical
Industrial Systems.

http://dx.doi.org/10.4204/EPTCS.277.17
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

236 Timed Context-Free Temporal Logics

over a pushdown alphabet control the admissible operations on the stack. VPA push onto the stack only
when a call is read, pops the stack only at returns, and do not use the stack on reading internal symbols.
This restriction makes the class of resulting languages (visibly pushdown languages or VPL) very similar
in tractability and robustness to the less expressive class of regular languages [7]. In fact, VPL are closed
under Boolean operations, and language inclusion, which is undecidable for context-free languages, is
EXPTIME-complete for VPL.

Real-time pushdown model-checking. Recently, many works [1, 9, 10, 12, 17, 18, 25] have investigated
real-time extensions of PDA by combining PDA with Timed Automata (TA) [2], a model widely used to
represent real-time systems. TA are finite automata augmented with a finite set of real-valued clocks, which
operate over words where each symbol is paired with a real-valued timestamp (timed words). All the clocks
progress at the same speed and can be reset by transitions (thus, each clock keeps track of the elapsed
time since the last reset). The emptiness problem for TA is decidable and PSPACE-complete [2]. However,
since in TA, clocks can be reset nondeterministically and independently of each other, the resulting class
of timed languages is not closed under complement and, moreover, language inclusion is undecidable [2].
As a consequence, the general verification problem (i.e., language inclusion) of formalisms combining
unrestricted TA with robust subclasses of PDA such as VPA, i.e. Visibly Pushdown Timed Automata
(VPTA), is undecidable as well. In fact, checking language inclusion for VPTA is undecidable even in
the restricted case of specifications using at most one clock [18]. More robust approaches [24, 11, 14],
although less expressive, are based on formalisms combining VPA and Event-clock automata (ECA) [5]
such as the recently introduced class of Event-Clock Nested Automata (ECNA) [14]. ECA [5] are a
well-known determinizable subclass of TA where the explicit reset of clocks is disallowed. In ECA,
clocks have a predefined association with the input alphabet symbols and their values refer to the time
distances from previous and next occurrences of input symbols. ECNA [14] combine ECA and VPA by
providing an explicit mechanism to relate the use of a stack with that of event clocks. In particular, ECNA
retain the closure and decidability properties of ECA and VPA being closed under Boolean operations
and having a decidable (specifically, EXPTIME-complete) language-inclusion problem, and are strictly
more expressive than other formalisms combining ECA and VPA [24, 11] such as the class of Event-Clock
Visibly Pushdown Automata (ECVPA) [24]. In [11] a logical characterization of the class of ECVPA is
provided by means of a non-elementarily decidable extension of standard MSO over words.

Our contribution. In this paper, we introduce two real-time linear temporal logics, called Event-Clock
Nested Temporal Logic (EC NTL) and Nested Metric Temporal Logic (NMTL) for specifying quantitative
timing context-free requirements in a pointwise semantics setting (models of formulas are timed words).
The logic EC NTL is an extension of Event-Clock Temporal Logic (EC TL) [23], the latter being a known
decidable and tractable real-time logical framework related to the class of Event-clock automata. EC TL
extends LTL + past with timed temporal modalities which specify time constraints on the distances from
the previous or next timestamp where a given subformula holds. The novel logic EC NTL is an extension
of both EC TL and CaRet by means of non-regular versions of the timed modalities of EC TL which
allow to refer to abstract and caller paths. We address expressiveness and complexity issues for the logic
EC NTL. In particular, we establish that satisfiability of EC NTL and visibly model-checking of VPTA
against EC NTL are decidable and EXPTIME-complete. The key step in the proposed decision procedures
is a translation of EC NTL into ECNA accepting suitable encodings of the models of the given formula.

The second logic we introduce, namely NMTL, is a context-free extension of standard Metric
Temporal Logic (MTL). This extension is obtained by adding to MTL timed versions of the caller
and abstract temporal modalities of CaRet. In the considered pointwise-semantics settings, it is well
known that satisfiability of future MTL is undecidable when interpreted over infinite timed words [21],

L. Bozzelli, A. Murano & A. Peron 237

Table 1: Decidability results.
Logic Satisfiability Visibly model checking

EC NTL EXPTIME-complete EXPTIME-complete
NMITL(0,∞) EXPTIME-complete EXPTIME-complete

future MTL fin. Decidable
future MTL infin. Undecidable
future NMTL fin. Undecidable

and decidable [22] over finite timed words. We show that over finite timed words, the adding of the
future abstract timed modalities to future MTL makes the satisfiability problem undecidable. On the
other hand, we show that the fragment NMITL(0,∞) of NMTL (the NMTL counterpart of the well-known
tractable fragment MITL(0,∞) [4] of MTL) has the same expressiveness as the logic EC NTL and the
related satisfiability and visibly model-checking problems are EXPTIME-complete. The overall picture of
decidability results is reported in table 1 (new results in red).

Due to space limitations, some proofs are omitted: we refer for complete proofs to the complete
version of the paper in [15].

2 Preliminaries

In the following, N denotes the set of natural numbers and R+ the set of non-negative real numbers. Let w
be a finite or infinite word over some alphabet. By |w| we denote the length of w (we write |w|= ∞ if w is
infinite). For all i, j ∈ N, with i≤ j < |w|, wi is i-th letter of w, while w[i, j] is the finite subword wi · · ·w j.

A timed word w over a finite alphabet Σ is a word w = (a0,τ0)(a1,τ1), . . . over Σ×R+ (τi is the time
at which ai occurs) such that the sequence τ = τ0,τ1, . . . of timestamps satisfies: (1) τi−1 ≤ τi for all
0 < i < |w| (monotonicity), and (2) if w is infinite, then for all t ∈ R+, τi ≥ t for some i≥ 0 (divergence).
The timed word w is also denoted by the pair (σ ,τ), where σ is the untimed word a0a1 A timed
language (resp., ω-timed language) over Σ is a set of finite (resp., infinite) timed words over Σ.

Pushdown alphabets, abstract paths, and caller paths. A pushdown alphabet is a finite alphabet
Σ = Σcall∪Σret ∪Σint which is partitioned into a set Σcall of calls, a set Σret of returns, and a set Σint of
internal actions. The pushdown alphabet Σ induces a nested hierarchical structure in a given word over Σ

obtained by associating to each call the corresponding matching return (if any) in a well-nested manner.
Formally, the set of well-matched words is the set of finite words σw over Σ inductively defined as follows:

σw := ε
∣∣ a ·σw

∣∣ c ·σw · r ·σw

where ε is the empty word, a ∈ Σint, c ∈ Σcall, and r ∈ Σret.
Fix a word σ over Σ. For a call position i of σ , if there is j > i such that j is a return position of σ

and σ [i+1, j−1] is a well-matched word (note that j is uniquely determined if it exists), we say that j
is the matching return of i along σ . For a position i of σ , the abstract successor of i along σ , denoted
succ(a,σ , i), is defined as follows:
• If i is a call, then succ(a,σ , i) is the matching return of i if such a matching return exists; otherwise

succ(a,σ , i) = ` (` denotes the undefined value).
• If i is not a call, then succ(a,σ , i) = i+ 1 if i+ 1 < |σ | and i+ 1 is not a return position, and

succ(a,σ , i) = `, otherwise.

