
Accepted Manuscript

An Accurate and Computationally Efficient Uniaxial Phenomenological Model
for Steel and Fiber Reinforced Elastomeric Bearings

Nicolò Vaiana, Salvatore Sessa, Francesco Marmo, Luciano Rosati

PII: S0263-8223(18)32935-0
DOI: https://doi.org/10.1016/j.compstruct.2018.12.017
Reference: COST 10480

To appear in: Composite Structures

Received Date: 10 August 2018
Revised Date: 27 November 2018
Accepted Date: 11 December 2018

Please cite this article as: Vaiana, N., Sessa, S., Marmo, F., Rosati, L., An Accurate and Computationally Efficient
Uniaxial Phenomenological Model for Steel and Fiber Reinforced Elastomeric Bearings, Composite Structures
(2018), doi: https://doi.org/10.1016/j.compstruct.2018.12.017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers
we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and
review of the resulting proof before it is published in its final form. Please note that during the production process
errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

https://doi.org/10.1016/j.compstruct.2018.12.017
https://doi.org/10.1016/j.compstruct.2018.12.017


  

An Accurate and Computationally Efficient Uniaxial Phenomenological Model for Steel
and Fiber Reinforced Elastomeric Bearings

Nicolò Vaianaa,�, Salvatore Sessaa, Francesco Marmoa, Luciano Rosatia

aDepartment of Structures for Engineering and Architecture, University of Naples Federico II, Via Claudio, 21, 80124, Napoli, Italy

Abstract

We present a uniaxial phenomenological model to accurately predict the complex hysteretic behavior of bolted steel reinforced
elastomeric bearings and unbonded fiber reinforced elastomeric bearings. The proposed model is based on a set of only five
parameters, directly associated with the graphical properties of the hysteresis loop, leads to the solution of an algebraic equation
for the evaluation of the isolator restoring force, requires only one history variable, and can be easily implemented in a computer
program. The proposed model is validated by means of experimental tests and numerical simulations. In particular, the results
predicted analytically are compared with some experimental results selected from the literature. Furthermore, numerical accuracy
and computational efficiency of the model are assessed by performing nonlinear time history analyses on a single degree of freedom
mechanical system and comparing the results with those associated with a modified version of the celebrated Bouc-Wen model.

Keywords: Elastomeric bearing, Steel reinforcement, Fiber reinforcement, Phenomenological model, Accuracy, Computational
efficiency

1. Introduction

Elastomeric bearings are seismic isolation devices made up
of alternating layers of rubber and thin reinforcing elements
[1, 2]. Looking at the type of reinforcement, it is possible
to distinguish between Steel Reinforced Elastomeric Bearings
(SREBs) and Fiber Reinforced Elastomeric Bearings (FREBs).
The former are generally adopted in traditional bolted appli-
cations [2], whereas the latter are typically used in unbonded
applications [3].

The hysteretic behavior displayed by bolted SREBs and un-
bonded FREBs is significantly different [4–7].

A large number of uniaxial phenomenological models have
been proposed in the literature for simulating the complex hys-
teretic behavior occurring in elastomeric bearings when they
deform along their transverse directions under the effect of a
constant axial compressive load.

Depending on the kind of equation that needs to be solved for
the evaluation of the output variable (e.g., restoring force), such
models can be classified into three main categories: i) algebraic
models, ii) transcendental models, and iii) differential models.

Among existing algebraic models, the bilinear model is the
simplest and most used one for the simulation of hysteresis phe-
nomena occurring in elastomeric bearings [1, 8]. The model,
based on a set of only three parameters having a clear mechani-
cal significance, can be employed when the device reaches rela-
tively large shear strains, that is, shear strains smaller than 100-
150%; indeed, such a model is not able to simulate the more
complex behavior typically displayed by elastomeric bearings
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at greater shear strains. Furthermore, in order to accurately pre-
dict the actual behavior of elastomeric devices, the parameters
of the bilinear model need to be updated, by means of an itera-
tive procedure, according to the transverse displacement value
reached at each reversal point of the hysteretic response [9, 10].

Markou and Manolis [11] extended the bilinear model by de-
veloping two trilinear models, based on thirty and thirty-three
parameters, respectively, to reproduce the complex behavior
displayed by elastomeric bearings at large shear strains, that
is, shear strains greater than 100-150%.

As regards transcendental models, Kikuchi and Aiken [12]
and Hwang et al. [13] proposed two different models able to
predict the response of bolted SREBs displaying highly nonlin-
ear stiffening behavior at large shear strains due to a strain crys-
tallization process in the rubber [14]. These two models adopt a
set of twenty-three and ten parameters, respectively, having no
clear mechanical significance. The Hwang et al. model [13] has
been adopted by Toopchi-Nezhad et al. [10] for the simulation
of the hysteretic response of unbonded FREBs, in conjunction
with an iterative procedure used to update the model parameters
during the performed nonlinear time history analyses.

As far as differential models are concerned, Nagarajaiah et
al. [15] adopted the Bouc-Wen model [16–18], that is one of
the widely used differential models in the literature, to predict
the response of bolted SREBs at relatively large shear strains;
this model, based on a set of seven parameters having no clear
mechanical significance, is not able to simulate the stiffening
behavior displayed by SREBs at shear strains greater than 100-
150%. Chen and Ahmadi [19] and Tsai et al. [20] proposed two
improved versions of the Bouc-Wen model [16–18], both based
on a set of ten parameters, to take into account the highly non-
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linear stiffening behavior displayed by bolted SREBs at large
shear strains, whereas Manzoori and Toopchi-Nezhad [21] pro-
posed a modified Bouc-Wen model [16–18], based on a set of
ten parameters, to accurately reproduce the complex hysteretic
behavior of unbonded FREBs.

The above-described existing uniaxial phenomenological
models have different characteristics in terms of accuracy, com-
putational efficiency, as well as number and mechanical signif-
icance of the adopted parameters. Among the existing models,
differential models seem to be the most suitable ones to perform
nonlinear dynamic analyses of actual base-isolated structures
since they allow for an accurate prediction of the hysteretic re-
sponse of elastomeric bearings by using a relatively small num-
ber of parameters whose values remain constant throughout the
analysis. Unfortunately, such models are not computationally
efficient because they require the numerical solution of a dif-
ferential equation, generally solved by employing multi-steps
[22] or Runge-Kutta methods [23], for each time step of a non-
linear time history analysis; in addition, such models adopt pa-
rameters having no clear mechanical significance, thus making
difficult their calibration and use in practical applications.

This paper presents a uniaxial phenomenological model able
to predict the hysteretic behavior typically displayed by bolted
SREBs and unbonded FREBs, deforming along one of their
transverse directions under the effect of a constant moderate
axial compressive load, namely, an axial load that is signifi-
cantly lower than the buckling load of the bearing. The pro-
posed model, representing a specific instance of the class of
uniaxial phenomenological models formulated by Vaiana et al.
[24] for simulating hysteretic phenomena in rate-independent
mechanical systems and materials, is an algebraic model since
the output variable, having the mechanical meaning of device
restoring force, is evaluated by solving an algebraic equation.

Compared to existing uniaxial phenomenological models de-
veloped for elastomeric bearings, the proposed one not only of-
fers the important advantage of accurately simulating the re-
sponse of such devices, but also allows for a considerable re-
duction of the computational effort required by nonlinear time
history analyses. Indeed, the proposed model needs neither the
numerical solution of a differential equation at each time step
of the analysis for the evaluation of the output variable (i.e.,
restoring force), nor the use of an iterative procedure to up-
date the model parameters during the analysis. Furthermore,
the proposed algebraic model is based on a set of only five pa-
rameters having a clear mechanical significance and it can be
easily implemented in a computer program.

The present paper is organized into three parts. For the
reader’s convenience, the main characteristics of SREBs and
FREBs are illustrated in the first part (Section 2), with par-
ticular emphasis on the description of the hysteretic behavior
displayed along their transverse directions under the effect of
moderate axial compressive loads.

