SPECTRAL ANALYSIS OF THE WREATH PRODUCT OF A COMPLETE GRAPH WITH A COCKTAIL PARTY GRAPH

Francesco Belardo ${ }^{a}$, Matteo Cavaleri ${ }^{b}$ And Alfredo Donno ${ }^{b *}$

Abstract

Graph products and the corresponding spectra are often studied in the literature. A special attention has been given to the wreath product of two graphs, which is derived from the homonymous product of groups. Despite a general formula for the spectrum is also known, such a formula is far from giving an explicit spectrum of the compound graph. Here, we consider the latter product of a complete graph with a cocktail party graph, and by making use of the theory of circulant matrices we give a direct way to compute the (adjacency) eigenvalues.

1. Introduction

Throughout this paper we consider only finite, undirected and simple graphs (loops or multiple edges are not allowed). Let $G=(V(G), E(G))$ be a graph, where $V(G)=V$ is the vertex set and $E(G)=E$ is the edge set, consisting of unordered pairs of type $\{u, v\}=u v$, with $u, v \in V$. The order of G is $|V|$ and the size is $|E|$. If $u v \in E$, we say that the vertices u and v are adjacent in G, and we write $u \sim v$. A path in G is a sequence u_{1}, \ldots, u_{ℓ} of vertices such that $u_{i} \sim u_{i+1}$, for each $i=1, \ldots, \ell-1$. We say that such a path has length $\ell-1$ and it is denoted by P_{ℓ}. A graph is said to be connected if, for every $u, v \in V$, there exists a path in G joining them. Some special types of graphs which are considered in this paper are the cycle graph C_{n}, obtained from $P_{n}=u_{1} \cdots u_{n}$ by adding the edge $u_{1} u_{n}$, the complete graph K_{n}, consisting of n vertices and all edges between them, and the cocktail party graph $C P_{2 n}$, obtained from $K_{2 n}$ by removing a perfect matching. For basic results on graph theory and definitions not given here, the reader is referred to the book of Harary (1969).

Graphs are well-studied by means of the eigenvalues of some associated graph matrix. Through this paper, we focus our attention to the adjacency matrix $A(G)$ of the graph $G=(V, E)$. The adjacency matrix $A(G)$ is the square matrix $A=\left(a_{u, v}\right)_{u, v \in V}$, indexed by the vertices of G, whose entry $a_{u, v}$ is 1 , whenever the corresponding vertices are adjacent, or it is 0 , otherwise. The degree of a vertex $u \in V$ is defined as $\operatorname{deg}(u)=\sum_{v \in V} a_{u, v}$. In particular, we say that G is regular of degree d, or d-regular, if $\operatorname{deg}(u)=d$, for all $u \in V$. Note that, the cycle C_{n}, the complete graph K_{n} and the cocktail party graph $C P_{n}$ (n is even) are the unique, up to isomorphisms, regular connected graphs of degree $2, n-1$ and $n-2$, respectively.

Since the graph G is undirected, $A(G)$ is a symmetric nonnegative matrix, therefore all its eigenvalues are real and the spectral radius is the largest eigenvalue. The (adjacency) spectrum of G comprises the eigenvalues of $A(G)$ together with their multiplicities. For basic results on the graph spectra and other graph matrices, we refer the reader to see Cvetkovic et al. (1995, 2009).

In the literature, several graph products are defined and studied. For example, the join of two graphs G and H is the graph obtained from a copy of G, a copy of H and by adding all possible edges $u v$ where $u \in G$ and $v \in H$. A natural question within graph products is to compute eigenvalues of the compound graph when the factors and their spectra are known or given. Furthermore, many graph operations can be expressed in terms of NEPS (non-complete extended p-sum) and the corresponding spectra are easy to obtain by combining the eigenvalues of the factors according to the basis of the NEPS (for more details see Cvetkovic et al. 1995). However, there are graph operations which cannot be interpreted as NEPS and therefore the spectrum can be harder to be computed. For example, the wreath product of graphs has an adjacency matrix which can be expressed in terms of sums of Kronecker product of matrices (D'Angeli and Donno 2017), but the spectrum cannot be explicitly given. By specializing the structure of the composite graphs, the spectrum of the wreath product has been computed for complete graphs (Donno 2017), still by further developing the tools used in the last mentioned paper, the spectrum can be elegantly computed for classes of graphs with circulant graph matrices. Here, we consider the wreath product of complete graphs with cocktail party graphs. We also want to mention the article of Cavaleri and Donno (2018), where some degree and distance based invariants - the Zagreb indices, the Wiener index, the Szeged index - have been studied for wreath products of graphs.

