1	Elemental sulfur-based autotrophic denitrification and denitritation:
2	microbially catalyzed sulfur hydrolysis and nitrogen
3	conversions
4	
5	Author names and affiliations: Anastasiia Kostrytsia ^{1*} , Stefano Papirio ² , Luigi Frunzo ³ ,
6	Maria Rosaria Mattei ³ , Estefanía Porca ⁴ , Gavin Collins ⁴ , Piet N. L. Lens ⁵ , Giovanni
7	Esposito ¹
8	¹ Department of Civil and Mechanical Engineering, University of Cassino and Southern
9	Lazio, via Di Biasio 43, 03043 Cassino (FR), Italy
10	² Department of Civil, Architectural and Environmental Engineering, University of Naples
11	Federico II, via Claudio 21, 80125 Naples, Italy
12	³ Department of Mathematics and Applications "Renato Caccioppoli", University of Naples
13	Federico II, via Cintia, Monte S. Angelo, 1-80126 Naples, Italy
14	⁴ Microbial Communities Laboratory, School of Natural Sciences and Ryan Institute,
15	National University of Ireland Galway, University Road, Galway H91 TK33, Ireland
16	⁵ UNESCO-IHE, Institute for Water Education, PO Box 3015, 2601 DA Delft, The
17	Netherlands
18	
19	*Corresponding author: Anastasiia Kostrytsia. E-mail address: <u>kostritsia@gmail.com</u> .

- 20 Present address: Department of Civil and Mechanical Engineering, University of Cassino
- 21 and Southern Lazio, via Gaetano Di Biasio 43, 03043 Cassino (FR), Italy.

22	ABSTRACT: The hydrolysis of elemental sulfur (S ⁰) coupled to S ⁰ -based denitrification and
23	denitritation was investigated in batch bioassays by microbiological and modeling approaches. In the
24	denitrification experiments, the highest obtained NO3-N removal rate was 20.9 mg/l·d. In the
25	experiments with the biomass enriched on NO2 ⁻ , a NO2 ⁻ N removal rate of 10.7 mg/l·d was achieved
26	even at a NO2 ⁻ -N concentration as high as 240 mg/l. The Helicobacteraceae family was only
27	observed in the biofilm attached onto the chemically-synthesized S ⁰ particles with a relative
28	abundance up to 37.1%, suggesting it was the hydrolytic biomass capable of S ⁰ solubilization in the
29	novel surface-based model. S0-driven denitrification was modeled as a two-step process in order to
30	explicitly account for the sequential reduction of NO_3^- to NO_2^- and then to N_2 by denitrifying bacteria.
31	
32	KEYWORDS : Autotrophic denitrification; autotrophic denitritation; elemental sulfur; community

33 structure; surface-based hydrolysis; mathematical modeling.

34 1. INTRODUCTION

The removal of nitrate (NO3⁻) and nitrite (NO2⁻) is one of the main concerns in 35 wastewater treatment plants. High-strength NO3- wastewaters are produced by 36 37 petrochemical, metal finishing, fertilizer and nuclear industries (Li et al., 2016). 38 Contamination by NO3⁻ results in eutrophication and ecological disturbance of ground and surface water bodies (Sun and Nemati, 2012). Compared to NO3⁻, NO2⁻ induces a higher 39 40 toxicity towards aquatic life, including bacteria (Philips et al., 2002). Additionally, elevated 41 NO3⁻ and NO2⁻ concentrations can lead to human health disorders such as infant methemoglobinemia, non-Hodgkin's lymphoma and intestine cancer (Barrett et al., 2013; 42 Liu et al., 2016). 43 The conventional processes aimed at NO3⁻ and NO2⁻ removal are denitrification and 44 denitritation, respectively. Generally, denitrification is performed by heterotrophic bacteria 45 in anoxic environments and in the presence of organic compounds (Papirio et al., 2014; Zou 46 47 et al. 2015). For the treatment of wastewaters poor in organics, autotrophic denitrification 48 with chemically-synthesized S⁰ can be used alternatively. The main advantages of 49 autotrophic denitrification and denitritation are: (1) inorganic compounds are used as electron donors, decreasing the risk associated with residual organics; (2) no external 50 organic carbon is required to maintain the process, reducing the operating costs; (3) a lower 51 cell yield results in less sludge production and, thus, lower sludge treatment costs; and (4) 52 less N₂O is generally produced (Zhang et al., 2015b; Zhou et al., 2015). 53 The limited water solubility of chemically-synthesized S⁰ remains, however, a major 54 obstacle to full-scale autotrophic denitrification applications (Park and Yoo, 2009). S⁰ is 55

56	solely taken up by denitrifying microorganisms after its solubilization and diffusion into the	
57	cells (Moraes and Foresti, 2012). Because of the rather insoluble properties of the S^0	
58	particles, a preliminary hydrolysis to make S ⁰ soluble and bioavailable occurs (Wang et al.,	
59	2016). Some sulfur-oxidizing bacteria are capable of S^0 solubilization to bioavailable	
60	polysulfide (S_n^{2-}) or thiol-bound sulfane sulfur atoms (GSS _n H), which can be further	
61	transported into the periplasm and oxidized to SO4 ²⁻ (Wang et al., 2016). The bacteria from	
62	the genera Thiobacillus, Sulfurimonas and Ignavibacteriales have been found to dominate	
63	the consortia in autotrophic denitrification with S^0 (Zhang et al., 2015a). However, the	
64	bacterial communities involved in the dissolution of S ⁰ as well as S ⁰ -driven autotrophic	
65	denitrification and denitritation need to be further studied.	
66	Most mathematical models simulating chemolithotrophic denitrification with S ⁰ are	
67	single-substrate and one-step denitrification models, which account for direct NO3-	
68	conversion to dinitrogen gas (N_2) linked to S^0 oxidation (Batchelor and Lawrence, 1978;	
69	Qambrani et al., 2015). However, some studies demonstrated that the production of NO_2^{-1}	
70	during the autotrophic denitrification decreases the overall process efficiency (Park and	
71	Yoo, 2009). The feed pH, the source of electron donor, the sulfur to nitrogen (S/N) ratio	
72	and the microbial community structure affect the extent of the NO2 ⁻ accumulation	
73	(Christianson et al., 2015; Du et al., 2016; Guerrero et al., 2016). Besides, also nitrous	
74	oxide (N ₂ O) can be produced (Liu et al., 2016). Recently, an autotrophic denitrification	
75	kinetic model with S^0 as electron donor has been developed (Liu et al., 2016). Nonetheless,	
76	none of these studies explicitly modeled the likely rate limiting step, i.e. the solubilization	
77	of S ⁰ (Sierra-Alvarez et al., 2007).	