In the second part, the class of hysteretic models formulated
by Vaiana et al. [24] is first summarized (Section 3) and the pro-
posed uniaxial phenomenological model is developed (Section
4); subsequently, the parameter sensitivity analysis is carried
out and a schematic flowchart of the proposed model is illus-

trated to allow for an easy computer implementation.
Finally, in the third part (Section 5), the proposed model is

validated by means of experimental tests, retrieved in the liter-
ature, as well as numerical simulations.

2. Elastomeric Bearings

Elastomeric bearings are seismic isolation devices made up
of alternating sheets of rubber and thin reinforcing elements.
The rubber layers provide flexibility and energy dissipation ca-
pacity along the device transverse directions, whereas the re-
inforcing elements not only prevent the transverse bulging of
the elastomer when the device is subjected to axial compressive
loads, but also provide a large axial stiffness, generally several
hundred times greater than the transverse one [2].

According to the type of adopted reinforcing elements, elas-
tomeric bearings can be classified into two main categories,
namely, Steel Reinforced Elastomeric Bearings and Fiber Rein-
forced Elastomeric Bearings. The former adopt thin steel plates
as reinforcement [25], whereas the latter employ thin layers of
fiber fabric [26].

In this section, the main characteristics of the two above-
mentioned types of elastomeric bearings are illustrated with
particular emphasis on the description of the hysteretic behav-
ior displayed along their transverse directions under the effect
of moderate axial compressive loads.

2.1. Steel Reinforced Elastomeric Bearings

Steel Reinforced Elastomeric Bearings (SREBs) are cur-
rently the most widely used seismic isolation devices adopted
for the seismic protection of structures and equipment in build-
ings, although their application is limited due to the high man-
ufacturing and installation costs [1].

Typically, conventional SREBs have a symmetrically shaped
transverse cross section, that is, circular or square, and are made
of alternating layers of rubber and thin steel reinforcing plates
which are bonded together by means of a vulcanization process.
Furthermore, such bearings have two thick steel plates bounded
to the top and bottom surfaces, respectively, that allow for their
connection to the structure [25].

Three main types of SREBs have been proposed and imple-
mented in actual base isolation systems, namely, Low Damp-
ing Rubber Bearings (LDRBs), High Damping Rubber Bear-
ings (HDRBs), and Lead Rubber Bearings (LRBs). LDRBs are
elastomeric bearings made of natural or synthetic rubber and
characterized by low energy dissipation properties.

On the contrary, HDRBs and LRBs are elastomeric bear-
ings able to dissipate large amounts of energy. Specifically,
in HDRBs, the increase in the amount of dissipated energy
is reached by adding extra fine carbons, oils, resins, or other
proprietary fillers to the natural rubber compound, whereas, in
LRBs, it is reached by inserting a cylinder of lead into a hole in
the core of the bearing [1].

SREBs can be employed in two different types of application,
namely, bolted and dowelled applications. In bolted bearings
deforming along one of their transverse directions, significant
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(a)

(b)

Figure 1: Sectional views of a typical bolted SREB in undeformed (a) and
deformed (b) configuration

(a)

(b)

Figure 2: Typical hysteresis loop displayed by bolted SREBs at (a) relatively
large ( � 100-150%) and (b) large ( > 100-150%) shear strains

tensile stresses occur in the regions outside the central compres-

sion core, that is, the overlap region between top and bottom
surfaces. On the contrary, in dowelled bearings, the occurring
tensile stresses are negligible [2].

In practice, such devices are generally adopted in bolted ap-
plications [2], so that only the hysteretic behavior displayed by
bolted SREBs is of specific interest in this paper.

Figure 1 shows the sectional views of a typical bolted SREB
in undeformed (Figure 1a) and deformed (Figure 1b) configu-
rations.

The hysteretic behavior displayed by a bolted SREB deform-
ing along one of its transverse directions under the effect a con-
stant moderate axial compressive load, namely, an axial load
that is significantly lower than the buckling load of the bear-
ing, is generally characterized by kinematic hardening since
the device restoring force f increases with the device trans-
verse displacement u. Note that the increasing values of the
device restoring force f as a function of increasing values of
the device transverse displacement u, what typically character-
izes hardening, have not to be confused with the behavior of the
tangent stiffness d f =du whose value is positive (negative) when
hardening (softening) occurs. Specifically, the hysteresis loop
shape depends on the value of the shear strain attained by the
bearing, , typically defined as the ratio of the device transverse
displacement to the total thickness of the rubber layers [25, 27].

According to experimental test results available in the liter-
ature, it can be observed that, for relatively large shear strains
(e.g.,  � 100-150%), the typical hysteresis loop is limited by
two parallel straight lines, as shown in Figure 2a, whereas, for
large shear strains (e.g.,  > 100-150%), the two bounds of the
typical hysteresis loop become two parallel curves, as shown in
Figure 2b. In this last case, an increase of the tangent stiffness,
d f =du, occurs due to strain crystallization of the rubber matrix
[14, 28].

It has to be noted that the exact shear strain value correspond-
ing to the beginning of the tangent stiffness increase depends
on the type of the rubber adopted in the bearing; generally
speaking, in HDRBs, such a tangent stiffness increase occurs at
smaller shear strains than that of LDRBs and LRBs. It has also
to be pointed out that, although the hysteresis loops of the three
types of bolted SREBs are similar in shape, HDRBs (LDRBs)
display loops having the largest (smallest) value of enclosed
area associated with the same assigned value of device trans-
verse displacement [29].

2.2. Fiber Reinforced Elastomeric Bearings
Fiber Reinforced Elastomeric Bearings (FREBs) represent a

new category of elastomeric bearings, currently object of many
research studies aimed at their experimental characterization
as well as mathematical modeling. Compared to conventional
SREBs, FREBs offer several important advantages, such as low
manufacturing and installation costs and superior energy dissi-
pation capability [30, 31].

Typically, FREBs have a circular, square, or rectangular
transverse cross section and are made of alternating layers of
rubber and fiber reinforcement which are bonded together by
means of a vulcanization process [32]. Fiber reinforcing fab-
rics, consisting of cords made from individual fibers grouped
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(a)

(b)

Figure 3: Sectional views of a typical unbonded FREB in undeformed (a) and
deformed (b) configuration

(a)

(b)

Figure 4: Typical hysteresis loop displayed by stable unbonded FREBs at (a)
relatively large ( � 100-150%) and (b) large ( > 100-150%) shear strains

and coiled together [4], are generally manufactured by adopt-

ing a bi-directional or quadri-directional layout [8] and by us-
ing one of the different kinds of available fibers, such as carbon,
glass, nylon, and polyester fibers [33].

FREBs can be employed in two different types of application,
namely, bonded and unbonded applications. Bonded FREBs
are connected to the structure by means of two thick steel plates
bonded, respectively, to the top and bottom surfaces of the de-
vice, whereas unbonded FREBs are simply placed between the
substructure and superstructure without any type of mechanical
or chemical bonding. In bonded devices deforming along one
of their transverse directions, significant tensile stresses occur
in the regions outside the central compression core, that is, the
overlap region between top and bottom surfaces. On the con-
trary, in unbonded bearings, the occurring tensile stresses are
negligible [5].

Such devices are generally adopted in unbonded applications
[3], being unbonded FREBs considerably more efficient than
bonded FREBs [31]; thus, only the hysteretic behavior dis-
played by unbonded FREBs is of specific interest in this paper.

Figure 3 shows the sectional views of a typical unbonded
FREB in undeformed (Figure 3a) and deformed (Figure 3b)
configurations. As illustrated in Figure 3b, when the bearing
deforms along one of its transverse directions, some regions
of its top and bottom surface detach from the structure; in the
literature, this phenomenon, occurring due to the unbonded ap-
plication as well as the lack of flexural rigidity of the adopted
reinforcement elements, is referred to as rollover. At a certain
value of the transverse displacement, when the originally ver-
tical surfaces of the bearing completely contact the horizontal
surfaces of the structure, the so-called full rollover occurs [34].