The paper is organized as follows. In Section 2 we define the wreath product of two graphs and we recall the basic results and notation useful for our investigation. In Section 3, we derive the spectrum of the wreath product of complete graphs and cocktail party graphs, and we conclude by giving some comments for further research.

2. Preliminaries

In this section we recall the definition of wreath product of two graphs and some useful results obtained so far.

Definition 2.1. Let $G_{1}=\left(V_{1}, E_{1}\right)$ and $G_{2}=\left(V_{2}, E_{2}\right)$ be two finite graphs. The wreath product $G_{1}\left\langle G_{2}\right.$ is the graph with vertex set $V_{2}^{V_{1}} \times V_{1}=\left\{(f, v) \mid f: V_{1} \rightarrow V_{2}, v \in V_{1}\right\}$, where two vertices (f, v) and $\left(f^{\prime}, v^{\prime}\right)$ are connected by an edge if:
(type I) either $v=v^{\prime}=: \bar{v}$ and $f(w)=f^{\prime}(w)$ for every $w \neq \bar{v}$, and $f(\bar{v}) \sim f^{\prime}(\bar{v})$ in G_{2};
(type II) or $f(w)=f^{\prime}(w)$, for every $w \in V_{1}$, and $v \sim v^{\prime}$ in G_{1}.
It follows from the definition that, if G_{1} is a d_{1}-regular graph on n vertices and G_{2} is a d_{2}-regular graph on m vertices, then the graph $G_{1} \backslash G_{2}$ is a $\left(d_{1}+d_{2}\right)$-regular graph on nm^{n} vertices.

It is a classical fact (see, for instance, Woess 2005) that the simple random walk on the graph $G_{1} \backslash G_{2}$ is the so called Lamplighter random walk, according to the following interpretation: suppose that at each vertex of G_{1} (the base graph) there is a lamp, whose
possible states (or colors) are represented by the vertices of G_{2} (the color graph), so that the vertex (f, v) of $\left.G_{1}\right\} G_{2}$ represents the configuration of the $\left|V_{1}\right|$ lamps at each vertex of G_{1} (for each vertex $u \in V_{1}$, the lamp at u is in the state $f(u) \in V_{2}$), together with the position v of a lamplighter walking on the graph G_{1}. At each step, the lamplighter may either go to a neighbor of the current vertex v and leave all lamps unchanged (this situation corresponds to edges of type II in $G_{1}\left\langle G_{2}\right.$), or he may stay at the vertex $v \in G_{1}$, but he changes the state of the lamp which is in v to a neighbor state in G_{2} (this situation corresponds to edges of type I in $G_{1} \backslash G_{2}$). For this reason, the wreath product G_{1} G G_{2} is also called the Lamplighter graph, with base graph G_{1} and color graph G_{2}. See also the article of Donno (2013), where a connection between the Lamplighter random walk and other graph products is described. We also want to mention the article of Scarabotti and Tolli (2008), where the spectral analysis of a different version of the Lamplighter random walk on the complete graph has been developed, by using the representation theory of the wreath product of groups. See also the article of Grigorchuk and Żuk (2001), where the Lamplighter model and the associated Lamplighter group are studied in the setting of automata groups.
Example 2.2. In Figure 1, we have represented the graph $K_{2} \backslash K_{3}$. This is a 3-regular graph on 18 vertices. Observe that it consists of 6 copies of the graph K_{3}. This fact can be interpreted as follows: edges within each copy of K_{3} are edges of type I, whereas edges connecting two distinct copies of K_{3} are of type II.

Figure 1. The wreath product K_{2} \ K_{3}.

It is worth mentioning that the wreath product of graphs represents a graph analogue of the classical wreath product of groups (Meldrum 1995), as it turns out that the wreath product of the Cayley graphs of two finite groups is the Cayley graph of the wreath product of the groups, with a suitable choice of the generating sets. Donno (2015) proved this correspondence in the more general context of generalized wreath products of graphs, inspired by the construction introduced by Bailey et al. (1983) for permutation groups. Also notice that Erschler (2006) presented a different notion of generalized wreath product of graphs.