78	The main objective of this research was to investigate the solubilization of	
79	chemically-synthesized S ⁰ and the subsequent S ⁰ -driven autotrophic denitrification and	
80	denitritation in batch bioassays. The composition and performance of the microbial	
81	community of both suspended biomass and the biofilm onto the S^0 lentils involved in the S^0	
82	solubilization during denitrification and denitritation were investigated. Based on the	
83	experimental evidence, a model accounting for the microbially catalyzed surface-based S ⁰	
84	solubilization and two-step denitrification is proposed.	
85		
86	2. MATERIALS AND METHODS	
87	2.1 Enrichment of Biomass	
88	The autotrophic denitrifying biomass used in this study was enriched for 3 months	
89	in serum bottles using activated sludge collected from the denitrification basin of the	
90	municipal wastewater treatment plant (WWTP) of Cassino (Italy) as inoculum. The	
91	concentration of suspended volatile solids (VS) of the activated sludge was 4.2 g/l. The tap	
92	water basal medium contained the following components (per l): 0.4 g NH ₄ Cl, 0.3 g	
93	KH ₂ PO ₄ , 0.8 g K ₂ HPO ₄ , 0.021 g MgCl ₂ ·6H ₂ O. Trace elements were supplied from a stock	
94	solution (10 ml/l). The trace element solution was prepared by dissolving the following	
95	compounds in a solution (per l): 1.5 g nitrilotriacetic acid disodium salt (C ₆ H ₇ NNa ₂ O ₆), 3.0	
96	g MgSO4·7H2O, 0.5 g MnSO4, 1.0 g NaCl, 0.1 g FeSO4·7H2O, 0.1 g CaCl2·2H2O, 0.1 g	
97	CoCl ₂ ·6H ₂ O, 0.13 g ZnCl, 0.01 g CuSO ₄ ·5H ₂ O, 0.01 g AlK(SO ₄) ₂ ·12H ₂ O, 0.01 g H3BO ₃ ,	
98	0.025 g Na ₂ MoO4·2H ₂ O.	

99	The activated sludge was maintained in suspension and added to each bottle with a
100	10% (v/v) amount. NO_3^- and NO_2^- were used separately as electron acceptors at a
101	concentration of approximately 225 mg/l as NO ₃ N and NO ₂ N in each bottle. S ^{0} lentils
102	(particles with an average size between 2 and 4 mm and a S^0 content of approximately 99%,
103	purchased from a local agricultural supply store) were used as both electron donor and
104	carrier for the growth of the denitrifying biomass. 2.1 g of S^0 (corresponding to 54 ± 8
105	sulfur lentils) was added to each bottle. pH was adjusted to 7.5 by using 1 M NaOH. CaCO $_3$
106	was added as buffer and carbon source with a S^0 :CaCO ₃ (g/g) ratio of 1.5.
107	Each bottle was purged with helium gas for 3 min to exclude free oxygen and
108	background nitrogen, and then sealed with a rubber stopper and an aluminum crimp.
109	Finally, all the bottles were placed in a water bath at 30 (\pm 2)°C and on a gyratory shaker at
110	300 rpm. The enrichment was subcultured every three weeks or as soon as NO_3 -N or NO_2 -
111	N degradation stopped. An enrichment was considered stable when the obtained
112	denitrification or denitritation rates of the subcultures varied by less than 5%.
113	
114	2.2 Kinetic Experiments
115	Three batch experiments were carried out to study the kinetics of S ⁰ -driven
116	autotrophic denitrification (NO ₃ ⁻ and S ⁰), denitritation (NO ₂ ⁻ and S ⁰) and simultaneous
117	denitrification-denitritation (NO $_2$ ⁻ , NO $_3$ ⁻ and S ⁰) coupled to S ⁰ solubilization in 125 ml glass
118	serum bottles with a working volume of 100 ml. Table 1 reports the operating conditions.
119	The basal medium and trace elements were added to each bottle at the same concentrations
120	as in the enrichment phase. An initial suspended VS concentration of 1.0 g/l was used. S 0
121	lentils were supplied in a concentration of 21 g/l. 14 g/l of CaCO3 was provided according

122	to the S ⁰ :CaCO ₃ (g/g) ratio of 1.5. Controls without biomass were performed to evaluate
123	possible abiotic reactions between S^0 and NO_3^- or $\mathrm{NO}_2^$ Additionally, controls without
124	electron donor (S ⁰) or electron acceptor (NO ₃ ⁻ or NO ₂ ⁻) were carried out to estimate NO ₃ ⁻
125	and NO ₂ ⁻ degradation or S ^{0} oxidation, respectively, not associated with autotrophic
126	denitrification or denitritation. The purging and sealing of the bottles were performed as
127	during the enrichment phase. All the bioassays were performed in triplicate. The serum
128	bottles were placed on a gyratory shaker (300 rpm) at a controlled temperature of 30 (\pm
129	2)°C.
130	

131 Table 1. Experimental conditions used in the batch experiments investigating S^0 -driven denitrification

132 $(NO_3^-N \text{ and } S^0)$, denitritation $(NO_2^-N \text{ and } S^0)$ and simultaneous denitrification-denitritation (NO_2^-N, M)

133 NO3⁻N and S⁰) at 30 (\pm 2)°C and 300 rpm.

Experiment	NO2 ⁻ -N	NO3 ⁻ -N	Total N	Suspended VS	рН
Denitrification (NO3-and S ⁰)	30	210	240	1000ª	7.4±0.1
Denitritation (NO ₂ ⁻ and S ⁰)	240	-	240	1000 ^b	7.4±0.1
Denitritation and denitrification $(NO_2^{-}, NO_3^{-} \text{ and } S^0)$	110	60	170	1000ª	7.3±0.1
NO3 ⁻ - and NO2 ⁻ -free control	-	-	-	1000°	7.5±0.1
S ⁰ -free controls	-	210	210	1000ª	7.5±0.1
5 -nee controis	240	-	240	1000 ^b	7.5±0.1