The hysteretic behavior displayed by a stable unbonded
FREB deforming along one of its transverse directions un-
der the effect of a constant moderate axial compressive load,
namely, an axial load that is significantly lower than the buck-
ling load of the bearing, is generally characterized by kinematic
hardening since the device restoring force f increases with the
device transverse displacement u [34]. Specifically, the hystere-
sis loop shape depends on the value of the shear strain reached
by the bearing, , typically defined as the ratio of the device
transverse displacement to the total thickness of the rubber lay-
ers [26, 35].

According to experimental test results available in the litera-
ture, it can be observed that, for relatively large shear strains
(e.g.,  � 100-150%), the typical hysteresis loop is limited
by two parallel curves characterized by one inflection point,
as shown in Figure 4a. For large shear strains (e.g.,  > 100-
150%), the two bounds of the typical hysteresis loop become
two parallel curves having three inflection points, as shown
in Figure 4b. The increase of the transverse tangent stiffness,
d f =du, with the transverse displacement, u, is due to the full
rollover [31, 36].

It has to be noted that, in FREBs having square or rectan-
gular transverse cross section, the exact shear strain value cor-
responding to the beginning of the transverse tangent stiffness
increase depends on the loading direction; as an example, in
a square unbonded FREB deforming along a transverse direc-
tion parallel to one of its sides, such a tangent stiffness increase
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occurs at smaller shear strains than that of the same device de-
forming along one of its diagonal directions [31, 35].

3. Review of a Class of Phenomenological Models

The hysteretic behavior displayed by the elastomeric bear-
ings, described in Section 2, is generally modeled in the litera-
ture [11–13, 19, 21, 37–40] by adopting two springs in parallel,
that is, a uniaxial hysteretic spring and a nonlinear elastic one.
The former, having tangent stiffness kh, is able to simulate hys-
teresis loops limited by two straight lines, whereas the latter,
having tangent stiffness ke, is able to modify the shape of the
straight lines, thus obtaining two limiting curves.

Such a basic idea has been generalized by Vaiana et al. [24],
who have recently proposed a general formulation of a class
of uniaxial phenomenological models able to accurately simu-
late rate-independent mechanical hysteretic phenomena having
a generalized displacement u, that is, displacement, rotation or
strain, as input, and a generalized force f , that is, force, moment
or stress, as output.

In the following section, the above-mentioned class of hys-
teretic models is summarized in order to introduce the proposed
model, developed in Section 4. Specifically, as done in the orig-
inal work by Vaiana et al. [24], the adopted nomenclature is
first described; then, the general expression of the generalized
tangent stiffness kt, obtained as the sum of kh and ke, as well
as the general expressions of the generalized force and history
variable are presented.

3.1. Preliminaries

In the general formulation proposed by Vaiana et al. [24], a
typical generalized force-displacement hysteresis loop is char-
acterized by four types of curves, namely, the upper and the
lower limiting curves, denoted as cu and cl, respectively, and
the generic loading and unloading curves, denoted as c+ and
c�, respectively.

Figure 5a (5b) shows the curves cu, cl, c+, and c� for a hys-
teresis loop bounded by two parallel straight lines (curves).
Two arrows have been plotted to identify the generic loading
and unloading curves, characterized, respectively, by a positive
and negative sign of the generalized velocity u̇, namely, the first
time derivative of the generalized displacement u.

As shown in Figure 5, the upper limiting curve cu intercepts
the vertical axis at f = f̄ , whereas the lower limiting curve cl

intercepts the vertical axis at f = � f̄ . The distance between the
two curves, along the vertical axis, is assumed to be constant
and equal to 2 f̄ since the formulation by Vaiana et al. [24] as-
sumes that the limiting curves are not affected by cyclic loading
phenomena.

The generic loading curve c+ has a starting (ending) point,
lying on the lower (upper) limiting curve cl (cu), having abscissa
u+i (u+j ), with u+i = u+j � 2u0. Similarly, the generic unloading
curve c� has a starting (ending) point, lying on the upper (lower)
limiting curve cu (cl), having abscissa u�i (u�j ), with u�i = u�j +
2u0.
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Figure 5: Curves cu, cl, c+, and c� for a hysteresis loop bounded by two parallel
straight lines (a) or curves (b)
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Figure 6: Graph of the generalized tangent stiffness kt for a generic loading (a)
and unloading (b) case in Figure 5a

The superscript + (�) denotes generic loading (unloading)
curves, whereas the subscript i ( j) is reminiscent of the starting
(ending) points of each curve.
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3.2. Generalized Tangent Stiffness

In the formulation by Vaiana et al. [24], the general expres-
sion of the generalized tangent stiffness kt, specialized for the
generic loading (u̇ > 0) and unloading (u̇ < 0) cases, is:

kt
(
u; u+j

)
= ke (u) + kh

(
u; u+j

)
when u̇ > 0; (1a)

kt
(
u; u�j

)
= ke (u) + kh

(
u; u�j

)
when u̇ < 0; (1b)

where ke(u) is a function of the absolute generalized displace-
ment u, whereas kh(u; u+j ) (kh(u; u�j )) is a function of a relative
generalized displacement evaluated by relating u to the history
variable u+j (u�j ).

As an example, the graph of function kt(u; u+j ) (kt(u; u�j )),
characterizing the generic loading (unloading) curve c+ (c�) of
Figure 5a, is illustrated in Figure 6a (6b). In particular, being
ke(u) = 0, the generalized tangent stiffness function nonlinearly
decreases, from ka to kb, on [u+j � 2u0; u+j ], when u̇ > 0, and on
[u�j ; u

�

j + 2u0], when u̇ < 0; moreover, it is constant and equal
to kb on [u+j ;1), when u̇ > 0, and on (�1; u�j ], when u̇ < 0.

3.3. Generalized Force

According to Figure 5, the general expression of the general-
ized force f , for a generic loading case (u̇ > 0), is:

f
(
u; u+j

)
=

¨
c+
(
u; u+j

)
u 2 [u+j � 2u0; u+j

]
(2a)

cu (u) u 2 [u+j ;1) ; (2b)

whereas, for a generic unloading case (u̇ < 0), it becomes:

f
(
u; u�j

)
=

¨
c�
(
u; u�j

)
u 2 [u�j ; u�j + 2u0

]
(3a)

cl (u) u 2 (�1; u�j
]
: (3b)

The integration of the generalized tangent stiffness kt, given
by Equation (1), allows one to derive the general expressions for
the upper and lower limiting curves, and for the generic loading
and unloading curves.