D'Angeli and Donno (2017) introduced a construction called wreath product of matrices. Let $\mathscr{M}_{m \times n}(\mathbb{C})$ denote the set of matrices with m rows and n columns over \mathbb{C}, and let I_{n} be the identity matrix of size n.

Recall that the Kronecker product of two matrices $A=\left(a_{i j}\right) \in \mathscr{M}_{m \times n}(\mathbb{C})$ and $B=\left(b_{h k}\right) \in$ $\mathscr{M}_{p \times q}(\mathbb{C})$ is the $m p \times n q$ matrix

$$
A \otimes B=\left(\begin{array}{ccc}
a_{11} B & \cdots & a_{1 n} B \\
\vdots & \ddots & \vdots \\
a_{m 1} B & \cdots & a_{m n} B
\end{array}\right)
$$

We denote by $A^{\otimes^{n}}$ the iterated Kronecker product $\underbrace{A \otimes \cdots \otimes A}_{n \text { times }}$, and we put $A^{\otimes^{0}}=1$.
Definition 2.3. (D'Angeli and Donno 2017) Let $A \in \mathscr{M}_{n \times n}(\mathbb{C})$ and $B \in \mathscr{M}_{m \times m}(\mathbb{C})$. For each $i=1, \ldots, n$, let $C_{i}=\left(c_{h k}\right) \in \mathscr{M}_{n \times n}(\mathbb{C})$ be the matrix defined by

$$
c_{h k}= \begin{cases}1 & \text { if } h=k=i \\ 0 & \text { otherwise } .\end{cases}
$$

The wreath product of A and B is the square matrix of size nm^{n} defined as

$$
A \backslash B=I_{m}^{\otimes^{n}} \otimes A+\sum_{i=1}^{n} I_{m}^{\otimes^{i-1}} \otimes B \otimes I_{m}^{\otimes^{n-i}} \otimes C_{i}
$$

D'Angeli and Donno (2017) proved the following theorem, which shows the correspondence between wreath products of matrices and wreath products of graphs.
Theorem 2.4. Let A_{1}^{\prime} be the normalized adjacency matrix of a d_{1}-regular graph $G_{1}=$ $\left(V_{1}, E_{1}\right)$ and let A_{2}^{\prime} be the normalized adjacency matrix of a d_{2}-regular graph $G_{2}=\left(V_{2}, E_{2}\right)$. Then the wreath product $\left(\frac{d_{1}}{d_{1}+d_{2}} A_{1}^{\prime}\right) \cup\left(\frac{d_{2}}{d_{1}+d_{2}} A_{2}^{\prime}\right)$ is the normalized adjacency matrix of the graph wreath product $G_{1} \ell G_{2}$.

Let n be a natural number. From now on, we will denote by K_{n} the complete graph on n vertices, that is, the simple undirected graph on n vertices where every pair of distinct vertices is connected by a unique edge. We will denote by $C P_{2 n}$ the cocktail party graph on $2 n$ vertices, which can be described as follows. Suppose that we have enumerated the vertices as $1,2, \ldots, 2 n$. Then $C P_{2 n}$ is defined as the simple undirected graph on $2 n$ vertices in which the i-th vertex is adjacent to the $(i+j)$-th vertex, for every $j \neq 0, n$, where the sum $i+j$ must be considered modulo $2 n$. In Figure 2, the complete graph K_{6} on 6 vertices and the cocktail party graph $C P_{8}$ on 8 vertices are depicted.

Figure 2. The complete graph K_{6} and the cocktail party graph $C P_{8}$.

To develop our spectral analysis in Section 3, we recall the definition of circulant matrix.
Definition 2.5. A circulant matrix C of size k is a matrix with k rows and k columns, of type

$$
C=\left(\begin{array}{ccccc}
c_{0} & c_{1} & \cdots & \cdots & c_{k-1} \tag{1}\\
c_{k-1} & c_{0} & c_{1} & & \vdots \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
\vdots & & \ddots & \ddots & c_{1} \\
c_{1} & \cdots & \cdots & c_{k-1} & c_{0}
\end{array}\right), \quad \text { with } c_{i} \in \mathbb{C}, i=0, \ldots, k-1 .
$$

The reader can refer to the book of Davis (1994) as an exhaustive monograph on circulant matrices. Let J_{n} denotes the uniform square matrix of size n, whose entries are all equal to 1 . It follows from the above definition that $A\left(K_{n}\right)=J_{n}-I_{n}$ is a circulant matrix of size n with $c_{0}=0$, and $c_{i}=1$ for every $i=1, \ldots, n-1$. Analogously, the matrix $A\left(C P_{2 m}\right)$ is a circulant one of size $2 m$ with $c_{0}=c_{m}=0$, and $c_{i}=1$ otherwise.