	Abiatia controla	-	210	210	-	7.5±0.1
	Ablotic controls	240	-	240	-	7.5±0.1
134	^a Microbial source: biomass enriched	on NO3 ⁻ -N a	and S ⁰ , see Se	ection 2.1		_
135	^b Microbial source: biomass enriched	on NO2 ⁻ -N a	and S ⁰ , see Se	ection 2.1		
136	° Microbial source: raw activated slud	ge (non-enr	iched)			
137						
138	2.3 Microbial Community Analysis					
139	The total bacterial DNA was ex	stracted in	triplicate f	from both the	e suspende	d biomass
140	and biofilm attached onto the S ⁰ partic	les (S ⁰ len	tils) of eac	h batch bioa	ssay at the	
141	beginning and the end of the experime	nts accord	ling to the p	protocol by (Griffiths et	al.
142	(2000). The extracted DNA was quanti	ified by a	UV-Vis sp	ectrophotom	eter (Nano	Drop
143	Technologies, Wilmington, USA) prio	r to being	stored at -2	20°C for sub	sequent mo	olecular
144	analysis. Samples of DNA were sent to	o FISABIO	O (Valencia	a, Spain) for	high-throu	ghput
145	sequencing of the 16S rRNA gene on a	ın Illumin	a MiSeq pl	atform. Forv	ward and re	everse
146	primers for PCR were 515f and 806r, r	respectivel	y (Caporas	so et al., 201	0). A total	of
147	492111 raw sequences were obtained f	from the s	amples. Se	quence scree	ening, align	ment to
148	Silva (v.123) database, clustering, chin	neras rem	oval and ta	xonomic cla	ssification	were
149	performed using Mothur v1.39.3 (Schl	oss et al.,	2009). Eac	h dataset wa	is subsamp	led to the
150	lowest read count ($n = 31192$) and all a	analyses w	vere based	on the final s	subsampled	l data
151	sets. A threshold of 1% was employed	to define	rare or abu	ndant taxa. l	Raw seque	nce data
152	were deposited as FASTQ files in the l	National C	Center for E	Biotechnolog	y Informat	ion
153	(NCBI) with the accession number SR	P126842.				
154						

155 2.4 Sampling and Analytical Methods

156	Samples of the liquid phase were taken with 5-ml disposable syringes and needles to
157	avoid oxygen transfer into the bottles. Sampling was performed once per week during the
158	enrichment phase and twice a day in the batch kinetic experiments. Prior to and at the end
159	of the batch kinetic experiments, 10 ml of the liquid phase was taken for VS determination.
160	Simultaneously, 2 g of mixed solid (S ⁰ lentils and CaCO ₃ particles) was removed for
161	visualization of biofilm formation on its surface as well as VS analysis. All the liquid
162	samples were filtered with 0.2 μm cellulose membranes (Merck Millipore, USA) and stored
163	at -20°C prior to analysis. NO ₃ ⁻ , NO ₂ ⁻ , $S_2O_3^{2-}$ and SO ₄ ²⁻ concentrations were analyzed by
164	ion chromatography (IC) using a 883 Basic IC Plus (Metrohm, Switzerland) equipped with
165	a 4-mm Metrosep A Supp 5-150 column, a Metrosep A Supp 4/5 guard column and a 863
166	Compact autosampler. Dissolved oxygen (DO) was measured with a Multi 3410 DO-meter
167	(WTW GmbH, Germany), equipped with a FDO-925 DO sensor. pH and temperature were
168	measured using a Sentix 940-3 probe. VS were measured according to the Standard
169	Methods (APHA, 2011).
170	Adhering cells on the surface of the mixed solids were visualized by means of
171	scanning electron microscopy (SEM). The fixation of the mixed solids was carried out in
172	2.5% glutaraldehyde with 0.2 M sodium cacodylate buffer (Sigma-Aldrich, Germany) at
173	4°C for 16 h. Subsequently, the fixed particles were dehydrated through a graded series of
174	50-100% ethanol. Finally, the samples were gold-sputter coated and mounted onto stubs
175	and viewed in a S2600N variable pressure scanning electron microscope (Hitachi, Japan).
176	

177 2.5 Model Development and Numerical Approach

Figure 1. Schematic representation of the proposed model for S⁰ solubilization and two-step
denitrification. S⁰: elemental sulfur, S_b: bioavailable sulfur, NO₃⁻: nitrate, NO₂⁻: nitrite, N₂: dinitrogen
gas, SO₄²⁻: sulfate, X₁: hydrolytic biomass and X₂: denitrifying biomass.

192

188

The dissolution of chemically produced S⁰ is known to be the rate-limiting step for
autotrophic denitrification (Liu et al., 2016; Sierra-Alvarez et al., 2007). The specific
surface area is the key parameter for the microbial hydrolysis of insoluble compounds

196	insofar it is related to the number of bacteria attached onto their surface (Esposito et al.,
197	2011a; Vavilin et al., 2008). Therefore, the biological surface-based solubilization of S^0
198	was explicitly modeled prior to its oxidation to SO_4^{2-} . S^0 uptake was modeled by
199	introducing a new state variable, the bioavailable sulfur (S_b) , which represents the soluble
200	compound produced by the hydrolytic biomass and eventually taken up by denitrifying
201	bacteria for further oxidation to SO4 ²⁻ . The model did not account for potential redox
202	processes involved in the S ⁰ solubilization, as the hydrolytic biomass was not considered to
203	remove NO ₃ ⁻ or NO ₂ ⁻ .
204	The model equations were derived from mass conservation principles and
205	formulated in terms of two microbial components, namely the hydrolytic X_l and
206	denitrifying X ₂ biomasses, and six reacting components considered simultaneously:
207	elemental sulfur S_1 , bioavailable sulfur S_2 , nitrate S_3 , nitrite S_4 , nitrogen gas S_5 and sulfate
208	S ₆ . The equations were expressed as follows (or as matrix in Table S1 in Supplementary
209	Material):

211
$$\frac{dS_1}{dt} = -k_1 \frac{S_1}{\frac{K_1}{a^*} + S_1} X_1,$$
 (3.1)