Specifically, the general expression of the upper limiting
curve, obtained by integrating Equation (1a) with u � u+j , so
that kh(u; u+j ) is constant and equal to kb, and by imposing that
the curve cu intercepts the vertical axis at f = f̄ , to determine
the integration constant, is:

cu (u) = fe (u) + kbu + f̄ ; (4){eq:eq:4}

whereas, the general expression of the lower limiting curve,
obtained by integrating Equation (1b) with u � u�j , so that
kh(u; u�j ) is constant and equal to kb, and by imposing that the
curve cl intercepts the vertical axis at f = � f̄ , to evaluate the
integration constant, is:

cl (u) = fe (u) + kbu � f̄ ; (5){eq:eq:5}

where:

fe (u) =
∫

ke (u) du: (6){eq:eq:6}

Furthermore, the general expression of the generic loading
curve, obtained by integrating Equation (1a) with u+i � u � u+j ,
and by imposing that the generic loading curve c+ intersects the
upper limiting curve cu at u = u+j , to determine the integration
constant, is:

c+
(
u; u+j

)
= fe (u) + fh

(
u; u+j

)
+ kbu+j + f̄ � fh

(
u+j ; u

+

j

)
; (7) {eq:eq:7}

whereas, the general expression of the generic unloading curve,
obtained by integrating Equation (1b) with u�j � u � u�i , and
by imposing that the generic unloading curve c� intersects the
lower limiting curve cl at u = u�j , to evaluate the integration
constant, is:

c�
(
u; u�j

)
= fe (u) + fh

(
u; u�j

)
+ kbu�j � f̄ � fh

(
u�j ; u

�

j

)
; (8) {eq:eq:8}

where:

fh
(
u; u+j

)
=

∫
kh
(
u; u+j

)
du; (9) {eq:eq:9}

and

fh
(
u; u�j

)
=

∫
kh
(
u; u�j

)
du: (10) {eq:eq:10}

The model parameters f̄ and u0 are related by a general ex-
pression that can be solved for f̄ or u0, either in closed form
or numerically, depending on the complexity of function fh de-
rived from the integration of the selected generalized tangent
stiffness function kh. Such an expression, obtained by impos-
ing that the generic loading curve c+ intersects the lower limit-
ing curve at u = u+i , and by remembering that u+i = u+j �2u0, is:

fh
(
u+j � 2u0; u+j

)
+ 2kbu0 + 2 f̄ � fh

(
u+j ; u

+

j

)
= 0: (11) {eq:eq:11}

An analogous general expression that complements Equation
(11), obtained by imposing that the generic unloading curve c�

intersects the upper limiting curve at u = u�i , and by remember-
ing that u�i = u�j + 2u0, is:

fh
(
u�j + 2u0; u�j

) � 2kbu0 � 2 f̄ � fh
(
u�j ; u

�

j

)
= 0: (12) {eq:eq:12}

3.4. History Variable

The expression of u+j (u�j ), that is, the generalized displace-
ment required to evaluate the generalized force f in the generic
loading (unloading) case, needs to be derived for a generic start-
ing point P, namely, a point that does not lie on the lower (up-
per) limiting curve, for which u+j (u�j ) cannot be computed as
u+j = u+i + 2u0 (u�j = u�i � 2u0). Indeed, as shown in Figure
7, when a generic loading (unloading) curve has an initial point
P : (uP; fP) that lies between the two limiting curves, the dis-
tance, along the horizontal axis, between the starting and ending
points of the curve is equal to u+j � uP (ju�j � uPj) and, thus, it
becomes smaller than 2u0.

The general expression for the evaluation of the history vari-
able u+j , obtained by imposing that the generic loading curve c+
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passes through the point P : (uP; fP), as shown in Figure 7, is:

fe (uP) + fh
(
uP; u+j

)
+ kbu+j + f̄ � fh

(
u+j ; u

+

j

)
= fP; (13) {eq:eq:13}

whereas, the general expression for the evaluation of the history
variable u�j , obtained by imposing that the generic unloading
curve c� passes through the point P : (uP; fP), as shown in
Figure 7, is:

fe (uP) + fh
(
uP; u�j

)
+ kbu�j � f̄ � fh

(
u�j ; u

�

j

)
= fP: (14){eq:eq:14}

Equations (13) and (14) can be solved for u+j and u�j , respec-
tively, in closed form or numerically, depending on the com-
plexity of function fh derived from the integration of the se-
lected generalized tangent stiffness function kh.

4. Proposed Hysteretic Model

In this section, using the general formulation summarized in
Section 3, we first develop the proposed uniaxial phenomeno-
logical model, representing a specific instance of the general
class formulated in Vaiana et al. [24], and show that it is able to
simulate hysteresis loops limited by two parallel straight lines
or curves by adopting a set of only five parameters. Subse-
quently, we examine the different hysteresis loop shapes, that
can be reproduced by means of the proposed model, as well
as the sensitivity of each model parameter in affecting the hys-
teresis loop size and/or shape. Finally, we present a schematic
flowchart of the model to allow for an easy computer imple-
mentation.

For simplicity, in the sequel, the proposed model is denomi-
nated Algebraic Model (AM) since the generalized force, repre-
senting the output variable of the model, is evaluated by solving
an algebraic equation.

Moreover, according to the nomenclature typically adopted
in the literature to describe the behavior of seismic isolators de-
forming along one of their transverse directions, the generalized
force, the generalized displacement, and the generalized tan-
gent stiffness, introduced in Section 3 with respect to a generic
mechanical system or material, are referred to as, respectively,

the restoring force, the transverse displacement, and the trans-
verse tangent stiffness of an isolation device.

4.1. Algebraic Model
The development of the model, described in this subsection,

consists in the selection of the transverse tangent stiffness func-
tions, that is, ke and kh, and in the analytical derivation of the
expressions for the restoring force and for the history variable.

4.1.1. Transverse tangent stiffness
The selection of the transverse tangent stiffness functions

plays a crucial role in the model development since it directly
affects the main model features, such as the accuracy, the com-
putational efficiency, as well as the number and the mechanical
significance of the model parameters.

The transverse tangent stiffness functions, proposed in this
work, are:

ke (u) = 3�1u2
+ 5�2u4 on (�1;1) ; (15) {eq:eq:15}

kh

�
u; u+j

�
=

kb +
ka � kb�

1 + ū�1
�

u � u+j + 2u0

��� on
[
u+j � 2u0; u+j

[
(16a)

kb on
]
u+j ;1

)
; (16b)

kh

�
u; u�j

�
=

kb +
ka � kb�

1 + ū�1
�
�u + u�j + 2u0

��� on
]
u�j ; u

�

j + 2u0
]

(17a)

kb on
(�1; u�j

[
; (17b)

where ka, kb, �, �1, and �2 are model parameters to be identi-
fied from experimental tests, ū is a model parameter, assumed
equal to one, formally introduced to non-dimensionalize the de-
nominator in Equations (16a) and (17a), whereas u0 is a model
parameter that can be expressed as a function of ka, kb, and �,
as demonstrated in the sequel. Specifically, ka > kb, ka > 0,
� > 0, � , 1, u0 > 0, whereas �1 and �2 are reals.

The shape of function ke depends on the parameters �1 and
�2; in particular, if �1=�2 > 0, ke has no inflection points and
it is convex (concave) on (�1;1), when �1 and �2 are pos-
itive (negative); on the contrary, if �1=�2 < 0, ke has two
inflection points and it is convex (concave) on the intervals(�1;�p��1= (10�2)

]
and

[p��1= (10�2);1), and concave
(convex) on

[�p��1= (10�2);
p��1= (10�2)

]
, when �1 < �2

(�1 > �2).
Function kh is a nonlinearly decreasing function, from ka to

kb + (ka � kb) (1 + 2u0)��, on [u+j � 2u0; u+j [, when u̇ > 0, and on
]u�j ; u

�

j + 2u0], when u̇ < 0; moreover, kh is constant and equal
to kb on ]u+j ;1), when u̇ > 0, and on (�1; u�j [, when u̇ < 0.
The parameter � defines the velocity of variation of kh, from ka

to kb+(ka�kb) (1 + 2u0)��, as shown in Figure 8 for the generic
loading case (u̇ > 0). The graph of function kh for the generic
unloading case (u̇ < 0) is omitted for brevity.
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Figure 8: Graph of function kh for the generic loading case

The internal model parameter u0 can be expressed in terms of
the parameters ka, kb, and �. Indeed, taking into account that kh

is discontinuous at u+j (u�j ), as shown in Figure 8 for the generic
loading case, and denoting by �k the difference between the two
different values assumed by the transverse tangent stiffness at
u+j (u�j ), we can write:

ka � kb

(1 + 2u0)�
= �k; (18){eq:eq:18}

from which we obtain:

u0 =
1
2

��
ka � kb

�k

� 1
�

� 1

�
; (19){eq:eq:19}

an expression that yields positive values of u0 for 0 < �k <

ka � kb. In order to have a generic loading (unloading) curve c+

(c�) and an upper (lower) limiting curve cu (cl) with the same
value of the transverse tangent stiffness at u+j (u�j ), we should
set �k equal to zero in Equation (19), thus making u0 undefined.
However, the results of extensive numerical tests, only partially
presented in this paper, suggest �k = 10�20 as a suitable value
for practical purposes.