238 Timed Context-Free Temporal Logics

The caller of i along σ , denoted succ(c,σ , i), is instead defined as follows:
• if there exists the greatest call position jc < i such that either succ(a,σ , jc) = ` or succ(a,σ , jc)> i,

then succ(c,σ , i) = jc; otherwise, succ(c,σ , i) = `.
We also consider the global successor succ(g,σ , i) of i along σ given by i+1 if i+1 < |σ |, and undefined
otherwise. A maximal abstract path (MAP) of σ is a maximal (finite or infinite) increasing sequence of
natural numbers ν = i0 < i1 < .. . such that i j = succ(a,σ , i j−1) for all 1≤ j < |ν |. Note that for every
position i of σ , there is exactly one MAP of σ visiting position i. For each i ≥ 0, the caller path of σ

from position i is the maximal (finite) decreasing sequence of natural numbers j0 > j1 . . . > jn such that
j0 = i and jh+1 = succ(c,σ , jh) for all 0 ≤ h < n. Note that all the positions of a MAP have the same
caller (if any). Intuitively, in the analysis of recursive programs, a maximal abstract path captures the local
computation within a procedure removing computation fragments corresponding to nested calls, while the
caller path represents the call-stack content at a given position of the input.

For instance, consider the finite untimed word σ of length 10 depicted in Figure 1 where Σcall = {c},
Σret = {r}, and Σint = {ı}. Note that 0 is the unique unmatched call position of σ : hence, the MAP visiting
0 consists of just position 0 and has no caller. The MAP visiting position 1 is the sequence 1,6,7,9,10 and
the associated caller is position 0. The MAP visiting position 2 is the sequence 2,3,5 and the associated
caller is position 1, and the MAP visiting position 4 consists of just position 4 whose caller path is 4,3,1,0.

σ =
0
c

1
c

2
ı

3
c

4
ı

5
r

6
r

7
c

8
ı

9
r

10
ı

Figure 1: An untimed word over a pushdown alphabet

3 Event-clock nested automata

In this section, we recall the class of Event-Clock Nested Automata (ECNA) [14], a formalism that
combines Event Clock Automata (ECA) [5] and Visibly Pushdown Automata (VPA) [7] by allowing a
combined used of event clocks and visible operations on the stack.

Here, we adopt a propositional-based approach, where the pushdown alphabet is implicitly given. This
is because in formal verification, one usually considers a finite set of atomic propositions which represent
predicates over the states of the given system. Moreover, for verifying recursive programs, one fixes three
additional propositions, here denoted by call, ret, and int: call denotes the invocation of a procedure, ret
denotes the return from a procedure, and int denotes internal actions of the current procedure. Thus, we
fix a finite set P of atomic propositions containing the special propositions call, ret, and int. The set P
induces a pushdown alphabet ΣP = Σcall∪Σret∪Σint, where Σcall = {P⊆P |P∩{call,ret, int}= {call}},
Σret = {P⊆P | P∩{call,ret, int}= {ret}}, and Σint = {P⊆P | P∩{call,ret, int}= {int}}.

The set CP of event clocks associated with P is given by CP :=
⋃

p∈P{x
g
p,y

g
p,xap,y

a
p,x

c
p}. Thus, we

associate with each proposition p ∈P , five event clocks: the global recorder clock xgp (resp., the global
predictor clock ygp) recording the time elapsed since the last occurrence of p if any (resp., the time required
to the next occurrence of p if any); the abstract recorder clock xap (resp., the abstract predictor clock
yap) recording the time elapsed since the last occurrence of p if any (resp., the time required to the next
occurrence of p) along the MAP visiting the current position; and the caller (recorder) clock xcp recording
the time elapsed since the last occurrence of p if any along the caller path from the current position. Let
w = (σ ,τ) be a timed word over ΣP and 0≤ i < |w|. We denote by Pos(a,σ , i) the set of positions visited
by the MAP of σ associated with position i, and by Pos(c,σ , i) the set of positions visited by the caller

L. Bozzelli, A. Murano & A. Peron 239

path of σ from position i. For having a uniform notation, let Pos(g,σ , i) be the full set of w-positions.
The values of the clocks at a position i of the word w can be deterministically determined as follows.

Definition 1 (Determinisitic clock valuations). A clock valuation over CP is a mapping val : CP 7→
R+∪{`}, assigning to each event clock a value in R+∪{`} (` is the undefined value). For a timed word
w = (σ ,τ) over Σ and 0≤ i < |w|, the clock valuation valwi over CP , specifying the values of the event
clocks at position i along w, is defined as follows for each p ∈P , where dir ∈ {g,a} and dir′ ∈ {g,a,c}:

valwi (x
dir′
p) =


τi− τ j if there exists the unique j < i : p ∈ σ j, j ∈ Pos(dir′,σ , i), and

∀k : (j < k < i and k ∈ Pos(dir′,σ , i))⇒ p /∈ σk
` otherwise

valwi (y
dir
p) =


τ j− τi if there exists the unique j > i : p ∈ σ j, j ∈ Pos(dir,σ , i), and

∀k : (i < k < j and k ∈ Pos(dir,σ , i))⇒ p /∈ σk
` otherwise

It is worth noting that while the values of the global clocks are obtained by considering the full set of
positions in w, the values of the abstract clocks (resp., caller clocks) are defined with respect to the MAP
visiting the current position (resp., with respect to the caller path from the current position).

A clock constraint over CP is a conjunction of atomic formulas of the form z ∈ I, where z ∈CP , and
I is either an interval in R+ with bounds in N∪{∞}, or the singleton {`}. For a clock valuation val and a
clock constraint θ , val satisfies θ , written val |= θ , if for each conjunct z ∈ I of θ , val(z) ∈ I. We denote
by Φ(CP) the set of clock constraints over CP .

Definition 2. An ECNA over ΣP = Σcall ∪ Σint ∪ Σret is a tuple A = (ΣP ,Q,Q0,CP ,Γ∪ {⊥},∆,F),
where Q is a finite set of (control) states, Q0 ⊆Q is a set of initial states, Γ∪{⊥} is a finite stack alphabet,
⊥ /∈ Γ is the special stack bottom symbol, F ⊆ Q is a set of accepting states, and ∆ = ∆c∪∆r ∪∆i is a
transition relation, where:
• ∆c ⊆ Q×Σcall×Φ(CP)×Q×Γ is the set of push transitions,
• ∆r ⊆ Q×Σret×Φ(CP)× (Γ∪{⊥})×Q is the set of pop transitions,
• ∆i ⊆ Q×Σint×Φ(CP)×Q is the set of internal transitions.

We now describe how an ECNA A behaves over a timed word w. Assume that on reading the i-th
position of w, the current state of A is q, and valwi is the event-clock valuation associated with w and
position i. If A reads a call c ∈ Σcall, it chooses a push transition of the form (q,c,θ ,q′,γ) ∈ ∆c and
pushes the symbol γ 6= ⊥ onto the stack. If A reads a return r ∈ Σret, it chooses a pop transition of
the form (q,r,θ ,γ,q′) ∈ ∆r such that γ is the symbol on the top of the stack, and pops γ from the stack
(if γ = ⊥, then γ is read but not removed). Finally, on reading an internal action a ∈ Σint, A chooses
an internal transition of the form (q,a,θ ,q′) ∈ ∆i, and, in this case, there is no operation on the stack.
Moreover, in all the cases, the constraint θ of the chosen transition must be fulfilled by the valuation valwi
and the control changes from q to q′.

Formally, a configuration of A is a pair (q,β), where q ∈ Q and β ∈ Γ∗ · {⊥} is a stack content. A
run π of A over a timed word w = (σ ,τ) is a sequence of configurations π = (q0,β0),(q1,β1), . . . of
length |w|+1 (∞+1 stands for ∞) such that q0 ∈ Q0, β0 =⊥ (initialization), and the following holds for
all 0≤ i < |w|:

Push If σi ∈ Σcall, then for some (qi,σi,θ ,qi+1,γ) ∈ ∆c, βi+1 = γ ·βi and valwi |= θ .