3. Spectral analysis of the wreath product $K_{n}\left\langle C P_{2 m}\right.$

From now on, we will focus our attention on the wreath product $K_{n} 2 C P_{2 m}$. It follows from Theorem 2.4 that the adjacency matrix of the graph $K_{n} 2 C P_{2 m}$ is

$$
\begin{equation*}
A\left(K_{n}\right) 乙 A\left(C P_{2 m}\right)=I_{2 m}^{\otimes^{n}} \otimes A\left(K_{n}\right)+\sum_{i=1}^{n} I_{2 m}^{\otimes^{i-1}} \otimes A\left(C P_{2 m}\right) \otimes I_{2 m}^{\otimes^{n-i}} \otimes C_{i}, \tag{2}
\end{equation*}
$$

with C_{i} as in Definition 2.3. Observe also that $K_{n} \prec C P_{2 m}$ is an $(n+2 m-3)$-regular graph on $n(2 m)^{n}$ vertices. Moreover, the graph is connected, since K_{n} and $C P_{2 m}$ are connected.
Example 3.1. In Figure 3, we have represented the graph $K_{2} \swarrow C P_{6}$. This is a 5 -regular graph on 72 vertices. Observe that it consists of 12 copies of the graph $C P_{6}$. This fact can be interpreted as follows: the edges within each copy are edges of type I (the lamplighter does not move, but he changes the color of the lamp at the current position); on the other hand, the unique edge connecting two distinct copies of $C P_{6}$ is an edge of type II (the lamplighter moves to the neighbor state, leaving all lamps unchanged).

Figure 3. The wreath product $K_{2} \swarrow C P_{6}$.

In this section, we will give an explicit description of the spectrum of the graph $K_{n} 2 C P_{2 m}$, namely, the spectrum of its adjacency matrix given by $\left.A\left(K_{n}\right)\right\} A\left(C P_{2 m}\right)$ described in (2). D'Angeli and Donno (2017) have proven the following theorem by using the analysis developed by Tee (2007) for block circulant matrices.

Theorem 3.2. Let A be a square matrix of size n, and let B be a circulant matrix of size m as in (1). Then the spectrum Σ of the matrix A ? B is obtained by taking the union of the partial spectra $\Sigma_{i_{1}, \ldots, i_{n}}$ of the m^{n} matrices of size n given by

$$
\widetilde{M}^{i_{1}, i_{2}, \ldots, i_{n}}=A+\sum_{t=1}^{n} \sum_{i=0}^{m-1} c_{i} \rho^{i i_{t}} C_{t},
$$

where $i_{t} \in\{0,1, \ldots, m-1\}$, for every $t=1, \ldots, n$, and $\rho=\exp \left(\frac{2 \pi i}{m}\right)$.
The last theorem has been used by D'Angeli and Donno (2017) to compute the spectrum of the Lamplighter Random walk on the complete graph, with two colors. Donno (2017) extended this spectral analysis to the case of the graph $K_{n} \imath K_{m}$, and Belardo et al. (2018) performed similar computations for the graph $K_{n} \prec C_{m}$, where C_{m} denotes the cyclic graph on m vertices.