4.1.2. Restoring force

In the generic loading case, according to the general formu-
lation described in Section 3, it turns out to be f = c+ when
u+i � u < u+j , and f = cu when u > u+j , whereas, in the generic
unloading case, f = c� when u�j < u � u�i , and f = cl when
u < u�j . Thus, in the sequel, after deriving the expressions
for the upper (lower) limiting curve cu (cl) and for the generic
loading (unloading) curve c+ (c�), we obtain the expression of
the internal model parameter f̄ required for the evaluation of
cu, cl, c+, and c�.

Upper and Lower Limiting Curves
According to the definition (6) and to the assumption (15), it
turns out to be:

fe (u) = �1u3
+ �2u5: (20){eq:eq:20}

Hence, Equation (4) yields:

cu (u) = �1u3
+ �2u5

+ kbu + f̄ ; (21){eq:eq:21}

whereas Equation (5) becomes:

cl (u) = �1u3
+ �2u5

+ kbu � f̄ : (22){eq:eq:22}

Generic Loading and Unloading Curves
On account of the assumption (16a), Equation (9) specializes
to:

fh
(
u; u+j

)
= kbu + (ka � kb)

�
1 + u � u+j + 2u0

�(1��)

1 � �
; (23) {eq:eq:23}

so that, recalling (20), Equation (7) yields:

c+
(
u; u+j

)
= �1u3

+ �2u5
+ kbu

+ (ka � kb)

�1 + u � u+j + 2u0

�(1��)

1 � �
� (1 + 2u0)(1��)

1 � �

 + f̄ :

(24) {eq:eq:24}

Similarly, because of the assumption (17a), Equation (10) be-
comes:

fh
(
u; u�j

)
= kbu + (ka � kb)

�
1 � u + u�j + 2u0

�(1��)

� � 1
: (25) {eq:eq:25}

Substituting the previous expression in Equation (8) and recall-
ing (20), one obtains:

c�
(
u; u�j

)
= �1u3

+ �2u5
+ kbu

+ (ka � kb)

�1 � u + u�j + 2u0

�(1��)

� � 1
� (1 + 2u0)(1��)

� � 1

 � f̄ :

(26) {eq:eq:26}

Expression of f̄
The expression of f̄ can be obtained by using Equation (11) or
(12). Adopting (23), the former equation becomes:

kb
(
u+j � 2u0

)
+

(ka � kb)
1 � �

+ 2kbu0 + 2 f̄ � kbu+j

� (ka � kb)
(1 + 2u0)(1��)

1 � �
= 0;

(27) {eq:eq:27}

from which we obtain:

f̄ =
ka � kb

2

�
(1 + 2u0)(1��) � 1

1 � �

�
: (28) {eq:eq:28}

Being ka > kb, � , 1, and u0 > 0, the previous expression
provides a positive value of f̄ .
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Table 1
Hysteresis loop shapes simulated by the AM

shape type obtained for

S1 �1 = �2 = 0
S2 �1=�2 > 0 with �1 > 0 and �2 > 0
S3 �1=�2 > 0 with �1 < 0 and �2 < 0
S4 �1=�2 < 0 with �1 < �2

S5 �1=�2 < 0 with �1 > �2

Table 2
AM parameters

ka kb � �1 �2

(a) 100 10 20 0 0
(b) 100 10 20 2 2
(c) 100 10 20 -1.5 -1.5
(d) 100 10 20 -10 10

4.1.3. History variable
Invoking (20) and (23), Equation (13) specializes to:

�1u3
P + �2u5

P + kbuP + (ka � kb)

�
1 + uP � u+j + 2u0

�(1��)

1 � �

+ kbu+j + f̄ � kbu+j � (ka � kb)
(1 + 2u0)(1��)

1 � �
= fP;

(29) {eq:eq:29}

from which the following expression of the history variable,
holding for the loading case, is obtained:

u+j = 1 + uP + 2u0 �
§

1 � �

ka � kb

[
fP � �1u3

P � �2u5
P � kbuP

� f̄ + (ka � kb)
(1 + 2u0)(1��)

1 � �

�«( 1
1�� )

:

(30){eq:eq:30}

Similarly, using (20) and (25), Equation (14) becomes:

�1u3
P + �2u5

P + kbuP + (ka � kb)

�
1 � uP + u�j + 2u0

�(1��)

� � 1

+ kbu�j � f̄ � kbu�j � (ka � kb)
(1 + 2u0)(1��)

� � 1
= fP;

(31){eq:eq:31}

from which the following expression of the history variable,
valid for the unloading case, is obtained:

u�j = �1 + uP � 2u0 +

§
� � 1

ka � kb

[
fP � �1u3

P � �2u5
P � kbuP

+ f̄ + (ka � kb)
(1 + 2u0)(1��)

� � 1

�«( 1
1�� )

:

(32){eq:eq:32}

According to the coordinates of point P, that is, the initial

point of the generic loading (unloading) curve, the history vari-
able u+j (u�j ) may assume positive or negative values.

4.2. Hysteresis Loop Shapes
As shown in Table 1, the proposed model is able to reproduce

force-displacement hysteresis loops with five different shapes
depending on the values assumed by the parameters �1 and
�2. Figure 9 presents four hysteresis loops having shape type
S1, S2, S3, and S4, respectively, obtained by applying a sinu-
soidal transverse displacement of unit amplitude and simulated
by adopting the Algebraic Model parameters listed in Table 2.
The fifth type of shape, namely, S5, has not been presented
since it is not of interest in this paper.

Specifically, Figure 9a shows a hysteresis loop bounded by
two straight lines, whereas Figures 9b, 9c, and 9d show hystere-
sis loops bounded by two curves. The hysteresis loop of Figure
9a (9b) is typical of bolted SREBs deforming at relatively large
(at large) shear strains, that is,  � 100-150% ( > 100-150%),
whereas the one of Figure 9c (9d) is typically displayed by un-
bonded FREBs when  � 100-150% ( > 100-150%).

Figure 10 illustrates the sensitivity of each parameter of the
proposed model in affecting the size and/or shape of hysteresis
loops simulated by imposing a sinusoidal transverse displace-
ment having unit amplitude and frequency. More specifically,
the hysteresis loops in Figure 10a have been obtained setting
kb = 10, � = 20, �1 = 0, �2 = 0, and using three values of ka,
that is, 50, 100, and 200. It is clear that the variation of ka pro-
duces a variation of the hysteresis loop size without affecting its
shape; in particular, the larger is ka, the larger is the hysteresis
loop size.

Figure 10b presents hysteresis loops simulated adopting ka =

100, � = 20, �1 = 0, �2 = 0, and three values of kb, that is,
5, 10, and 15. It is evident that the variation of kb produces a
rotation of the hysteresis loop and a slight modification of its
size. Specifically, if kb is increased, the hysteresis loop rotates
counter-clockwise and its size slightly decreases.

The hysteresis loops in Figure 10c have been simulated using
ka = 100, kb = 10, �1 = 0, �2 = 0, and adopting three values
of �, that is, 10, 20, and 40. It can be seen that the variation
of � produces a variation of the hysteresis loop size without
affecting its shape; in particular, the larger is �, the smaller is
the hysteresis loop size.

Finally, Figures 10d, 10e, and 10f show how the parameter
�1 affects the shape of hysteresis loops having shape type S2,
S3, and S4, respectively. The hysteresis loops in Figure 10d
(10e) have been obtained adopting ka = 100, kb = 10, � = 20,
�2 = 2 (�2 = �1:5), and three values of �1, that is, 0.5, 2, and 4
(-0.5, -1.5, -4), whereas the hysteresis loops in Figure 10f have
been obtained setting ka = 100, kb = 10, � = 20, �2 = 10, and
adopting three values of �1, that is, -5, -10, and -15.