Pop If σi ∈ Σret, then for some (qi,σi,θ ,γ,qi+1) ∈ ∆r, valwi |= θ , and either γ 6=⊥ and βi = γ ·βi+1, or
γ = βi = βi+1 =⊥.

240 Timed Context-Free Temporal Logics

Internal If σi ∈ Σint, then for some (qi,σi,θ ,qi+1) ∈ ∆i, βi+1 = βi and valwi |= θ .

The run π is accepting if either π is finite and q|w| ∈ F , or π is infinite and there are infinitely many
positions i≥ 0 such that qi ∈ F . The timed language LT (A) (resp., ω-timed language L ω

T (A)) of A is
the set of finite (resp., infinite) timed words w over ΣP such that there is an accepting run of A on w.
When considered as an acceptor of infinite timed words, an ECNA is called Büchi ECNA. In this case, for
technical convenience, we also consider ECNA equipped with a generalized Büchi acceptance condition
F consisting of a family of sets of accepting states. In such a setting, an infinite run π is accepting if for
each Büchi component F ∈F , the run π visits infinitely often states in F .

In the following, we also consider the class of Visibly Pushdown Timed Automata (VPTA) [12, 18],
a combination of VPA and standard Timed Automata [2]. The clocks in a VPTA can be reset when a
transition is taken; hence, their values at a position of an input word depend in general on the behaviour
of the automaton and not only, as for event clocks, on the word. The syntax and semantics of VPTA is
shortly recalled in Appendix A of [15].

4 The Event-Clock Nested Temporal Logic

A known decidable timed temporal logical framework related to the class of Event-Clock automata
(ECA) is the so called Event-Clock Temporal Logic (EC TL) [23], an extension of standard LTL with
past obtained by means of two indexed modal operators � and � which express real-time constraints.
On the other hand, for the class of VPA, a related logical framework is the temporal logic CaRet [3], a
well-known context-free extension of LTL with past by means of non-regular versions of the LTL temporal
operators. In this section, we introduce an extension of both EC TL and CaRet, called Event-Clock Nested
Temporal Logic (EC NTL) which allows to specify non-regular context-free real-time properties.

For the given set P of atomic propositions containing the special propositions call, ret, and int, the
syntax of EC NTL formulas ϕ is as follows:

ϕ :=>
∣∣ p
∣∣ ϕ ∨ϕ

∣∣ ¬ϕ
∣∣dir

ϕ
∣∣dir′

ϕ
∣∣ ϕ Udir

ϕ
∣∣ ϕ Sdir′

ϕ
∣∣ �dir

I ϕ
∣∣ �dir′

I ϕ

where p ∈P , I is an interval in R+ with bounds in N∪{∞}, dir ∈ {g,a}, and dir′ ∈ {g,a,c}. The
operators g, g, Ug, and Sg are the standard ‘next’, ‘previous’, ‘until’, and ‘since’ LTL modalities,
respectively,a,a, Ua, and Sa are their non-regular abstract versions, andc and Sc are the non-regular
caller versions of the ‘previous’ and ‘since’ LTL modalities. Intuitively, the abstract and caller modalities
allow to specify LTL requirements on the abstract and caller paths of the given timed word over ΣP .
Real-time constraints are specified by the indexed operators �

g
I , �g

I , �a
I , �a

I , and �c
I . The formula

�
g
I ϕ requires that the delay t before the next position where ϕ holds satisfies t ∈ I; symmetrically, �g

I ϕ

constraints the previous position where ϕ holds. The abstract versions �a
I ϕ and �a

I ϕ are similar, but
the notions of next and previous position where ϕ holds refer to the MAP visiting the current position.
Analogously, for the caller version �c

I ϕ of �g
I ϕ , the notion of previous position where ϕ holds refers to

the caller path visiting the current position.
Full CaRet [3] corresponds to the fragment of EC NTL obtained by disallowing the real-time operators,

while the logic EC TL [23] is obtained from EC NTL by disallowing the abstract and caller modalities.
As pointed out in [23], the real-time operators � and � generalize the semantics of event clock variables
since they allows recursion, i.e., they can constraint arbitrary formulas and not only atomic propositions.
Accordingly, the non-recursive fragment of EC NTL is obtained by replacing the clauses �dir

I ϕ and �dir′
I ϕ

in the syntax with the clauses �dir
I p and �dir′

I p, where p ∈P . We use standard shortcuts in EC NTL: the

L. Bozzelli, A. Murano & A. Peron 241

formulagψ stands for >Ug
ψ (the LTL eventually operator), and gψ stands for ¬g¬ψ (the LTL

always operator). For an EC NTL formula ϕ , |ϕ| denotes the number of distinct subformulas of ϕ and
Constϕ the set of constants used as finite endpoints in the intervals associates with the real-time modalities.
The size of ϕ is |ϕ|+ k, where k is the size of the binary encoding of the largest constant in Constϕ .

Given an EC NTL formula ϕ , a timed word w = (σ ,τ) over ΣP and a position 0 ≤ i < |w|, the
satisfaction relation (w, i) |= ϕ is inductively defined as follows (we omit the clauses for the atomic
propositions and Boolean connectives which are standard):

(w, i) |=dirϕ ⇔ there is j > i such that j = succ(dir,σ , i) and (w, j) |= ϕ

(w, i) |=dir′ϕ ⇔ there is j < i such that (w, j) |= ϕ and either (dir′ 6= c and
i = succ(dir′,σ , j)), or (dir′ = c and j = succ(c,σ , i))

(w, i) |= ϕ1U
dir

ϕ2 ⇔ there is j ≥ i such that j ∈ Pos(dir,σ , i), (w, j) |= ϕ2 and
(w,k) |= ϕ1 for all k ∈ [i, j−1]∩Pos(dir,σ , i)

(w, i) |= ϕ1S
dir′

ϕ2 ⇔ there is j ≤ i such that j ∈ Pos(dir′,σ , i), (w, j) |= ϕ2 and
(w,k) |= ϕ1 for all k ∈ [j+1, i]∩Pos(dir′,σ , i)

(w, i) |=�dir
I ϕ ⇔ there is j > i s.t. j ∈ Pos(dir,σ , i), (w, j) |= ϕ, τ j− τi ∈ I,

and (w,k) 6|= ϕ for all k ∈ [i+1, j−1]∩Pos(dir,σ , i)
(w, i) |=�dir′

I ϕ ⇔ there is j < i s.t. j ∈ Pos(dir′,σ , i), (w, j) |= ϕ, τi− τ j ∈ I,
and (w,k) 6|= ϕ for all k ∈ [j+1, i−1]∩Pos(dir′,σ , i)

A timed word w satisfies a formula ϕ (we also say that w is a model of ϕ) if (w,0) |= ϕ . The timed
language LT (ϕ) (resp. ω-timed language L ω

T (ϕ)) of ϕ is the set of finite (resp., infinite) timed words
over ΣP satisfying ϕ . We consider the following decision problems:
• Satisfiability: has a given EC NTL formula a finite (resp., infinite) model?
• Visibly model-checking: given a VPTA A over ΣP and an EC NTL formula ϕ over P , does