In the present section, Theorem 3.2 together with the fact that the matrix $A\left(C P_{2 m}\right)$ is circulant, will be used in order to determine the spectrum of the adjacency matrix

$$
A\left(K_{n}\right) 孔 A\left(C P_{2 m}\right)=I_{2 m}^{\otimes^{n}} \otimes A\left(K_{n}\right)+\sum_{i=1}^{n} I_{2 m}^{\otimes^{i-1}} \otimes A\left(C P_{2 m}\right) \otimes I_{2 m}^{\otimes^{n-i}} \otimes C_{i} .
$$

In the proof of Theorem 3.3 we will make use of the multinomial theorem, which is recalled below. Let r be a positive integer, and let x_{1}, \ldots, x_{r} be some variables. Let s be a nonnegative integer. Then:

$$
\left(x_{1}+x_{2}+\cdots+x_{r}\right)^{s}=\sum_{k_{1}+\cdots+k_{r}=s}\binom{s}{k_{1}, k_{2}, \ldots, k_{r}} \prod_{t=1}^{r} x_{t}^{k_{t}} .
$$

In particular, the number of terms in the multinomial sum is the number of monomials of degree s in the variables x_{1}, \ldots, x_{r}, which is equal to $\binom{s+r-1}{r-1}$. The multinomial coefficient $\binom{s}{k_{1}, k_{2}, \ldots, k_{r}}=\frac{s!}{k_{1}!k_{2}!\cdots k_{r}!}$ can be interpreted as the number of ways of placing s distinct objects into r distinct boxes, with k_{i} objects in the i-th box, for each $i=1, \ldots, r$.

We obtain the following result.
Theorem 3.3. The spectrum Σ of the graph $K_{n} \backslash C P_{2 m}$ is the union of the $\frac{(n+1)(n+2)}{2}$ partial spectra $\Sigma_{k, h, q}$, where k, h, q are nonnegative integers satisfying the condition $k+h+q=n$, each appearing with multiplicity $\binom{n}{k, h, q} m^{h}(m-1)^{q}$. More precisely, we have:

$$
\begin{equation*}
\Sigma_{k, h, q}=\left\{(2 m-3)^{k-1},(-1)^{h-1},(-3)^{q-1}, \alpha, \beta, \gamma\right\} \tag{3}
\end{equation*}
$$

where α, β, γ are the zeros of the polynomial of degree 3

$$
\begin{align*}
P(\lambda) & =\lambda^{3}+(-h-k-2 m-q+7) \lambda^{2}+(2 h m+2 m q-6 h-4 k-8 m-4 q+15) \lambda \\
& +6 h m+2 m q-9 h-3 k-6 m-3 q+9 . \tag{4}
\end{align*}
$$

Proof. By Theorem 3.2, the spectrum of $K_{n} \backslash C P_{2 m}$ is obtained by taking the union of the partial spectra $\Sigma_{i_{1}, \ldots, i_{n}}$ of the matrices

$$
\widetilde{M}^{i_{1}, i_{2}, \ldots, i_{n}}=A\left(K_{n}\right)+\sum_{t=1}^{n} \sum_{i=0}^{2 m-1} c_{i} \rho^{i i_{t}} C_{t},
$$

where $i_{t} \in\{0,1, \ldots, 2 m-1\}$, for each $t=1, \ldots, n$, and $\rho=\exp \left(\frac{\pi i}{m}\right)$. Notice that the numbers c_{i}, for $i=0, \ldots, 2 m-1$, are the entries of the circulant matrix $A\left(C P_{2 m}\right)$, so that $c_{0}=c_{m}=0$ and $c_{i}=1$ otherwise. Moreover, we have

$$
\sum_{i=0}^{2 m-1} \rho^{i i_{t}}= \begin{cases}2 m & \text { if } i_{t}=0 \\ 0 & \text { if } i_{t} \neq 0\end{cases}
$$

and so

$$
\sum_{i \neq 0, m} \rho^{i i_{t}}= \begin{cases}2 m-2 & \text { if } i_{t}=0 \\ -2 & \text { if } i_{t} \neq 0 \text { is even } \\ 0 & \text { if } i_{t} \text { is odd }\end{cases}
$$

Therefore, the matrix $\widetilde{M}^{i_{1}, i_{2}, \ldots, i_{n}}$ can be rewritten as

$$
\widetilde{M}^{i_{1}, i_{2}, \ldots, i_{n}}=J_{n}-I_{n}+(2 m-2) \cdot \sum_{t: i_{t}=0} C_{t}-2 \cdot \sum_{t: i_{t} \neq 0 \text { even }} C_{t} .
$$