Since the influence of parameter �2 on the shape of hysteresis
loops characterized by a shape type S2, S3, or S4 is similar
to the one displayed by �1, the related figures are omitted for
brevity.

It has to be noted that an important benefit of the Algebraic
Model consists in the accurate determination of its parame-
ters through an analytical fitting of the experimental hysteresis
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Figure 9: Hysteresis loops, having shape S1 (a), S2 (b), S3 (c), and S4 (d), defined in Table 1, simulated by adopting the AM parameters given in Table 2

loops. Indeed, as it has been shown in Figure 10, the Alge-
braic Model parameters are directly associated with the graphi-
cal properties of the hysteresis loop. If more accurate identifica-
tions are required, usually of nonlinear nature, such computed
parameters represent suitable first trial values for the iterations
required to compute the optimal parameters, that is, the ones
that best fit the experimental data according to the adopted cri-
terion. Moreover, the peculiar analytical formulation of the pro-
posed model permits a closed form computation of the response
gradient, an issue of the outmost importance in identification
procedures.

4.3. Computer Implementation

To allow for an easy computer implementation, Table 3
presents a schematic flowchart of the Algebraic Model. To this
end, we suppose that a seismic isolation device is subjected to a
given transverse displacement history and that a displacement-
driven solution scheme has been adopted. Because of these as-
sumptions, the displacements ut��t and ut, the velocities u̇t��t

and u̇t, as well as the restoring force ft��t are known over a
time step �t, and the restoring force ft has to be evaluated.

The implementation scheme of the Algebraic Model, sum-
marized in Table 3, is composed of two parts. In the first one,
called Initial settings, the five model parameters, that is, ka, kb,
�, �1, and �2, are assigned and the internal ones, namely, u0 and
f̄ , are evaluated. In the second one, called Calculations at each
time step, the history variable u+j (u�j ) is updated if the sign of
the transverse velocity at time t, that is, st = sgn(u̇t), changes
with respect to the one at t � �t; then, the restoring force ft
is computed by using the expression of the generic loading (un-
loading) curve c+ (c�) if u+j �2u0 � ut < u+j (u�j < ut � u�j +2u0);
otherwise, it is computed by adopting the expression of the up-
per (lower) limiting curve cu (cl).

5. Verification of the Proposed Model

This section presents the validation of the Algebraic Model,
developed in Section 4. Specifically, the experimental verifi-
cation is first carried out by comparing the results predicted
analytically with some experimental results selected from the
literature. Then, the numerical accuracy as well as the com-
putational efficiency of the Algebraic Model are assessed by
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Figure 10: Influence of the AM parameters on the size and/or shape of the hysteresis loops

performing nonlinear time history analyses on a single degree
of freedom mechanical system and comparing the results with
those obtained by using a modified version of the celebrated
Bouc-Wen model [16–18].

5.1. Experimental Verification

The hysteretic behavior of elastomeric bearings, deforming
along one of their transverse directions under the effect of a
constant axial compressive load, is strongly influenced by the
shear strain attained by the bearing, generally defined as the
ratio of the device transverse displacement to the total thickness
of the rubber layers, as well as by the axial load.

In the sequel, the proposed Algebraic Model is employed for
the simulation of the experimental hysteretic behavior charac-
terizing several elastomeric bearings, that is, bolted SREBs and
unbonded FREBs, that have been tested at various shear strain
ranges under the effect of several axial compressive loads.

5.1.1. Simulation of the hysteretic behavior at various shear
strain ranges

In order to demonstrate the capability of the Algebraic Model
to predict the hysteretic behavior of elastomeric bearings sub-
jected to a harmonic transverse motion having different ampli-
tudes, under the effect of a constant axial compressive load, the
results analytically predicted are compared to the experimental
ones. In particular, the experimental hysteresis loops, adopted
for the experimental verification of the model, are those ob-
tained during the dynamic experimental tests conducted on a
bolted SREB by Tsai et al. [20], and on an unbonded FREB by
Kelly and Takhirov [4].

The SREB tested by Tsai et al. [20] is a HDRB having a
square transverse cross section, with dimensions 106 mm � 106
mm, a total height of 65 mm, and a total thickness of rubber lay-
ers of 41 mm. Each experimental test, conducted on the bearing
at the Chung-Shan Institute of Science and Technology, Tai-
wan, consisted in imposing five cycles of sinusoidal transverse
displacement, having specified amplitude and frequency, under
the effect of three different axial loads.

The FREB tested by Kelly and Takhirov [4] has a circu-
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Table 3
AM Algorithm

1. Initial settings.

1.1 Set the five model parameters: ka, kb, �, �1, and �2.
1.2 Compute the internal model parameters [see (19) and (28)]:

u0 =
1
2

��
ka�kb
�k

� 1
� � 1

�
and f̄ = ka�kb

2

�
(1+2u0)(1��)

�1
1��

�
, with �k = 10�20.

2. Calculations at each time step.

2.1 If st st��t < 0, update the history variable [see (30) and (32)]:

u j = ut��t+st (1 + 2u0)�st

¦
st(1��)
ka�kb

�
ft��t � �1u3

t��t � �2u5
t��t � kbut��t � st f̄ + (ka � kb) (1+2u0)(1��)

st(1��)

�©( 1
1�� )

.

2.2 Evaluate the restoring force at time t:
if u jst � 2u0 � ut st < u jst:

ft = �1u3
t + �2u5

t + kbut + (ka � kb)
�

(1+stut�stu j+2u0)(1��)

st(1��) � (1+2u0)(1��)

st(1��)

�
+ st f̄ [see (24) and (26)],

otherwise:
ft = �1u3

t + �2u5
t + kbut + st f̄ [see (21) and (22)].

lar transverse cross section, with diameter of 305 mm, a total
height of 140 mm, and a total thickness of rubber layers of 102
mm. Each experimental test, conducted on the device at the lab-
oratory of the Pacific Earthquake Engineering Research Center
of the University of California at Berkeley, consisted in impos-
ing three cycles of sinusoidal transverse displacement, having
specified amplitude and frequency, under the effect of two dif-
ferent axial loads.

Figure 11a (11b) shows the comparisons of the analytical
and experimental results obtained by applying, to the above-
described SREB (FREB), five (three) cycles of sinusoidal trans-
verse displacement at three different amplitude levels, corre-
sponding to a shear strain, , of 50%, 100%, and 150%, re-
spectively, under the effect of an axial compressive load, fv, of
29.42 kN (252.06 kN). In the case of the SREB, the frequency
of the applied sinusoidal transverse displacement is constant
and equal to 0.2 Hz for all the three amplitude levels, whereas,
in the case of the FREB, it is equal to 0.5 Hz, 0.25 Hz, and 0.15
Hz for  = 50%,  = 100%, and  = 150%, respectively.

It can be observed that the agreement between the experi-
mental hysteresis loops and the analytical ones, simulated by
adopting the Algebraic Model parameters listed in Table 4, is
satisfactory. In particular, it is proved that the proposed model
is capable of well predicting the increase of the tangent stiffness
that occurs in the tested SREB, due to strain crystallization of
the rubber matrix, as well as in the tested FREB, due to the full
rollover.

To better explain further features of the proposed model, the
same experimental results are analytically predicted by means
of a modified version of the celebrated Bouc-Wen model [16–
18]. Among existing phenomenological models available in the
literature, such a differential model, referred to as the Modi-
fied Bouc-Wen Model (MBWM), seems to be one of the most

suitable to perform nonlinear time history analyses of actual
base-isolated structures, since it allows for an accurate predic-
tion of the hysteretic response of elastomeric bearings by using
a relatively small number of parameters that remain constant
throughout the analysis.