LT (A)⊆LT (ϕ) (resp., L ω
T (A)⊆L ω

T (ϕ)) hold?
The logic EC NTL allows to express in a natural way real-time LTL-like properties over the non-

regular patterns capturing the local computations of procedures or the stack contents at given positions.
Here, we consider three relevant examples.
• Real-time total correctness: a bounded-time total correctness requirement for a procedure A

specifies that if the pre-condition p holds when the procedure A is invoked, then the procedure
must return within k time units and q must hold upon return. Such a requirement can be expressed
by the following non-recursive formula, where proposition pA characterizes calls to procedure A:
g
(
(call∧ p∧ pA)→ (aq∧�a

[0,k]ret)
)

• Local bounded-time response properties: the requirement that in the local computation (abstract
path) of a procedure A, every request p is followed by a response q within k time units can be
expressed by the following non-recursive formula, where cA denotes that the control is inside
procedure A: g

(
(p∧ cA)→�a

[0,k]q
)

• Real-time properties over the stack content: the real-time security requirement that a procedure A is
invoked only if procedure B belongs to the call stack and within k time units since the activation of
B can be expressed as follows (the calls to procedure A and B are marked by proposition pA and pB,
respectively): g

(
(call∧ pA)→�c

[0,k] pB
)

Expressiveness results. We now compare the expressive power of the formalisms EC NTL, ECNA,
and VPTA with respect to the associated classes of (ω-)timed languages. It is known that ECA and the
logic EC TL are expressively incomparable [23]. This result trivially generalizes to ECNA and EC NTL

242 Timed Context-Free Temporal Logics

(note that over timed words consisting only of internal actions, ECNA correspond to ECA, and the logic
EC NTL corresponds to EC TL). In [14], it is shown that ECNA are strictly less expressive than VPTA.
In Section 4.1, we show that EC NTL is subsumed by VPTA (in particular, every EC NTL formula can
be translated into an equivalent VPTA). The inclusion is strict since the logic EC NTL is closed under
complementation, while VPTA are not [18]. Hence, we obtain the following result.

Theorem 1. Over finite (resp., infinite) timed words, EC NTL and ECNA are expressively incomparable,
and EC NTL is strictly less expressive than VPTA.

We additionally investigate the expressiveness of the novel timed temporal modalities �a
I , �a

I , and �c
I .

It turns out that these modalities add expressive power.

Theorem 2. Let F be the fragment of EC NTL obtained by disallowing the modalities �a
I , �c

I , and �a
I .

Then, F is strictly less expressive than EC NTL.

Proof. We focus on the case of finite timed words (the case of infinite timed words is similar). Let
P = {call,ret} and LT be the timed language consisting of the finite timed words of the form (σ ,τ)
such that σ is a well-matched word of the form {call}n · {ret}n for some n > 0, and there is a call position
ic of σ such that τir − τic = 1, where ir is the matching-return of ic in σ . LT can be easily expressed in
EC NTL. On the other hand, one can show that LT is not definable in F (the detailed proof can be found
in Appendix B of [15]) .

4.1 Decision procedures for the logic EC NTL

In this section, we provide an automata-theoretic approach for solving satisfiability and visibly model-
checking for the logic EC NTL which generalizes both the automatic-theoretic approach of CaRet [3] and
the one for EC TL [23]. We focus on infinite timed words (the approach for finite timed words is similar).
Given an EC NTL formula ϕ over P , we construct in exponential time a generalized Büchi ECNA Aϕ

over an extension of the pushdown alphabet ΣP accepting suitable encodings of the infinite models of ϕ .
Fix an EC NTL formula ϕ over P . For each infinite timed word w = (σ ,τ) over ΣP we associate

to w an infinite timed word π = (σe,τ) over an extension of ΣP , called fair Hintikka sequence, where
σe = A0A1 . . ., and for all i≥ 0, Ai is an atom which, intuitively, describes a maximal set of subformulas of
ϕ which hold at position i along w. The notion of atom syntactically captures the semantics of the Boolean
connectives and the local fixpoint characterization of the variants of until (resp., since) modalities in terms
of the corresponding variants of the next (resp., previous) modalities. Additional requirements on the
timed word π , which can be easily checked by the transition function of an ECNA, capture the semantics
of the various next and previous modalities, and the semantics of the real-time operators. Finally, the
global fairness requirement, which can be easily checked by a standard generalized Büchi acceptance
condition, captures the liveness requirements ψ2 in until subformulas of the form ψ1U

g
ψ2 (resp., ψ1U

a
ψ2)

of ϕ . In particular, when an abstract until formula ψ1U
a
ψ2 is asserted at a position i along an infinite

timed word w over ΣP and the MAP ν visiting position i is infinite, we have to ensure that the liveness
requirement ψ2 holds at some position j ≥ i of the MAP ν . To this end, we use a special proposition p∞

which does not hold at a position i of w iff position i has a caller whose matching return is defined. We
now proceed with the technical details. The closure Cl(ϕ) of ϕ is the smallest set containing:
• > ∈ Cl(ϕ), each proposition p ∈P ∪{p∞}, and formulasa> anda>;
• all the subformulas of ϕ;
• the formulas dir(ψ1U

dir
ψ2) (resp., dir(ψ1S

dir
ψ2)) for all the subformulas ψ1U

dir
ψ2 (resp.,

ψ1S
dir

ψ2) of ϕ , where dir ∈ {g,a} (resp., dir ∈ {g,a,c}).

L. Bozzelli, A. Murano & A. Peron 243

• all the negations of the above formulas (we identify ¬¬ψ with ψ).

Note that ϕ ∈ Cl(ϕ) and |Cl(ϕ)| = O(|ϕ|). In the following, elements of Cl(ϕ) are seen as atomic
propositions, and we consider the pushdown alphabet ΣCl(ϕ) induced by Cl(ϕ). In particular, for a timed
word π over ΣCl(ϕ), we consider the clock valuation valπi specifying the values of the event clocks xψ , yψ ,
xaψ , yaψ , and xcψ at position i along π , where ψ ∈ Cl(ϕ).
An atom A of ϕ is a subset of Cl(ϕ) satisfying the following:
• A is a maximal subset of Cl(ϕ) which is propositionally consistent, i.e.:

– > ∈ A and for each ψ ∈ Cl(ϕ), ψ ∈ A iff ¬ψ /∈ A;
– for each ψ1∨ψ2 ∈ Cl(ϕ), ψ1∨ψ2 ∈ A iff {ψ1,ψ2}∩A 6= /0;
– A contains exactly one atomic proposition in {call,ret, int}.

• for all dir ∈ {g,a} and ψ1U
dir

ψ2 ∈ Cl(ϕ), either ψ2 ∈ A or {ψ1,dir(ψ1U
dir

ψ2)} ⊆ A.
• for all dir ∈ {g,a,c} and ψ1S

dir
ψ2 ∈ Cl(ϕ), either ψ2 ∈ A or {ψ1,dir(ψ1S

dir
ψ2)} ⊆ A.

• ifa> /∈ A, then for allaψ ∈ Cl(ϕ),aψ /∈ A.
• ifa> /∈ A, then for allaψ ∈ Cl(ϕ),aψ /∈ A.