212
$$\frac{dS_2}{dt} = k_1 \frac{S_1}{\frac{K_1}{a^*} + S_1} X_1 - \frac{r_1}{Y_{2,3}} \mu_{2,3}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_3 - S_3^*)}{K_{2,3} + (S_3 - S_3^*)} \frac{S_3}{S_3 + S_4} X_2 - \frac{S_3}{2} \frac{S_3}{S_3 + S_4} X_2 - \frac{S_3}{2} \frac{S_3}{S_3 + S_4} X_3 - \frac{S_3}{2} \frac{S_3}{S_3 + S_4} \frac{S_3}{S_3 + S_4} X_3 - \frac{S_3}{2} \frac{S_3}{S_3 + S_4} \frac{S_3}{S_3 + S_4} X_3 - \frac{S_3}{2} \frac{S_3}{S_3 + S_4} \frac{S_3}{S_4 + S_4} \frac{S_4}{S_4 + S_4} \frac{S_4}{S_4} \frac{S_4}{S_4}$$

213
$$\frac{r_2}{Y_{2,4}}\mu_{2,4}^{max}\frac{S_2}{K_{2,2}+S_2}\frac{(S_4-S_4^*)}{K_{2,4}+(S_4-S_4^*)}\frac{S_4}{S_3+S_4}X_2,$$
(3.2)

214
$$\frac{dS_3}{dt} = -\frac{1}{Y_{2,3}} \mu_{2,3}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_3 - S_3^*)}{K_{3,3} + S_4} \frac{S_3}{S_3 + S_4} X_2,$$
(3.3)

215
$$\frac{dS_4}{dt} = \frac{1}{Y_{2,3}} \mu_{2,3}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_3 - S_3^*)}{K_{2,3} + (S_3 - S_3^*)} \frac{S_3}{S_3 + S_4} X_2 - \frac{1}{Y_{2,4}} \mu_{2,4}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_4 - S_4^*)}{K_{2,4} + (S_4 - S_4^*)} \frac{S_4}{S_3 + S_4} X_2, \quad (3.4)$$

216
$$\frac{dS_5}{dt} = \frac{1}{Y_{2,4}} \mu_{2,4}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_4 - S_4^*)}{K_{2,4} + (S_4 - S_4^*)} \frac{S_4}{S_3 + S_4} X_2,$$
(3.5)

217
$$\frac{dS_6}{dt} = \frac{r_1}{Y_{2,3}} \mu_{2,3}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_3 - S_3^*)}{K_{2,3} + (S_3 - S_3^*)} \frac{S_3}{S_3 + S_4} X_2 + \frac{r_2}{Y_{2,4}} \mu_{2,4}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_4 - S_4^*)}{K_{2,4} + (S_4 - S_4^*)} \frac{S_4}{S_3 + S_4} X_2, \quad (3.6)$$

218
$$\frac{dX_1}{dt} = K_0 k_1 \frac{S_1}{\frac{K_1}{a^*} + S_1} X_1 - k_{d,1} X_1,$$
(3.7)

219
$$\frac{dX_2}{dt} = \mu_{2,3}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_3 - S_3^*)}{K_{2,3} + (S_3 - S_3^*)} \frac{S_3}{S_3 + S_4} X_2 + \mu_{2,4}^{max} \frac{S_2}{K_{2,2} + S_2} \frac{(S_4 - S_4^*)}{K_{2,4} + (S_4 - S_4^*)} \frac{S_4}{S_3 + S_4} X_2 - k_{d,2} \cdot X_2(3.8)$$

where k_1 denotes the hydrolysis kinetic constant for S_1 ; a^* represents the mass specific area; 221 K_l the volume specific half-saturation constant for S_l ; $k_{d,i}$ the decay constant of species i; 222 $Y_{i,j}$, $K_{i,j}$ and $\mu_{i,j}$ ^{max} denote the yield, the half-saturation constant and the maximum growth 223 rate of species i on substrate j, respectively; K_0 represents the efficiency growth coefficient 224 225 for X_1 ; r_1 and r_2 are the stoichiometric S_2 to S_3 and S_2 to S_4 ratios, respectively. The values of Y_{2,3}, Y_{2,4}, K_{2,2}, K_{2,4}, r₁, r₂, k_{d,1} and k_{d,2} were adopted from previous studies (Liu et al., 226 2016; Sierra-Alvarez et al., 2007; Sin et al., 2008; Xu et al., 2016). The optimal values of 227 $\mu_{2,3}^{max}$ and $\mu_{2,4}^{max}$ were deducted from both the denitrification and denitritation experiments 228 229 (Table 2). 230 Table 2. Stoichiometric and kinetic parameters of the developed model for two-step autotrophic 231

232 denitrification with S^0 .

Parameter		Value	Unit	Source	
	Stoichion	netric param	eters		
Y _{2,3}	Yield coefficient for X_2 on S_3	0.25	mg VS/mg N	Xu et al., 2016	

<i>Y</i> _{2,4}	Yield coefficient for X_2 on S_4	0.28	mg VS/mg N	Xu et al., 2016	
r_1	S_2 to S_3 stochiometric ratio	1.2	mg S/mg N	Sierra-Alvarez et al., 2007	Commentato [SP1]: stoichiometric
r_2	S_2 to S_4 stochiometric ratio	0.55	mg S/mg N	Sierra-Alvarez et al., 2007	Commentato [SP2]: stoichiometric
	Kinet	ic parameters			
K_0	Efficiency growth coefficient for X_l	0.1	mg VS/mg S	This study	
$\mu_{2,3}^{max}$	Maximum growth rate for X_2 on S_3	0.0067	1/d	This study ^d	
$\mu_{2,4}^{max}$	Maximum growth rate for X_2 on S_4	0.0058	1/d	This study ^d	
<i>K</i> _{2,2}	Half-saturation constant for S_2	0.215	mg S/l	Liu et al., 2016	
K _{2,3}	Half-saturation constant for S_3	36	mg N/l	This study ^e	
S_3^*	The threshold value for S_3	35	mg N/l	This study ^d	
$K_{2,4}$	Half-saturation constant for S_4	40	mg N/l	Xu et al., 2016	
S_4^*	The threshold value for S_4	37	mg N/l	This study ^e	
<i>K</i> ₁	Volume specific half-saturation constant for S_I	5.1	1/dm	This study	
k_1	Hydrolysis kinetic constant	0.12	mg S/mg VS·d	This study	
<i>a</i> *	Mass specific area	0.0008164	dm²/mg	Calculated	
$k_{d,1}$	Decay rate coefficient for X_I	0.0006	1/d	Sin et al., 2008	
$k_{d,2}$	Decay rate coefficient for X_2	0.0006	1/d	Sin et al., 2008	