In particular, according to this differential model, the restor-
ing force of an elastomeric bearing is given by:

f (u) =a1u + a2 juj u + a3u3
+ a4 juj u3

+ a5u5

+ b
�

1 � �

A
jzjn

�
z;

(33) {eq:eq:33}

where z is a dimensionless variable obtained by solving the fol-
lowing first-order nonlinear ordinary differential equation:

ż = Y�1 (Au̇ � �u̇ jzjn �  ju̇j z jzjn�1) ; (34) {eq:eq:34}

whereas, a1, a2, a3, a4, a5, b, Y , A, �, , and n represent the
model parameters to be calibrated from experimental tests.

It is worth to notice that the above-described differential
model represents the one specifically proposed by Chen and
Ahmadi [19] (Manzoori and Toopchi-Nezhad [21]) for predict-
ing the hysteretic behavior of HDRBs (FREBs), if the parame-
ters a4 and a5 (a2 and a4) are set equal to zero.

Figure 12a (12b) compares the experimental hysteresis loops
of the tested SREB (FREB) with those analytically predicted
by employing the Modified Bouc-Wen Model and adopting the
model parameters listed in Table 5.

The comparisons of Figures 11 and 12 as well as of Tables
4 and 5 hint at two important considerations. Firstly, the pro-
posed Algebraic Model is as accurate as the Modified Bouc-
Wen Model but offers the significant advantage of requiring a
smaller number of parameters; indeed, as clearly shown by Ta-
bles 4 and 5, the proposed model needs the evaluation of only
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Table 4
AM parameters adopted for simulating hysteresis loops in Figure 11

ka
[
Nm�1

]
kb
[
Nm�1

]
� �1

[
Nm�3

]
�2
[
Nm�5

]
(a) 41 � 104 78 � 103 130 10 � 106 20 � 108

(b) 12 � 105 36 � 104 50 �20 � 106 67 � 107
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Figure 11: Comparisons of experimental and analytical hysteresis loops, simulated by using the AM parameters given in Table 4: SREB (a) and FREB (b)

five parameters, whereas the number of parameters to be iden-
tified in the Modified Bouc-Wen Model is equal to eleven.

Furthermore, both models are capable of simulating, with
satisfactory approximation, the hysteresis loops at various shear
strain ranges by adopting only one set of parameters, identified
with respect to all the filtered experimental hysteresis loops.
To be very meticulous, it has to be pointed out that the use of
such a set of model parameters leads to the simulation of hys-
teresis loops that are slightly larger than the experimental ones,
within the relatively large shear strain range, that is,  � 100%.
This modeling aspect is typical of many other phenomenologi-
cal models available in the literature, such as the Hwang et al.
model, that has been proposed by Hwang et al. [13] for the sim-
ulation of the hysteretic behavior of SREBs and has been also
adopted by Toopchi-Nezhad et al. [10] to predict the response
of FREBs.

5.1.2. Simulation of the hysteretic behavior under several axial
loads

In order to demonstrate the capability of the Algebraic Model
to predict the hysteretic behavior of elastomeric bearings sub-
jected to a harmonic transverse motion, under the effect of sev-
eral constant axial compressive loads, the results analytically
predicted are compared to the experimental ones. In particular,
the experimental hysteresis loops, adopted for the experimental
verification of the model, are those obtained during the dynamic
experimental tests conducted on a bolted SREB by Tsai et al.
[20], already described in 5.1.1, and on an unbonded FREB by
De Raaf et al. [34].

The FREB tested by De Raaf et al. [34] has a square trans-
verse cross section, with dimensions 70 mm � 70 mm, a to-
tal height of 24 mm, and a total thickness of rubber layers of
19 mm. Each experimental test consisted in imposing two cy-
cles of sinusoidal transverse displacement, having specified am-
plitude and frequency, under the effect of four different axial
loads.

Figure 13a (13b) shows the comparisons of the analytical
and experimental results obtained by applying, to the above-
described SREB (FREB), five (two) cycles of sinusoidal trans-
verse displacement, having an amplitude corresponding to a
shear strain, , of 150%, and a frequency equal to 0.3 Hz (0.67
Hz), under the effect of an axial compressive load, fv, of 9.81
kN (7.84 kN). Figure 14a (14b) shows the same comparisons
with the only difference that the axial compressive load, fv, is
equal to 29.42 kN (30 kN).

It can be observed that the agreement between the experi-
mental hysteresis loops and the analytical ones, simulated in
Figure 13 (14) by adopting the Algebraic Model parameters
listed in Table 6 (7), is satisfactory. Thus, it is proved that
the proposed model is capable of well predicting the complex
hysteretic behavior displayed by the tested elastomeric bearings
under the effect of several axial compressive loads.

5.2. Numerical Verification and Computational Efficiency

In this subsection, the nonlinear dynamic response of a single
degree of freedom mechanical system, that is, a base-isolated
rigid block, is simulated by modeling the restoring force of each
seismic isolation device on the basis of the Algebraic Model.
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Table 5
MBWM parameters adopted for simulating hysteresis loops in Figure 12

A n b [N] Y [m] �  a1
[
Nm�1

]
a2
[
Nm�2

]
a3
[
Nm�3

]
a4
[
Nm�4

]
a5
[
Nm�5

]
(a) 1 1.1 1400 75�10�4 0.1 0.9 78 � 103 �30 � 104 22 � 106 0 0
(b) 1 1.1 9350 21�10�3 0.1 0.9 36 � 104 0 �20 � 106 0 67 � 107
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Figure 12: Comparisons of experimental and analytical hysteresis loops, simulated by using the MBWM parameters given in Table 5: SREB (a) and FREB (b)

In order to confirm the numerical accuracy of the proposed
model and demonstrate its notable computational efficiency,
the results of the nonlinear time history analyses and the cor-
responding computational times are compared with those ob-
tained by modeling the restoring force of the seismic isola-
tion bearings with the Modified Bouc-Wen Model described in
5.1.1. Such nonlinear time history analyses are performed for
two different external forces, that is, a harmonic and an earth-
quake force.

5.2.1. Analyzed mechanical system
Figure 15 illustrates the analyzed mechanical system that

consists of a rigid block isolated by two FREBs placed between
a shaking table and the rigid block with no bonding at their up-
per and lower contact surfaces.

The motion of such a system, characterized by a single de-
gree of freedom, is described by the equation:

mü + 2cu̇ + 2 f (u) = p(t); (35){eq:eq:35}

where m denotes the mass of the rigid block, c the viscous
damping coefficient of each bearing, u, u̇, and ü the mechan-
ical system displacement, velocity, and acceleration relative to
the ground, respectively, f the restoring force of each unbonded
FREB, and p the external force depending upon time t.

If the mechanical system is subjected to an earthquake ex-
citation, p represents the effective earthquake force, that is, a
force acting opposite to the acceleration and equal to mass m
times the ground acceleration üg. Thus, the nonlinear ordinary

differential equation (35) is replaced by:

mü + 2cu̇ + 2 f (u) = �müg(t): (36){eq:eq:36}

The rigid block has a mass of 51388.36 Ns2m�1, whereas the
two unbonded FREBs, characterized by negligible mass and
viscous damping coefficient, have the same properties as the
one tested by Kelly and Takhirov [4] and described in 5.1.1.
Therefore, their nonlinear behavior is simulated by adopting
the Algebraic Model (Modified Bouc-Wen Model) parameters
listed in Table 4 (Table 5).

5.2.2. Applied external forces
The nonlinear dynamic response of the mechanical system is

evaluated for two different external forces, namely, a harmonic
force and an earthquake force.

The harmonic force, shown in Figure 16a, is a sinusoidal
force characterized by an amplitude p0 that increases linearly
with time from 0 to 105 N, a forcing frequency !p = 2� rad/s,
and a time duration td = 10 s.