We now introduce the notion of Hintikka sequence π which corresponds to an infinite timed word
over ΣCl(ϕ) satisfying additional constraints. These constraints capture the semantics of the variants of
next, previous, and real-time modalities, and (partially) the intended meaning of proposition p∞ along the
associated timed word over ΣP (the projection of π over ΣP ×R+). For an atom A, let Caller(A) be the
set of caller formulas cψ in A. For atoms A and A′, we define a predicate Next(A,A′) which holds if
the global next (resp., global previous) requirements in A (resp., A′) are the ones that hold in A′ (resp.,
A), i.e.: (i) for allgψ ∈ Cl(ϕ),gψ ∈ A iff ψ ∈ A′, and (ii) for allgψ ∈ Cl(ϕ),gψ ∈ A′ iff ψ ∈ A.
Similarly, the predicate AbsNext(A,A′) holds if: (i) for all aψ ∈ Cl(ϕ), aψ ∈ A iff ψ ∈ A′, and (ii)
for all aψ ∈ Cl(ϕ), aψ ∈ A′ iff ψ ∈ A, and additionally (iii) Caller(A) = Caller(A′). Note that for
AbsNext(A,A′) to hold we also require that the caller requirements in A and A′ coincide consistently with
the fact that the positions of a MAP have the same caller (if any).

Definition 3. An infinite timed word π = (σ ,τ) over ΣCl(ϕ), where σ = A0A1 . . ., is an Hintikka sequence
of ϕ , if for all i≥ 0, Ai is a ϕ-atom and the following holds:

1. Initial consistency: for all dir ∈ {g,a,c} anddirψ ∈ Cl(ϕ), ¬dirψ ∈ A0.
2. Global next and previous requirements: Next(Ai,Ai+1).
3. Abstract and caller requirements: we distinguish three cases.

• call /∈ Ai and ret /∈ Ai+1: AbsNext(Ai,Ai+1), (p∞ ∈ Ai iff p∞ ∈ Ai+1);
• call /∈ Ai and ret ∈ Ai+1: a> /∈ Ai, and (a> ∈ Ai+1 iff the matching call of the return

position i+1 is defined). Moreover, ifa> /∈ Ai+1, then p∞ ∈ Ai∩Ai+1 and Caller(Ai+1) = /0.
• call ∈ Ai: if succ(a,σ , i) = ` then a> /∈ Ai and p∞ ∈ Ai; otherwise AbsNext(Ai,A j) and
(p∞ ∈ Ai iff p∞ ∈ A j), where j = succ(a,σ , i). Moreover, if ret /∈ Ai+1, then Caller(Ai+1) =
{cψ ∈ Cl(ϕ) | ψ ∈ Ai} and (a> ∈ Ai iff p∞ /∈ Ai+1).

4. Real-time requirements:
• for all dir ∈ {g,a,c} and �dir

I ψ ∈ Cl(ϕ), �dir
I ψ ∈ Ai iff valπi (x

dir
ψ) ∈ I;

• for all dir ∈ {g,a} and �dir
I ψ ∈ Cl(ϕ), �dir

I ψ ∈ Ai iff valπi (y
dir
ψ) ∈ I.

In order to capture the liveness requirements of the global and abstract until subformulas of ϕ , and fully
capture the intended meaning of proposition p∞, we consider the following additional global fairness
constraint. An Hintikka sequence π = (A0, t0)(A1, t1) of ϕ is fair if (i) for infinitely many i≥ 0, p∞ ∈ Ai;
(ii) for all ψ1U

g
ψ2 ∈ Cl(ϕ), there are infinitely many i≥ 0 s.t. {ψ2,¬(ψ1U

g
ψ2)}∩Ai 6= /0; and (iii) for

all ψ1U
a
ψ2 ∈ Cl(ϕ), there are infinitely many i≥ 0 such that p∞ ∈ Ai and {ψ2,¬(ψ1U

a
ψ2)}∩Ai 6= /0.

244 Timed Context-Free Temporal Logics

The Hintikka sequence π is initialized if ϕ ∈ A0. Note that according to the intended meaning of
proposition p∞, for each infinite timed word w = (σ ,τ) over ΣP , p∞ holds at infinitely many positions.
Moreover, there is at a most one infinite MAP ν of σ , and for such a MAP ν and each position i greater
than the starting position of ν , either i belongs to ν and p∞ holds, or p∞ does not hold. Hence, the
fairness requirement for an abstract until subformula ψ1U

a
ψ2 of ϕ ensures that whenever ψ1U

a
ψ2 is

asserted at some position i of ν , then ψ2 eventually holds at some position j ≥ i along ν . Thus, we
obtain the following characterization of the infinite models of ϕ , where Projϕ is the mapping associating
to each fair Hintikka sequence π = (A0, t0)(A1, t1) . . . of ϕ , the infinite timed word over ΣP given by
Proj(π) = (A0∩P, t0)(A1∩P, t1)
Proposition 1. Let π = (A0, t0)(A1, t1) . . . be a fair Hintikka sequence of ϕ . Then, for all i ≥ 0 and
ψ ∈ Cl(ϕ) \ {p∞,¬p∞}, ψ ∈ Ai iff (Projϕ(π), i) |= ψ . Moreover, the mapping Projϕ is a bijection
between the set of fair Hintikka sequences of ϕ and the set of infinite timed words over ΣP . In particular,
an infinite timed word over ΣP is a model of ϕ iff the associated fair Hintikka sequence is initialized.

The detailed proof of Proposition 1 can be found in Appendix C of [15].
The notion of initialized fair Hintikka sequence can be easily captured by a generalized Büchi ECNA.

Theorem 3. Given an EC NTL formula ϕ , one can construct in singly exponential time a generalized
Büchi ECNA Aϕ having 2O(|ϕ|) states, 2O(|ϕ|) stack symbols, a set of constants Constϕ , and O(|ϕ|) clocks.
If ϕ is non-recursive, then Aϕ accepts the infinite models of ϕ; otherwise, Aϕ accepts the set of initialized
fair Hintikka sequences of ϕ .

Proof. We first build a generalized Büchi ECNA Aϕ over ΣCl(ϕ) accepting the set of initialized fair
Hintikka sequences of ϕ . The set of Aϕ states is the set of atoms of ϕ , and a state A0 is initial if ϕ ∈ A0
and A0 satisfies Property 1 (initial consistency) in Definition 3. In the transition function, we require that
the input symbol coincides with the source state in such a way that in a run, the sequence of control states
corresponds to the untimed part of the input. By the transition function, the automaton checks that the
input word is an Hintikka sequence. In particular, for the abstract next and abstract previous requirements
(Property 3 in Definition 3), whenever the input symbol A is a call, the automaton pushes on the stack the
atom A. In such a way, on reading the matching return Ar (if any) of the call A, the automaton pops A from
the stack and can locally check that AbsNext(A,Ar) holds. In order to ensure the real-time requirements
(Property 4 in Definition 3), Aϕ simply uses the recorder clocks and predictor clocks: a transition having
as source state an atom A has a clock constraint whose set of atomic constraints has the form⋃

�dir
I ψ∈A

{xdir
ψ ∈ I}∪

⋃
¬�dir

I ψ∈A

{xdir
ψ ∈ Î}∪

⋃
�dir

I ψ∈A

{ydir
ψ ∈ I}∪

⋃
¬�dir

I ψ∈A

{ydir
ψ ∈ Î}

where Î is either {`} or a maximal interval over R+ disjunct from I. Finally, the generalized Büchi
acceptance condition is exploited for checking that the input initialized Hintikka sequence is fair. The
detailed construction of Aϕ can be found in Appendix D of [15]. Note that Aϕ has 2O(|ϕ|) states and stack
symbols, a set of constants Constϕ , and O(|ϕ|) event clocks. If ϕ is non-recursive, then the effective
clocks are only associated with propositions in P . Thus, by projecting the input symbols of the transition
function of Aϕ over P , by Proposition 1, we obtain a generalized Büchi ECNA accepting the infinite
models of ϕ .