234 ^eDenitritation experiments

235

Eq. (3.1) governs the dynamics of S_I solubilization and is newly formulated as a modified surface-based kinetic equation to account for the hydrolysis of S_I by X_I (Esposito et al., 2011b; Hills and Nakano, 1984). The concentration and specific surface area of the

239	substrate to be hydrolyzed (S_l) as well as the concentration of the hydrolytic biomass (X_l)
240	are identified as key parameters affecting the hydrolysis rate.
241	In Eq. (3.2), the first term describes the formation of S_2 as a result of S_1 hydrolysis
242	and the last two terms are expressed as double-Monod kinetics to represent the
243	consumption of S_2 by X_2 . Eq. (3.3) reproduces S_3 reduction to S_4 , Eq. (3.4) describes the
244	formation of S_4 , which is further converted to S_5 according to Eq. (3.5). The two terms in
245	Eq. (3.6) account for S_6 production via S_3 and S_4 . Eqs. (3.7) and (3.8) describe the synthesis
246	of new biomass as a result of substrate consumption and the decay of bacterial cells. Eq.
247	(3.7) couples hydrolysis to the growth of X_I . Note that the Monod-type kinetics describing
248	the bioconversion rates of X_2 in Eq. (3.8) include nitrite S_3^* and nitrate S_4^* threshold
249	concentrations, which account for the inability of X_2 to grow below these values (Mattei et
250	al., 2015b). The optimal values of S_3^* and S_4^* were estimated from the denitrification and
251	denitritation experiments and were equal to 35 and 37 mg N/l, respectively. The ordinary
252	differential equations (3.1) - (3.8) constituting the model were integrated by using an
253	original code developed on the MATLAB platform based on the Runge-Kutta method. The
254	comparison between the simulated results with the measured data was performed by
255	evaluating the index of agreement (IoA) according to Esposito et al. (2011b).
256	
257	2 DESULTS AND DISCUSSION

3. RESULTS AND DISCUSSION

3.1 Kinetics of S⁰-Based Denitrification and Denitritation

The evolution of the NO₃⁻-N, NO₂⁻-N and SO₄²⁻-S concentration during the 3-week
batch experiments is shown in Figure 2. Standard deviation values were below 5%. During

261	the S ⁰ -driven autotrophic denitrification (Figure 2A), NO ₃ ⁻ -N was first reduced to NO ₂ ⁻ -N,
262	which was consequently converted into N2. 62% of NO3 ⁻ -N was transformed into NO2 ⁻ -N.
263	The highest obtained removal rate for NO2 ⁻ -N (ν_{NO2-N}), which amounted to 8.0 mg NO2 ⁻ -
264	N/l·d, was 2.6 times lower than that of NO3 ⁻ -N (ν_{NO3-N}) (Table 3). Nitrite accumulation
265	was most likely attributed to a higher activity of the NO3 ⁻ -N reduction enzyme compared to
266	the NO2 ⁻ -N reduction enzyme, as also reported elsewhere (Du et al., 2016; Sun and Nemati,
267	2012). The highest obtained NO ₃ ⁻ -N removal rate of 20.9 mg NO ₃ ⁻ -N/l \cdot d was about 5 times
268	higher than that of a Thiobacillus denitrificans culture enriched on $S_2O_3^{2-}$ by Di Capua et al.
269	(2016).

Table 3. The highest NO_3 ⁻-N and NO_2 ⁻-N removal rates in S⁰-driven autotrophic denitrification and

272 denitritation obtained using S^0 and biomass enriched on NO_3 -N and NO_2 -N.

Experiment	V NO3- N ^h	VNO2- N, ACCU ⁱ	V NO2- N ^j	v' NO2- N ^k
Denitrification (NO3 ⁻ and S ⁰) ^f	20.9	13.0	8.0	-
Denitritation (NO ₂ ⁻ and S ⁰) g	-	-	-	10.7
Denitritation and denitrification	4.5		2 8	11.6
(NO ₂ ⁻ , NO ₃ ⁻ and S ⁰) $^{\rm f}$	4.5	-	2.8	11.0

273 fMicrobial source: biomass enriched for 3 months on NO_3 -N and S^0

274 $\,$ $\,^{g}$ Microbial source: biomass enriched for 3 months on NO2-N and S^0 $\,$

275 ^hNO₃⁻-N reduction rate (mg NO₃⁻-N/l·d)

 $\label{eq:solution} 276 \qquad ^{i} NO_{2} \mbox{--} N \mbox{ accumulation rate (mg NO_{2} \mbox{--} N/l \mbox{-} d)}$

277 ^j NO₂⁻-N reduction rate in the presence of NO₃⁻-N reduction (mg NO₂⁻-N/l·d)

 $\label{eq:second} 278 \qquad ^k NO_2\mbox{--}N \mbox{ reduction rate in the absence of } NO_3\mbox{--}N \mbox{ reduction (mg NO_2\mbox{--}N/l \mbox{-}d)}$

281 denitritation and denitrification coupled to S⁰ oxidation in batch experiments using NO₃⁻-N,

282 NO_2 -N and NO_3 -N with NO_2 -N, respectively, as electron acceptors and S⁰ as electron

donor and biomass carrier at 30 (\pm 2)°C and pH of 7.4 (\pm 0.2). NO₃⁻-N (- \pm -), NO₂⁻-N (

284 --- \odot ---) and SO₄²-S (- \blacksquare -) concentrations profiles.