The earthquake force, shown in Figure 16b, is evaluated by
adopting the SN component of horizontal ground acceleration
recorded at the Jensen Filter Plant station during the Northridge
earthquake of January 17, 1994. The original ground accelera-
tion record, having time step equal to 0.005 s, has been scaled
by a factor of 1/2 in order to reach a peak mechanical system
displacement, relative to the ground, that is close to the maxi-
mum displacement attained by the unbonded FREB during the
experimental tests conducted by Kelly and Takhirov [4].
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Table 6
AM parameters adopted for simulating hysteresis loops in Figure 13

ka
[
Nm�1

]
kb
[
Nm�1

]
� �1

[
Nm�3

]
�2
[
Nm�5

]
(a) 68 � 104 98 � 103 250 60 � 105 16 � 108

(b) 34 � 104 79 � 103 400 �68 � 106 45 � 109

Table 7
AM parameters adopted for simulating hysteresis loops in Figure 14

ka
[
Nm�1

]
kb
[
Nm�1

]
� �1

[
Nm�3

]
�2
[
Nm�5

]
(a) 68 � 104 80 � 103 220 94 � 105 22 � 108

(b) 40 � 104 55 � 103 400 �38 � 106 30 � 109
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Figure 13: Comparisons of experimental and analytical hysteresis loops, simulated by using the AM parameters given in Table 6: SREB (a) and FREB (b)
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Figure 14: Comparisons of experimental and analytical hysteresis loops, simulated by using the AM parameters given in Table 7: SREB (a) and FREB (b)

5.2.3. Results of the nonlinear time history analyses
In the sequel, the results of some numerical simulations are

presented to assess the numerical accuracy and the computa-
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Figure 15: Mechanical system adopted for the numerical verification
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Figure 16: Applied external forces: harmonic (a) and earthquake force (b)

tional efficiency of the Algebraic Model.
The equation of motion, given by Equation (35) or (36), ac-

cording to the type of applied external force, has been numeri-
cally solved by employing a widely used explicit time integra-
tion method, that is, the central difference method [41, 42], and
adopting a time step of 0.005 s. In addition, the first-order non-
linear ordinary differential equation characterizing the Modi-
fied Bouc-Wen Model, given by Equation (34), has been nu-
merically solved by adopting the unconditionally stable semi-
implicit Runge-Kutta method [23] and using 50 steps. The

numerical time integration algorithm as well as the hysteretic
models have been implemented in MATLAB and run on a
computer having an Intel R©CoreTMi7-4700MQ processor and
a CPU at 2.40 GHz with 16 GB of RAM.

Tables 8 and 9 present the results of the Nonlinear Time His-
tory Analyses (NLTHAs) obtained for the harmonic and earth-
quake forces, respectively.

The numerical results confirm the accuracy of the Algebraic
Model since the maximum and minimum values of the rela-
tive displacement, velocity, and acceleration of the mechanical
system, evaluated by employing the proposed model, are quite
close to those predicted by the Modified Bouc-Wen Model.

Furthermore, the numerical results also show that the com-
putational burden of the Algebraic Model, expressed by the to-
tal computational time tct, is significantly smaller than the one
characterizing the Modified Bouc-Wen Model. Since the pa-
rameter tct depends upon the amount of the back-ground pro-
cess running on the computer, the relevant memory, as well as
the CPU speed, a fully objective measure of the computational
benefits, associated with the use of the Algebraic Model with
respect to the Modified Bouc-Wen Model, is obtained by nor-
malizing such a parameter as follows:

AM tctp [%] =
AM tct

MBWM tct
� 100 : (37) {eq:eq:37}

Figures 17, 18, and 19 illustrate, respectively, the time his-
tories of the relative displacement, velocity, and acceleration of
the mechanical system, whereas Figure 20 shows the restoring
force-displacement hysteresis loops displayed by each FREB.
Generally speaking, the comparison between the responses sim-
ulated with the Algebraic Model and the Modified Bouc-Wen
Model shows a very good agreement.

6. Conclusions

We have presented a uniaxial phenomenological model, able
to simulate the complex hysteretic behavior typically displayed
by bolted SREBs and unbonded FREBs, deforming along one
of their transverse directions under the effect of a constant mod-
erate axial compressive load.

The proposed model, representing a specific instance of the
class of uniaxial phenomenological models formulated by Va-
iana et al. [24], requires only one history variable, is based on a
set of only five parameters, directly associated with the graphi-
cal properties of the hysteresis loop, as shown by the sensitivity
analysis carried out in 4.2, and can be easily implemented in a
computer program, as shown by the schematic flowchart illus-
trated in 4.3.

For simplicity, in the paper, the model has been denominated
Algebraic Model since the isolator restoring force, that is, the
output variable of the model, is computed by solving an alge-
braic equation.

The proposed model has been validated by means of ex-
perimental tests and numerical simulations. Specifically, the
experimental verification, performed by comparing the results
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Table 8
NLTHAs results | Harmonic force

u [m] u̇
[
ms�1

]
ü
[
ms�2

]
tct [s] tctp max min max min max min

MBWM 9.463 - 0.1305 -0.1220 0.7967 -0.8409 4.9104 -5.1878
AM 0.066 0.69% 0.1302 -0.1221 0.7963 -0.8396 4.9151 -5.1878

Table 9
NLTHAs results | Earthquake force

u [m] u̇
[
ms�1

]
ü
[
ms�2

]
tct [s] tctp max min max min max min

MBWM 27.95 - 0.1421 -0.1124 0.4048 -0.3613 2.2892 -2.1137
AM 0.203 0.73% 0.1411 -0.1126 0.4037 -0.3594 2.2805 -2.1152
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Figure 17: Relative displacement time history obtained by applying the harmonic (a) and earthquake force (b)
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Figure 18: Relative velocity time history obtained by applying the harmonic (a) and earthquake force (b)
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Figure 19: Relative acceleration time history obtained by applying the harmonic (a) and earthquake force (b)
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Figure 20: Restoring force-displacement hysteresis loops obtained by applying the harmonic (a) and earthquake force (b)

predicted analytically with some experimental results selected
from the literature, reveals that:

- the model is able to simulate the hysteretic behavior dis-
played by the tested elastomeric bearings at various shear
strain ranges; in particular, it well predicts the increase of
the tangent stiffness occurring in the tested SREB (FREB)
due to strain crystallization of the rubber matrix (rollover);

- the model is able to reproduce the complex hysteretic be-
havior displayed by the tested elastomeric bearings under
the effect of several axial compressive loads.

The numerical accuracy and the computational efficiency of
the proposed model have been assessed by performing nonlin-
ear time history analyses on a single degree of freedom me-
chanical system, for two different external forces, that is, a har-
monic force and an earthquake force, and comparing the results
of the Algebraic Model with those associated with the Modified

Bouc-Wen Model. Specifically, the following conclusions can
be drawn:

- the numerical results of the Algebraic Model closely
match those predicted by the Modified Bouc-Wen Model,
for both types of external force;

- the total computational time required by the Algebraic
Model is equal to 0.69% (0.73%), for the harmonic (earth-
quake) force case, of the one associated with the Modified
Bouc-Wen Model;

- the Modified Bouc-Wen Model needs the calibration of 11
parameters, whereas the Algebraic Model requires only 5
model parameters having a clear mechanical significance.

Current research is focusing on the extension of the proposed
model to the two-dimensional case through the definition of an
interaction domain involving restoring forces. In particular, by
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assuming an isotropic transverse behavior of elastomeric bear-
ings, a circular interaction function can be postulated to couple
the restoring force-displacement responses along two orthogo-
nal transverse directions under the effect of a constant moderate
axial compressive load. Furthermore, in forthcoming papers,
the presented model will be combined with recent strategies to
address the nonlinear behavior of framed [43, 44] or shear wall
structures [45, 46] in order to analyze base-isolated buildings by
exploiting the concept of seismic response envelopes [47, 48].
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