We can state now the main result of the section.
Theorem 4. Given an EC NTL formula ϕ over ΣP , one can construct in singly exponential time a VPTA,
with 2O(|ϕ|3) states and stack symbols, O(|ϕ|) clocks, and a set of constants Constϕ , which accepts LT (ϕ)
(resp., L ω

T (ϕ)). Moreover, satisfiability and visibly model-checking for EC NTL over finite (resp., infinite)
timed words are EXPTIME-complete.

L. Bozzelli, A. Murano & A. Peron 245

Proof. We focus on the case of infinite timed words. Fix an EC NTL formula ϕ over ΣP . By Theorem 3,
one can construct a generalized Büchi ECNA Aϕ over ΣCl(ϕ) having 2O(|ϕ|) states and stack symbols, a
set of constants Constϕ , and accepting the set of initialized fair Hintikka sequences of ϕ . By [14], one
can construct a generalized Büchi VPTA A ′

ϕ over ΣCl(ϕ) accepting L ω
T (Aϕ), having 2O(|ϕ|2·k) states and

stack symbols, O(k) clocks, and a set of constants Constϕ , where k is the number of atomic constraints
used by Aϕ . Note that k = O(|ϕ|). Thus, by projecting the input symbols of the transition function of A ′

ϕ

over P , we obtain a (generalized Büchi) VPTA satisfying the first part of Theorem 4.
For the upper bounds of the second part of Theorem 4, observe that by [12, 1] emptiness of generalized

Büchi VPTA is solvable in time O(n4 · 2O(m·logKm)), where n is the number of states, m is the number
of clocks, and K is the largest constant used in the clock constraints of the automaton (hence, the time
complexity is polynomial in the number of states). Now, given a Büchi VPTA A over ΣP and an EC NTL
formula ϕ over ΣP , model-checking A against ϕ reduces to check emptiness of L ω

T (A)∩L ω
T (A ′

¬ϕ),
where A ′

¬ϕ is the generalized Büchi VPTA associated with ¬ϕ . Thus, since Büchi VPTA are polynomial-
time closed under intersection, membership in EXPTIME for satisfiability and visibly model-checking of
EC NTL follow. The matching lower bounds follow from EXPTIME-completeness of satisfiability and
visibly model-checking for the logic CaRet [3] which is subsumed by EC NTL.

5 Nested Metric Temporal Logic (NMTL)

Metric temporal logic (MTL) [19] is a well-known timed linear-time temporal logic which extends LTL
with time constraints on until modalities. In this section, we introduce an extension of MTL with past, we
call nested MTL (NMTL, for short), by means of timed versions of the CaRet modalities.

For the given set P of atomic propositions containing the special propositions call, ret, and int, the
syntax of nested NMTL formulas ϕ is as follows:

ϕ :=>
∣∣ p
∣∣ ϕ ∨ϕ

∣∣ ¬ϕ
∣∣ ϕ Û

dir
I ϕ

∣∣ ϕ Ŝ
dir′

I ϕ

where p ∈P , I is an interval in R+ with endpoints in N∪{∞}, dir ∈ {g,a} and dir′ ∈ {g,a,c}. The
operators Û

g

I and Ŝ
g

I are the standard timed until and timed since MTL modalities, respectively, Û
a

I and Ŝ
a

I

are their non-regular abstract versions, and Ŝ
c

I is the non-regular caller version of Ŝ
g

I . MTL with past is the
fragment of NMTL obtained by disallowing the timed abstract and caller modalities, while standard MTL
or future MTL is the fragment of MTL with past where the global timed since modalities are disallowed.
For an NMTL formula ϕ , a timed word w = (σ ,τ) over ΣP and 0 ≤ i < |w|, the satisfaction relation
(w, i) |= ϕ is defined as follows (we omit the clauses for propositions and Boolean connectives):

(w, i) |= ϕ1Û
dir
I ϕ2 ⇔ there is j > i s.t. j ∈ Pos(dir,σ , i), (w, j) |= ϕ2, τ j− τi ∈ I,

and (w,k) |= ϕ1 for all k ∈ [i+1, j−1]∩Pos(dir,σ , i)

(w, i) |= ϕ1Ŝ
dir′

I ϕ2 ⇔ there is j < i s.t. j ∈ Pos(dir′,σ , i), (w, j) |= ϕ2, τi− τ j ∈ I,
and (w,k) |= ϕ1 for all k ∈ [j+1, i−1]∩Pos(dir′,σ , i)

In the following, we use some derived operators in NMTL:

• For dir ∈ {g,a},dir
I ϕ :=> Û

dir
I ϕ anddir

I ϕ := ¬dir
I ¬ϕ

• for dir ∈ {g,a,c},dir
I ϕ :=> Ŝ

dir
I ϕ anddir

I ϕ := ¬dir
I ¬ϕ .

Let I(0,∞) be the set of nonsingular intervals J in R+ with endpoints in N∪{∞} such that either J is
unbounded, or J is left-closed with left endpoint 0. Such intervals J can be replaced by expressions of the
form ∼ c for some c ∈ N and ∼∈ {<,≤,>,≥}. We focus on the following two fragments of NMTL:

246 Timed Context-Free Temporal Logics

• NMITL(0,∞): obtained by allowing only intervals in I(0,∞).
• Future NMTL: obtained by disallowing the variants of timed since modalities.
It is known that for the considered pointwise semantics, MITL(0,∞) [4] (the fragment of MTL allowing

only intervals in I(0,∞)) and EC TL are equally expressive [23]. Here, we easily generalize such a result
to the nested extensions of MITL(0,∞) and EC TL.

Lemma 1. There exist effective linear-time translations from EC NTL into NMITL(0,∞), and vice versa.

A proof of Lemma 1 can be found in Appendix E of [15]. By Lemma 1 and Theorem 4, we obtain the
following result.

Theorem 5. EC NTL and NMITL(0,∞) are expressively equivalent. Moreover, satisfiability and visibly
model-checking for NMITL(0,∞) over finite (resp., infinite) timed words are EXPTIME-complete.

In the considered pointwise semantics setting, it is well-known that satisfiability of MTL with past
is undecidable [6, 21]. Undecidability already holds for future MTL interpreted over infinite timed
words [21]. However, over finite timed words, satisfiability of future MTL is instead decidable [22]. Here,
we show that over finite timed words, the addition of the future abstract timed modalities to future MTL
makes the satisfiability problem undecidable.

Theorem 6. Satisfiability of future NMTL interpreted over finite timed words is undecidable.

We prove Theorem 6 by a reduction from the halting problem for Minsky 2-counter machines [20].
Fix such a machine M which is a tuple M = (Lab, Inst, `init, `halt), where Lab is a finite set of labels (or
program counters), `init, `halt ∈ Lab, and Inst is a mapping assigning to each label ` ∈ Lab \ {`halt} an
instruction for either (i) increment: ch := ch +1; goto `r, or (ii) decrement: if ch > 0 then ch := ch−1;
goto `s else goto `t , where h ∈ {1,2}, `s 6= `t , and `r, `s, `t ∈ Lab.

The machine M induces a transition relation −→ over configurations of the form (`,n1,n2), where `
is a label of an instruction to be executed and n1,n2 ∈ N represent current values of counters c1 and c2,
respectively. A computation of M is a finite sequence C1 . . .Ck of configurations such that Ci −→Ci+1
for all i ∈ [1,k−1]. The machine M halts if there is a computation starting at (`init,0,0) and leading to
configuration (`halt,n1,n2) for some n1,n2 ∈N. The halting problem is to decide whether a given machine
M halts. The problem is undecidable [20]. We adopt the following notation, where ` ∈ Lab\{`halt}:
• (i) if Inst(`) is an increment instruction of the form ch := ch + 1; goto `r, define c(`) := ch and

succ(`) := `r; (ii) if Inst(`) is a decrement instruction of the form if ch > 0 then ch := ch− 1;
goto `r else goto `s, define c(`) := ch, dec(`) := `r, and zero(`) := `s.