285	After 6 d of incubation in the kinetic tests, NO2N accumulated up to 85 mg/l and
286	resulted in a drop of the NO_3 -N removal rate to 7.0 mg/l·d. This might be attributed to the
287	inhibition effect of NO2N on the activity of the denitrifying biomass. In other studies, the
288	inhibition of denitrification has been observed at NO2 ⁻ -N concentrations above 30 mg/l
289	(Guerrero et al., 2016). The higher NO_2 -N tolerance of the microbial consortia obtained in
290	this study was likely due to an acclimation of 90 d, i.e. longer than the 60 d used by Di
291	Capua et al. (2016).
292	After the first 2 weeks of experimentation, the NO3 ⁻ -N removal efficiency reached
293	up to 75%, resulting in a NO_2 ⁻ -N accumulation up to 100 mg/l. A higher NO_2 ⁻ -N
294	accumulation is generally achieved when using S ⁰ as electron donor for autotrophic
295	denitrification due to the low solubility of the S ⁰ -based substrate (Campos et al., 2008;
296	Sahinkaya et al., 2015; Simard et al., 2015; Soares, 2002). To increase the S ⁰ solubilization
297	rate, S ⁰ particles with a higher specific surface area should be used, such as chemically
298	synthesized S ⁰ powder (Di Capua et al., 2016). This both guarantees a better contact
299	between the S ⁰ particles and the microorganisms and improves the S ⁰ dissolution kinetics
300	(Sierra-Alvarez et al., 2007).
301	The denitritation kinetics were further studied in the presence of NO2 ⁻ -N as the sole
302	electron acceptor in order to investigate the potential of the biomass enriched on NO_2^- to
303	reduce high NO ₂ ⁻ concentrations (Figure 2B). The NO ₂ ⁻ -N removal rate was 10.7 mg/l·d
304	(Figure 2B), i.e. 1.3 times higher than that observed when NO_3 ⁻ -N and NO_2 ⁻ -N were
305	concomitantly present, likely due to a longer acclimation of the biomass to NO2 ⁻ (Figure
306	2B). The denitrifying bacteria were capable of removing up to 81% of NO ₂ ⁻ -N, similarly as

- 307 observed by Sun and Nemati (2012). A NO_2 -N concentration as high as 240 mg/l did not
 - 17

308	have detrimental effects on denitritation. Therefore, the biomass enriched on NO_2^- could be	
309	used to remove high NO_2^- concentrations. For instance, the use of such acclimated biomass	
310	is recommended when NO_2 - considerably accumulates during S ⁰ -driven autotrophic	
311	denitrification treating high-strength NO3 ⁻ wastewaters.	
312	In order to study the effect of high NO2 ⁻ -N concentrations on denitrification, NO2 ⁻ -N	
313	and NO3N were simultaneously fed in concentrations of 110 and 60 mg/l, respectively	
314	(Figure 2C). During the first 10 d, the NO_3 -N removal efficiency was 67%.	
315	Simultaneously, NO ₂ ⁻ -N removal occurred at a rate of 2.8 mg/l·d (Table 3). After 10 d, the	
316	NO_2 -N removal rate increased up to 11.6 mg/l·d, demonstrating that the denitrifying	
317	bacteria initially preferred to use NO3 ⁻ -N as electron acceptor compared to NO2 ⁻ -N.	
318	Additionally, the presence of NO_3 ⁻ -N could inhibit the synthesis and activity of NO_2 ⁻ -N	
319	reductase (Philips et al., 2002). When NO3N removal stopped, denitrifying bacteria were	
320	still capable of removing NO2 ⁻ -N (Figure 2C), as also reported elsewhere (Kilic et al.,	
321	2014; Sierra-Alvarez et al., 2007).	
322	The maximum NO ₃ ⁻ -N (20.9 mg/l·d) and NO ₂ ⁻ -N (11.6 mg/l·d) removal rates	
323	coupled to S^0 oxidation were in the same order of magnitude of those obtained in other	
324	studies (Kilic et al., 2014; Sierra-Alvarez et al., 2007; Wang et al., 2016; Zhou et al., 2015).	
325	Because of the low S^0 water solubility and its bioavailability for microorganisms, the	
326	autotrophic denitrification and denitritation rates were lower compared to those obtained	
327	with other reduced soluble sulfur compounds such as $S_2O_3^{2-}$ (Mora et al., 2014; Zou et al.,	
328	2016). Therefore, the study of different sulfur sources with a higher bioavailability and a	
329	lower cost than chemically-synthesized S ⁰ lentils, such as biogenic S ⁰ , might be of great	
330	interest for S ⁰ -driven denitrification and denitritation applications.	

331	The SO_4^2 -S concentration was in good agreement with the theoretical SO_4^2 -S					
332	production according to the stoichiometry (Sun and Nemati, 2012), except at the end of the					
333	denitrification experiment (Figure 2). In the abiotic and electron donor-free controls,					
334	denitrification and denitritation were not observed (data not shown).					
335						
336	3.2 Microbial Community Performing the S ⁰ -Based Denitrification and Denitritation:					
337	Suspended Biomass versus Biofilm Attached onto the S ⁰ Lentils					
338	SEM analysis showed a strong biomass colonization on the S ⁰ particles during both					
339	autotrophic denitrification and denitritation, demonstrating the potential of the S ⁰ particles					
340	as a biomass carrier (Figure 3). The bacteria colonized the crevices of the S ⁰ particles					
341	likely providing a protection from shear stress (Figure 3B). The close contact between the					
342	surface of the S^0 particles and the bacteria in the form of biofilm (Figure 3C) likely					
343	provided favorable conditions for the solubilization of S^0 to the intermediate soluble sulfur					
344	compounds, which were further oxidized to SO_4^{2-} . No biofilm formation was observed onto					
345	the CaCO ₃ particles (Figure 3A).					

- 347
- **Figure 3**. SEM image of (A) S⁰ lentils (top right) and CaCO₃ particles (top left and bottom
- left) with a 25 times magnification; (B) the center of S^0 lentils with a $1.2 \cdot 10^3$ times
- 350 magnification; (C) a $15 \cdot 10^3$ times magnification of the biofilm formed on the surface of S^0
- 351 lentils during the autotrophic denitrification and denitritation experiments.