It follows that, up to perform a rearrangement of the rows of $\widetilde{M}^{i_{1}, i_{2}, \ldots, i_{n}}$, the spectrum of the matrix $\widetilde{M}^{i_{1}, i_{2}, \ldots, i_{n}}$ only depends on the number of indices $t \in\{1, \ldots, n\}$ such that the value $i_{t} \in\{0,1, \ldots, 2 m-1\}$ is equal to 0 , or equal to a nonzero even number, or equal to an odd number. Therefore, we can assume:

$$
i_{t}= \begin{cases}0 & \text { for } t=1, \ldots, k \\ \text { even } \neq 0 & \text { for } t=k+1, \ldots, k+q \\ \text { odd } & \text { for } t=k+q+1, \ldots, n\end{cases}
$$

Then we can write $\widetilde{M}^{i_{1}, \ldots, i_{n}}=J_{n}+Q$, with

$$
Q=\left(\begin{array}{cccccccc}
2 m-3 & & & & & & & \\
& \ddots & & & & & & \\
\\
& & 2 m-3 & & & & & \\
\\
& & & -3 & & & & \\
\\
& & & & \ddots & & & \\
\\
& & & & & -3 & & \\
& & & & & & -1 & \\
\\
& & & & & & & \\
& & & & & & \\
& & & & \\
& & & &
\end{array}\right)
$$

where k diagonal entries are equal to $2 m-3$; q diagonal entries are equal to -3 ; and h diagonal entries are equal to -1 , where we put $h=n-(k+q)$.

Now we have:

$$
\begin{align*}
\operatorname{det}\left(\lambda I_{n}-\widetilde{M}^{i_{1}, \ldots, i_{n}}\right) & =\operatorname{det}\left(\lambda I_{n}-J_{n}-Q\right) \\
& =\operatorname{det}\left(\left(\lambda I_{n}-Q\right)\left(I_{n}-\left(\lambda I_{n}-Q\right)^{-1} J_{n}\right)\right) \\
& =\operatorname{det}\left(\lambda I_{n}-Q\right) \cdot \operatorname{det}\left(I_{n}-\left(\lambda I_{n}-Q\right)^{-1} J_{n}\right) . \tag{5}
\end{align*}
$$

It is clear that

$$
\begin{equation*}
\operatorname{det}\left(\lambda I_{n}-Q\right)=(\lambda-2 m+3)^{k}(\lambda+3)^{q}(\lambda+1)^{h} . \tag{6}
\end{equation*}
$$

Now it can be easily checked that the matrix $\left(\lambda I_{n}-Q\right)^{-1} J_{n}$ has $n-1$ eigenvalues equal to 0 , and one eigenvalue equal to

$$
\frac{k}{\lambda-2 m+3}+\frac{q}{\lambda+3}+\frac{h}{\lambda+1} .
$$

This implies that the matrix $I_{n}-\left(\lambda I_{n}-Q\right)^{-1} J_{n}$ has $n-1$ eigenvalues equal to 1 , and one eigenvalue equal to

$$
1-\left(\frac{k}{\lambda-2 m+3}+\frac{q}{\lambda+3}+\frac{h}{\lambda+1}\right)
$$

so that

$$
\begin{equation*}
\operatorname{det}\left(I_{n}-\left(\lambda I_{n}-Q\right)^{-1} J_{n}\right)=1-\left(\frac{k}{\lambda-2 m+3}+\frac{q}{\lambda+3}+\frac{h}{\lambda+1}\right) . \tag{7}
\end{equation*}
$$

By gluing together the contributions (6) and (7), we can rewrite (5) as

$$
\operatorname{det}\left(\lambda I_{n}-\widetilde{M}^{i_{1}, \ldots, i_{n}}\right)=(\lambda-(2 m-3))^{k-1}(\lambda+3)^{q-1}(\lambda+1)^{h-1} P(\lambda)
$$

with $P(\lambda)$ as in (4). In order to complete the proof, for what concerns the multiplicity of the partial spectrum $\Sigma_{k, h, q}$, we can observe that it must be $k+h+q=n$, with $0 \leq k, h, q \leq n$, and that the nonzero even integers in the set $\{0,1, \ldots, 2 m-1\}$ are in number of $m-1$, whereas the odd integers in the set $\{0,1, \ldots, 2 m-1\}$ are in number of m. Then the multinomial theorem, with $r=3$ and $s=n$, implies that there are $\binom{n+3-1}{3-1}=\frac{(n+1)(n+2)}{2}$ distinct partial spectra, and each partial spectrum $\Sigma_{k, h, q}$ appears with multiplicity $\left(\begin{array}{c}n, h, q\end{array}\right) m^{h}(m-1)^{q}$. This completes the proof.

k	h	q	Multiplicity	Partial spectrum
2	0	0	1	3,5
1	1	0	6	$2 \pm \sqrt{5}$
1	0	1	4	$1 \pm \sqrt{10}$
0	2	0	9	± 1
0	1	1	12	$-1 \pm \sqrt{2}$
0	0	2	4	$-3,-1$

Table 1. Spectrum of the graph $K_{2} \prec C P_{6}$.