We encode the computations of M by using finite words over the pushdown alphabet ΣP , where
P = Lab∪{c1,c2}∪{call,ret, int}. For a finite word σ = a1 . . .an over Lab∪{c1,c2}, we denote by σR

the reverse of σ , and by (call,σ) (resp., (ret,σ)) the finite word over ΣP given by {a1,call} . . .{an,call}
(resp., {a1,ret} . . .{an,ret}). We associate to each M-configuration (`,n1,n2) two distinct encodings: the
call-code which is the finite word over ΣP given by (call, `cn1

1 cn2
2), and the ret-code which is given by

(ret,(`cn1
1 cn2

2)R) intuitively corresponding to the matched-return version of the call-code. A computation
π of M is then represented by the well-matched word (call,σπ) · (ret,(σπ)

R), where σπ is obtained by
concatenating the call-codes of the individual configurations along π .

Formally, let Lhalt be the set of finite words over ΣP of the form (call,σ) · (ret,σR) (well-matching
requirement) such that the call part (call,σ) satisfies:
• Consecution: (call,σ) is a sequence of call-codes, and for each pair C ·C′ of adjacent call-codes,

the associated M-configurations, say (`,n1,n2) and (`′,n′1,n
′
2), satisfy: ` 6= `halt and (i) if Inst(`) is

an increment instruction and c(`) = ch, then `′ = succ(`) and n′h > 0; (ii) if Inst(`) is a decrement
instruction and c(`) = ch, then either `′ = zero(`) and nh = n′h = 0, or `′ = dec(`) and nh > 0.

L. Bozzelli, A. Murano & A. Peron 247

• Initialization: σ has a prefix of the form `init · ` for some ` ∈ Lab.
• Halting: `halt occurs along σ .
• For each pair C ·C′ of adjacent call-codes in (call,σ) with C′ non-halting, the relative M-configura-

tions (`,n1,n2) and (`′,n′1,n
′
2) satisfy:1 (i) Increment requirement: if Inst(`) is an increment

instruction and c(`) = ch, then n′h = nh +1 and n′3−h = n3−h; (ii) Decrement requirement: if Inst(`)
is a decrement instruction and c(`) = ch, then n′3−h = n3−h, and, if `′ = dec(`), then n′h = nh−1.

Evidently, M halts iff Lhalt 6= /0. We construct in polynomial time a future NMTL formula ϕM over
P such that the set of untimed components σ in the finite timed words (σ ,τ) satisfying ϕM is exactly
Lhalt. Hence, Theorem 6 directly follows. In the construction of ϕM , we exploit the future LTL modalities
and the abstract next modalitya which can be expressed in future NMTL.

Formally, formula ϕM is given by ϕM := ϕWM∨ϕLTL∨ϕTime where ϕWM is a future CaRet formula
ensuring the well-matching requirement; ϕWM := call∧a(¬g>)∧g¬int∧¬g(ret∧gcall).
The conjunct ϕLTL is a standard future LTL formula ensuring the consecution, initialization, and halting
requirements. The definition of ϕLTL is straightforward and we omit the details of the construction. Finally,
we illustrate the construction of the conjunct ϕTime which is a future MTL formula enforcing the increment
and decrement requirements by means of time constraints. Let w be a finite timed word over ΣP . By the
formulas ϕWM and ϕLTL, we can assume that the untime part of w is of the form (call,σ) · (ret,σR) such
that the call part (call,σ) satisfies the consecution, initialization, and halting requirements. Then, formula
ϕTime ensures the following additional requirements:
• Strict time monotonicity: the time distance between distinct positions is always greater than zero.

This can be expressed by the formulag(¬g
[0,0]>).

• 1-Time distance between adjacent labels: the time distance between the Lab-positions of two
adjacent call-codes (resp., ret-codes) is 1. This can be expressed as follows:∧

t∈{call,ret}
g
(
[t ∧

∨
`∈Lab

`∧g(t ∧
∨

`∈Lab

`)]→g
[1,1](t ∧

∨
`∈Lab

`)
)

• Increment and decrement requirements: fix a call-code C along the call part immediately followed
by some non-halting call-code C′. Let (`,n1,n2) (resp., (`′,n′1,n

′
2)) be the configuration encoded

by C (resp., C′), and c(`) = ch (for some h = 1,2). Note that ` 6= `halt. First, assume that Inst(`)
is an increment instruction. We need to enforce that n′h = nh + 1 and n′3−h = n3−h. For this, we
first require that: (*) for every call-code C with label `, every c3−h-position has a future call
c3−h-position at (time) distance 1, and every ch-position has a future call ch-position j at distance 1
such that j+1 is still a call ch-position.
By the strict time monotonicity and the 1-Time distance between adjacent labels, the above
requirement (*) ensures that n′h ≥ nh +1 and n′3−h ≥ n3−h. In order to enforce that n′h ≤ nh +1 and
n′3−h ≤ n3−h, we crucially exploit the return part (ret,σR) corresponding to the reverse of the call
part (call,σ). In particular, along the return part, the reverse of C′ is immediately followed by
the reverse of C. Thus, we additionally require that: (**) for every non-first ret-code R which is
immediately followed by a ret-code with label `, each c3−h-position has a future c3−h-position at
distance 1, and each non-first ch-position of R has a future ch-position at distance 1.
Requirements (*) and (**) can be expressed by the following two formulas.

g
(
(call∧ `)→g

[0,1][(c3−h→g
[1,1]c3−h)∧ (ch→g

[1,1](ch∧gch))]
)

1For technical convenience, we do not require that the counters in a configuration having as successor an halting configuration
are correctly updated.

248 Timed Context-Free Temporal Logics

∧
`′∈Lab

g
(
(ret∧ `′∧g

[2,2]`)−→
g
[0,1]

(
[c3−h→g

[1,1]c3−h]∧ [(ch∧gch)→gg
[1,1]ch]

))
Now, assume that Inst(`) is a decrement instruction. We need to enforce that n′3−h = n3−h, and when-
ever `′ = dec(`), then n′h = nh−1. This can be ensured by requirements similar to Requirements (*)
and (**), and we omit the details.

Note that the unique abstract modality used in the reduction isa. This concludes the proof of Theorem 6.

6 Conclusions

We have introduced two timed linear-time temporal logics for specifying real-time context-free require-
ments in a pointwise semantics setting: Event-Clock Nested Temporal Logic (EC NTL) and Nested
Metric Temporal Logic (NMTL). We have shown that while EC NTL is decidable and tractable, NMTL
is undecidable even for its future fragment interpreted over finite timed words. Moreover, we have
established that the MITL(0,∞)-like fragment NMITL(0,∞) of NMTL is decidable and tractable. As future
research, we shall investigate the decidability properties for the more general fragment of NMTL obtained
by disallowing singular intervals. Such a fragment represents the NMTL counterpart of Metric Interval
Temporal Logic (MITL), a well-known decidable (and EXPSPACE-complete) fragment of MTL [4] which
is strictly more expressive than MITL(0,∞) in the pointwise semantics setting [23].

References

[1] Parosh Aziz Abdulla, Mohamed Faouzi Atig & Jari Stenman (2012): Dense-Timed Pushdown Automata. In:
Proc. 27th LICS, IEEE Computer Society, pp. 35–44, doi:10.1109/LICS.2012.15.