352	Figure 4 shows the bacterial diversity of the suspended biomass and biofilm
353	attached onto the S ⁰ lentils at the family level analyzed by the MiSeq. The raw activated
354	sludge collected from the municipal WWTP (Cassino, Italy) and used as inoculum
355	contained a microbial community with 4.2, 4.0, 3.6, 3.2 and 2.9% of Comamonadaceae,
356	Saprospiraceae, Chitinophagaceae, Propionibacteriaceae and rare families, respectively,
357	in addition to 58.2% of unclassified families. Other families were present at a relative
358	abundance below 2%. Despite the use of different electron acceptors, a similar community
359	structure was observed in the experiments performed with NO3 ⁻ and NO2 ⁻ . This was also
360	observed by Zhou et al. (2011), who operated anaerobic up-flow biofilters with digested
361	sludge from a municipal WWTP as inoculum.
362	Hydrogenophilaceae, with a relative abundance below 0.1% in the inoculum, was
363	by far the largest family present in the kinetic experiments, both as suspended biomass and
364	biofilm attached onto the S ⁰ lentils with a relative abundance ranging between 36.7 and
365	59.9%. Most members of the Hydrogenophilaceae family are chemolithotrophic using
366	various inorganic electron donors such as reduced sulfur compounds (Rosenberg et al.,
367	2013). Previous research also demonstrated the predominance of Hydrogenophilaceae in
368	the community structure during S ⁰ -oxidizing autotrophic denitrification (Zhang et al.,
369	2015a; Zhou et al., 2015) with T. denitrificans being the main species (Di Capua et al.,
370	2016; Kilic et al., 2014).

372 Figure 4. Relative abundance of bacterial families present in the raw activated sludge used

373 as biomass source as well as microbial communities dominant in suspension and in the

374 biofilm attached onto the S⁰ lentils at the beginning (initial) and the end (final) of the

autotrophic denitrification (A), autotrophic denitritation (B) and simultaneous autotrophic

376 denitrification-denitritation (C) experiments.

- 377 In the suspended biomass, *Xanthomonadaceae*, *Comamonadaceae and*
- 378 Ignavibacteriaceae were present with a relative abundance of 6.3-19.9%, 3.2-18.7% and
- 379 1.3-16.6%, respectively. Additionally, the families of *Xanthomonadaceae*,
- 380 Comamonadaceae and Ignavibacteriaceae were also abundant in the biofilm attached onto
- the S⁰ particles with a relative abundance of 1.1-7.6%, 3.5-10.1% and 1.5-18.2%,
- 382 respectively. Microorganisms belonging to the Xanthomonadaceae family are capable of
- NO_3^- and NO_2^- respiration using organic products from cell lysis as electron donors (Xu et
- al., 2015), which would justify their presence in the denitrifying bioassays (Figure 4).
- 385 Comamonadaceae is a large and diverse bacterial family that includes anaerobic
- denitrifiers and has been reported in previous S^0 -based denitrification studies (Gao et al.,
- 387 2017; Hao et al., 2017). Ignavibacteriaceae was recently identified as being associated with
- 388 S⁰-based autotrophic denitrifying processes (Zhang et al., 2015a, 2015b).

389 In this study, the dominating microbial community structure including the

- 390 Hydrogenophilaceae, Xanthomonadaceae, Comamonadaceae and Ignavibacteriaceae
- 391 families was similar for denitrification and denitritation experiments. Hence, the same
- 392 bacterial families were likely capable to tolerate NO₃⁻N and NO₂⁻N concentrations up to
- 393 210 and 240 mg/l, respectively.

394 In the biofilm attached onto the S^0 particles, the distinct family of

- 395 *Helicobacteraceae* was present with a relative abundance up to 37.1%. The high abundance
- 396 of the bacteria belonging to this family in the biofilm (Figures 4A and 4B) was most likely
- 397 associated with the S⁰ hydrolysis (Boyd and Druschel, 2013), which is the necessary step
- 398 prior to S⁰-driven autotrophic denitrification or denitritation (Moraes and Foresti, 2012;
- 399 Wang et al., 2016). Additionally, the presence of *Helicobacteraceae* was confirmed in the
 - 23

400	simultaneous autotrophic denitrification-denitritation experiment (Figure 4C). Bacteria
401	within the Helicobacteraceae family are known for their sulfur-oxidizing capacities in
402	terrestrial and marine environments (Waite et al., 2017).
403	Families belonging to the sulfate-reducing bacteria (SRB), e.g. Desulfobulbaceae, in
404	the activated sludge and kinetic experiments were observed with a relative abundance
405	below 1%. Additionally, lower SO4 ²⁻ concentrations than those determined by the
406	stoichiometry were observed at the end of the denitrification experiments, similarly as
407	illustrated by Di Capua et al. (2016). This discrepancy might be attributed to the activity of
408	these SRB using organics from bacterial lysis as electron donor. SRB likely played no role
409	in the denitritation experiments as NO_2 -N at concentrations higher than 170 mg/l are
410	detrimental for their activity (Show et al., 2013).
411	
411 412	3.3 Numerical Simulations of S ⁰ -Based Two-Step Autotrophic Denitrification
411 412 413	3.3 Numerical Simulations of S⁰-Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient
411 412 413 414	3.3 Numerical Simulations of S⁰-Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater
411 412 413 414 415	3.3 Numerical Simulations of S ⁰ -Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater poor in organics (Liu et al., 2016; Zhang et al., 2015a; Zhou et al., 2015). The limitation of
411 412 413 414 415 416	3.3 Numerical Simulations of S ⁰ -Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater poor in organics (Liu et al., 2016; Zhang et al., 2015a; Zhou et al., 2015). The limitation of using S ⁰ -based autotrophic denitrification and denitritation is associated with the low
411 412 413 414 415 416 417	3.3 Numerical Simulations of S⁰-Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater poor in organics (Liu et al., 2016; Zhang et al., 2015a; Zhou et al., 2015). The limitation of using S ⁰ -based autotrophic denitrification and denitritation is associated with the low solubility of elemental S ⁰ (Park and Yoo, 2009; Wang et al., 2016), which decreases the
 411 412 413 414 415 416 417 418 	3.3 Numerical Simulations of S⁰-Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater poor in organics (Liu et al., 2016; Zhang et al., 2015a; Zhou et al., 2015). The limitation of using S ⁰ -based autotrophic denitrification and denitritation is associated with the low solubility of elemental S ⁰ (Park and Yoo, 2009; Wang et al., 2016), which decreases the rates of the entire process. Therefore, this work proposes a novel modeling interpretation of
 411 412 413 414 415 416 417 418 419 	3.3 Numerical Simulations of S⁰-Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater poor in organics (Liu et al., 2016; Zhang et al., 2015a; Zhou et al., 2015). The limitation of using S ⁰ -based autotrophic denitrification and denitritation is associated with the low solubility of elemental S ⁰ (Park and Yoo, 2009; Wang et al., 2016), which decreases the rates of the entire process. Therefore, this work proposes a novel modeling interpretation of the S ⁰ solubilization step by hydrolytic microorganisms, prior to denitrification or
 411 412 413 414 415 416 417 418 419 420 	3.3 Numerical Simulations of S⁰-Based Two-Step Autotrophic Denitrification Autotrophic denitrification and denitritation with S ⁰ are promising and efficient processes for the treatment of drinking water or NO ₃ ⁻ and NO ₂ ⁻ contaminated wastewater poor in organics (Liu et al., 2016; Zhang et al., 2015a; Zhou et al., 2015). The limitation of using S ⁰ -based autotrophic denitrification and denitritation is associated with the low solubility of elemental S ⁰ (Park and Yoo, 2009; Wang et al., 2016), which decreases the rates of the entire process. Therefore, this work proposes a novel modeling interpretation of the S ⁰ solubilization step by hydrolytic microorganisms, prior to denitrification or denitritation.