Remark 3.4. When at least one of the integers k, h, q is equal to 0 , the partial spectra $\Sigma_{k, h, q}$ in (3) reduce to:
$\Sigma_{n, 0,0}=\left\{(2 m-3)^{n-1}, 2 m+n-3\right\}$, with multiplicity 1 ;
$\Sigma_{0, n, 0}=\left\{(-1)^{n-1}, n-1\right\}$, with multiplicity m^{n};
$\Sigma_{0,0, n}=\left\{(-3)^{n-1}, n-3\right\}, \quad$ with multiplicity $(m-1)^{n}$;
$\Sigma_{k, n-k, 0}=\left\{(2 m-3)^{k-1},(-1)^{n-k-1}, \frac{2 m+n-4 \pm \sqrt{(2 m-n)^{2}+8(k m-k-m)+4 n+4}}{2}\right\}$,
with multiplicity $\binom{n}{k} m^{n-k}$;
$\Sigma_{k, 0, n-k}=\left\{(2 m-3)^{k-1},(-3)^{n-k-1}, \frac{2 m+n-6 \pm \sqrt{(2 m-n)^{2}+8 k m}}{2}\right\}$,
with multiplicity $\binom{n}{k}(m-1)^{n-k}$;
$\Sigma_{0, n-q, q}=\left\{(-3)^{q-1},(-1)^{n-q-1}, \frac{n-4 \pm \sqrt{(n+2)^{2}-8 q}}{2}\right\}$,
with multiplicity $\binom{n}{q} m^{n-q}(m-1)^{q}$.
Example 3.5. The spectrum of the graph $K_{2} \backslash C P_{6}$, depicted in Figure 3, is explicitly described in Table 1. In this case we have $n=2, m=3$, so we get 6 distinct partial spectra.

Example 3.6. The spectrum of the graph $K_{3} \backslash C P_{4}$ is depicted in Table 2. In this case we have $n=3, m=2$, so we get 10 distinct partial spectra. Here, the real numbers

$$
\alpha \approx 2,77846 ; \quad \beta \approx-0,28917 \quad \gamma \approx-2,48929
$$

are the zeros of the polynomial $\lambda^{3}-7 \lambda-2$ which is, for instance, the characteristic polynomial of the matrix $\widetilde{M}^{0,1,2}=\left(\begin{array}{ccc}2 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & -2\end{array}\right)$.

k	h	q	Multiplicity	Partial spectrum
3	0	0	1	$1^{2}, 4$
2	1	0	6	$1, \frac{3 \pm \sqrt{17}}{2}$
2	0	1	3	$1, \frac{1 \pm \sqrt{33}}{2}$
1	2	0	12	$-1,0,3$
1	1	1	12	α, β, γ
0	3	0	8	$(-1)^{2}, 2$
0	2	1	12	$-1, \frac{-1 \pm \sqrt{17}}{2}$
0	1	2	6	$-3,-2,1$
1	0	2	3	$-3, \frac{1 \pm \sqrt{17}}{2}$
0	0	3	1	$(-3)^{2}, 0$

TABLE 2. Spectrum of the graph $K_{3} \prec C P_{4}$.

Compared with the spectrum obtained for the same graph in the article of Belardo et al. (2018), where the second factor graph $C P_{4}$ is regarded as a cyclic graph C_{4} on 4 vertices. In that paper, the spectrum of the graph $K_{3} \backslash C_{4}$ turns out to be the union of 20 partial spectra, so that the spectral decomposition obtained in terms of the cocktail party graph seems to be more convenient.

Acknowledgments

The authors thank the referee for his/her useful comments. The research of the first author has been supported by GNSAGA-INDAM (Italy) and the University of Naples "Federico II" project "SGTACSMC".