[2] Rajeev Alur & David L. Dill (1994): A Theory of Timed Automata. Theoretical Computer Science 126(2), pp.
183–235, doi:10.1016/0304-3975(94)90010-8.

[3] Rajeev Alur, Kousha Etessami & Parthasarathy Madhusudan (2004): A Temporal Logic of Nested Calls and
Returns. In: Proc. 10th TACAS, LNCS 2988, Springer, pp. 467–481, doi:10.1007/978-3-540-24730-2 35.

[4] Rajeev Alur, Tomás Feder & Thomas A. Henzinger (1996): The Benefits of Relaxing Punctuality. J. ACM
43(1), pp. 116–146, doi:10.1145/227595.227602.

[5] Rajeev Alur, Limor Fix & Thomas A. Henzinger (1999): Event-Clock Automata: A Determinizable Class of
Timed Automata. Theoretical Computer Science 211(1-2), pp. 253–273, doi:10.1016/S0304-3975(97)00173-4.

[6] Rajeev Alur & Thomas A. Henzinger (1993): Real-Time Logics: Complexity and Expressiveness. Inf. Comput.
104(1), pp. 35–77, doi:10.1006/inco.1993.1025.

[7] Rajeev Alur & Parthasarathy Madhusudan (2004): Visibly Pushdown Languages. In: Proc. 36th STOC, ACM,
pp. 202–211, doi:10.1145/1007352.1007390.

[8] Christel Baier & Joost-Pieter Katoen (2008): Principles of Model Checking. The MIT Press.

[9] Massimo Benerecetti, Stefano Minopoli & Adriano Peron (2010): Analysis of Timed Recursive State Machines.
In: TIME 2010 - 17th International Symposium on Temporal Representation and Reasoning, Paris, France,
6-8 September 2010, pp. 61–68, doi:10.1109/TIME.2010.10.

[10] Massimo Benerecetti & Adriano Peron (2016): Timed recursive state machines: Expressiveness and complexity.
Theoretical Computer Science 625, pp. 85–124, doi:10.1016/j.tcs.2016.02.021.

[11] Devendra Bhave, Vrunda Dave, Shankara Narayanan Krishna, Ramchandra Phawade & Ashutosh Trivedi
(2016): A Logical Characterization for Dense-Time Visibly Pushdown Automata. In: Proc. 10th LATA, LNCS
9618, Springer, pp. 89–101, doi:10.1007/978-3-319-30000-9 7.

http://dx.doi.org/10.1109/LICS.2012.15
http://dx.doi.org/10.1016/0304-3975(94)90010-8
http://dx.doi.org/10.1007/978-3-540-24730-2_35
http://dx.doi.org/10.1145/227595.227602
http://dx.doi.org/10.1016/S0304-3975(97)00173-4
http://dx.doi.org/10.1006/inco.1993.1025
http://dx.doi.org/10.1145/1007352.1007390
http://dx.doi.org/10.1109/TIME.2010.10
http://dx.doi.org/10.1016/j.tcs.2016.02.021
http://dx.doi.org/10.1007/978-3-319-30000-9_7

L. Bozzelli, A. Murano & A. Peron 249

[12] Ahmed Bouajjani, Rachid Echahed & Riadh Robbana (1994): On the Automatic Verification of Systems
with Continuous Variables and Unbounded Discrete Data Structures. In: Hybrid Systems II, pp. 64–85,
doi:10.1007/3-540-60472-3 4.

[13] L. Bozzelli, A. Murano & A. Peron (2010): Pushdown Module Checking. Formal Methods in System Design
36(1), pp. 65–95, doi:10.1007/s10703-010-0093-x.

[14] L. Bozzelli, A. Peron & A. Murano (2018): Event-clock Nested Automata. In: Proc. 12th LATA, LNCS 10792,
Springer, pp. 80–92, doi:10.1007/978-3-319-77313-1 6.

[15] Laura Bozzelli, Aniello Murano & Adriano Peron (2018): Timed contex-free temporal logics (extended
version). http://arxiv.org/abs/1808.04271. Available at http://arxiv.org/abs/1808.04271.

[16] K. Chatterjee, D. Ma, R. Majumdar, T. Zhao, T.A. Henzinger & J. Palsberg (2003): Stack Size Analysis for
Interrupt-Driven Programs. In: Proc. 10th SAS, LNCS 2694, Springer, pp. 109–126, doi:10.1007/3-540-
44898-5 7.

[17] Lorenzo Clemente & Slawomir Lasota (2015): Timed Pushdown Automata Revisited. In: Proc. 30th LICS,
IEEE Computer Society, pp. 738–749, doi:10.1109/LICS.2015.73.

[18] Michael Emmi & Rupak Majumdar (2006): Decision Problems for the Verification of Real-Time Software. In:
Proc. 9th HSCC, LNCS 3927, Springer, pp. 200–211, doi:10.1007/11730637 17.

[19] Ron Koymans (1990): Specifying Real-Time Properties with Metric Temporal Logic. Real-Time Systems 2(4),
pp. 255–299, doi:10.1007/BF01995674.

[20] M.L. Minsky (1967): Computation: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs.
[21] Joël Ouaknine & James Worrell (2006): On Metric Temporal Logic and Faulty Turing Machines. In: Proc. 9th

FOSSACS, LNCS 3921, Springer, pp. 217–230, doi:10.1007/11690634 15.
[22] Joël Ouaknine & James Worrell (2007): On the decidability and complexity of Metric Temporal Logic over

finite words. Logical Methods in Computer Science 3(1), doi:10.2168/LMCS-3(1:8)2007.
[23] Jean-François Raskin & Pierre-Yves Schobbens (1999): The Logic of Event Clocks - Decidability, Complexity

and Expressiveness. Journal of Automata, Languages and Combinatorics 4(3), pp. 247–286.
[24] Nguyen Van Tang & Mizuhito Ogawa (2009): Event-Clock Visibly Pushdown Automata. In: Proc. 35th

SOFSEM, LNCS 5404, Springer, pp. 558–569, doi:10.1007/978-3-540-95891-8 50.
[25] Ashutosh Trivedi & Dominik Wojtczak (2010): Recursive Timed Automata. In: Proc. 8th ATVA, LNCS 6252,

Springer, pp. 306–324, doi:10.1007/978-3-642-15643-4 23.
[26] I. Walukiewicz (1996): Pushdown Processes: Games and Model Checking. In: CAV’96, pp. 62–74,

doi:10.1007/3-540-61474-5 58.

http://dx.doi.org/10.1007/3-540-60472-3_4
http://dx.doi.org/10.1007/s10703-010-0093-x
http://dx.doi.org/10.1007/978-3-319-77313-1_6
http://arxiv.org/abs/1808.04271
http://dx.doi.org/10.1007/3-540-44898-5_7
http://dx.doi.org/10.1007/3-540-44898-5_7
http://dx.doi.org/10.1109/LICS.2015.73
http://dx.doi.org/10.1007/11730637_17
http://dx.doi.org/10.1007/BF01995674
http://dx.doi.org/10.1007/11690634_15
http://dx.doi.org/10.2168/LMCS-3(1:8)2007
http://dx.doi.org/10.1007/978-3-540-95891-8_50
http://dx.doi.org/10.1007/978-3-642-15643-4_23
http://dx.doi.org/10.1007/3-540-61474-5_58

	Introduction
	Preliminaries
	Event-clock nested automata
	The Event-Clock Nested Temporal Logic
	Decision procedures for the logic EC_NTL

	Nested Metric Temporal Logic (NMTL)
	Conclusions