References

Bailey, R. A., Praeger, C. E., Rowley, C. A., and Speed, T. P. (1983). "Generalized wreath products of permutation groups". Proceedings of the London Mathematical Society. 3rd ser. 47(1), 69-82. DoI: $10.1112 / \mathrm{plms} / \mathrm{s} 3-47.1 .69$.
Belardo, F., Cavaleri, M., and Donno, A. (2018). "Wreath product of a complete graph with a cyclic graph: Topological indices and spectrum". Applied Mathematics and Computation 336, 288-300. DOI: doi.org/10.1016/j.amc.2018.05.015.
Cavaleri, M. and Donno, A. (2018). "Some degree and distance-based invariants of wreath products of graphs". ArXiv e-prints. arXiv: 1805.08989 [math.CO].
Cvetkovic, D., Doob, M., and Sachs, H. (1995). Spectra of Graphs: Theory and Applications, 3rd Revised and Enlarged Edition. Heidelberg: Johann Ambrosius Barth.
Cvetkovic, D., Rowlinson, P., and Simic, S. (2009). An Introduction to the Theory of Graph Spectra. Vol. 75. London Mathematical Society Student Texts. Cambridge: Cambridge University Press. DOI: 10.1017/CBO9780511801518.

D'Angeli, D. and Donno, A. (2017). "Wreath product of matrices". Linear Algebra and its Applications 513, 276-303. DOI: 10.1016/j.laa.2016.10.023.
Davis, P. J. (1994). Circulant matrices. 2nd ed. New York, NY: AMS Chelsea Publishing.
Donno, A. (2013). "Replacement and zig-zag products, Cayley graphs and Lamplighter random walk". International Journal of Group Theory 2(1), 11-35. DOI: 10.22108/ijgt.2013.1932.
Donno, A. (2015). "Generalized wreath products of graphs and groups". Graphs and Combinatorics 31(4), 915-926. DOI: 10.1007/s00373-014-1414-4.
Donno, A. (2017). "Spectrum, distance spectrum, and Wiener index of wreath products of complete graphs". Ars Mathematica Contemporanea 13(1), 207-225. DOI: 10.26493/1855-3974.1117.7ba.
Erschler, A. (2006). "Generalized wreath products". International Mathematics Research Notices 2006. DOI: 10.1155/IMRN/2006/57835.

Grigorchuk, R. I. and Żuk, A. (2001). "The lamplighter group as a group generated by a 2 -state automaton, and its spectrum". Geometriae Dedicata 87(1-3), 209-224. DOI: 10.1023/A:10120618 01279.

Harary, F. (1969). Graph theory. Addison-Wesley Series in Mathematics. Reading, Massachusetts, U.S.A.: Addison-Wesley Publishing Company.

Meldrum, J. D. P. (1995). Wreath products of groups and semigroups. Vol. 74. Pitman Monographs and Surveys in Pure and Applied Mathematics. Harlow, Essex, U.K.: Longman Group Ltd.
Scarabotti, F. and Tolli, F. (2008). "Harmonic analysis of finite lamplighter random walks". Journal of Dynamical and Control Systems 14(2), 251-282. DOI: 10.1007/s10883-008-9038-8.
Tee, G. J. (2007). "Eigenvectors of block circulant and alternating circulant matrices". New Zealand Journal of Mathematics 36, 195-211.
Woess, W. (2005). "A note on the norms of transition operators on lamplighter graphs and groups". International Journal of Algebra and Computation 15(5-6), 1261-1272. DOI: 10.1142/S02181967 05002591.

[^0]Paper contributed to the conference entitled "Hypergraphs, Graphs and Designs - HyGraDe 2017", which was held at San'Alessio Siculo, Messina, Italy (20-24 June 2017) under the patronage of the Accademia Peloritana dei Pericolanti

Manuscript received 23 January 2018; accepted 09 April 2018; published online 20 November 2018

[^0]: a Università di Napoli "Federico II"
 Dipartimento di Matematica e Applicazioni "R. Caccioppoli"
 Via Cintia, I-80126 Napoli, Italy
 b Università degli Studi Niccolò Cusano
 Dipartimento di Ingegneria
 Via Don Carlo Gnocchi 3, I-00166 Roma, Italia

 * To whom correspondence should be addressed | email: alfredo.donno@unicusano.it