- were lower compared to those obtained by Liu et al. (2016), most probably due to the 422
 - 24

- 423 different microbial characteristics and enrichment procedure. The value of $\mu_{2,3}^{max}$ was
- 424 slightly higher than $\mu_{2,4}^{max}$, resulting in a faster NO₃⁻-N degradation than NO₂⁻-N reduction
- 425 and, thus, NO₂-N accumulation. Additionally, the similar values obtained for $\mu_{i,j}$ max
- 426 confirmed the presence of the same denitrifying bacterial biomass X_2 in the denitrification
- 427 and denitritation experiments.
- 428 The dynamic simulations were compared with the experimental curves (Figures 5
- 429 and 6). Panels (A) and (B) of Figure 5 refer to, respectively, NO₃-N removal during
- 430 denitrification and NO₂⁻N removal in the denitritation experiments coupled to $SO_4^{2^-}$ -S
- 431 production. Figure 6 shows the system dynamics of NO₃⁻-N reduction with NO₂⁻-N as an

- 432 intermediate product of denitrification (denitrification experiment).
- 433

436 (initial condition: 210 mg/l of NO_3 -N) and (B) denitritation (initial condition: 240 mg/l of

 NO_2 -N) experiments using S⁰ as an electron donor.

The model predictions matched reasonably well the measured data, except for the 444 higher SO4²⁻-S production at the end of the experiments (Figure 5A). This was likely 445 attributed to the development of a population of SRB in the presence of low amounts of 446 organics from cell lysis, as SRB were present in the kinetic experiments (Figure 4). The 447 influence of sulfate reduction on the mass balance of S-compounds during S⁰-driven 448 449 autotrophic denitrification needs further investigation. For this, the inclusion of the coexistence of denitrifiers and SRB in the model offers an elegant way to study these 450 interactions. This was, however, out of the scope of the present study. A further extension 451 of the model might be related to the explicit mathematical modelling of the biofilm growth 452 onto the S⁰ lentils by using a continuum approach (D'Acunto et al., 2017). 453

454	The consistency between the simulated and experimental results (Figure 6)
455	demonstrated that the proposed model was able to account for $\mathrm{NO}_3{}^{\scriptscriptstyle -}$ reduction, $\mathrm{NO}_2{}^{\scriptscriptstyle -}$
456	accumulation, biomass growth, S^0 surface-based solubilization and oxidation during $\mathrm{S}^{0}\text{-}$
457	driven autotrophic denitrification. This was also confirmed by the high IoA values of 0.997,
458	0.985 and 0.990 obtained for NO ² -N NO ² -N and SO ^{2^2} -S respectively

460 4. CONCLUSIONS

461 In the denitrification experiments with S⁰, the highest NO₃⁻-N removal rate of 20.9 mg/l·d
462 was obtained. A NO₂⁻-N removal rate of 10.7 mg/l·d was achieved even at a NO₂⁻-N concentration of

463 240 mg/l, when the biomass enriched on NO₂⁻ was used. The *Helicobacteraceae* family was only

 $\label{eq:second} 464 \qquad \text{present in the biofilm attached onto the S^0 particles and was considered as the biomass capable of S^0 }$

465 hydrolysis in the surface-based model. The two-step autotrophic denitrification kinetics were

466 successfully simulated by the model as a sequential reduction of NO_2^- to NO_2^- and then to N_2 by

467 denitrifying bacteria.

468

469 ACKNOWLEDGMENTS

The authors gratefully thank the Cassino municipal wastewater treatment plant
(Cassino, Italy) for providing the activated sludge. This work was supported by the Marie
Skłodowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-ToEnergy Technologies (ABWET) funded by the Horizon 2020 program under the grant
agreement no. 643071.

475

476 Supplementary Material

477	Supplementary data associated with this article can be found in the online version of	
478	the paper.	
479		
480	Notes	
481	The authors have no competing interests to declare.	
482		
483	REFERENCES	
484	APHA, 2011. Standard Methods for the Examination of Water and Wastewater.	
485	Barrett, M., Jahangir, M.M.R., Lee, C., Smith, C.J., Bhreathnach, N., Collins, G., Richards,	
486	K.G., O'Flaherty, V., 2013. Abundance of denitrification genes under different	
487	peizometer depths in four Irish agricultural groundwater sites. Environ. Sci. Pollut.	
488	Res. 20, 6646–6657. doi:10.1007/s11356-013-1729-3	
489	Batchelor, B., Lawrence, A.W., 1978. A kinetic model for autotrophic denitrification using	
490	elemental sulfur. Water Res. 12, 1075-1084. doi:10.1016/0043-1354(78)90053-2	
491	Boyd, E.S., Druschel, G.K., 2013. Involvement of intermediate sulfur species in biological	
492	reduction of elemental sulfur under acidic, hydrothermal conditions. Appl. Environ.	
493	Microbiol. 79, 2061–2068. doi:10.1128/AEM.03160-12	
494	Campos, J.L., Carvalho, S., Portela, R., Mosquera-Corral, A., Méndez, R., 2008. Kinetics	
495	of denitrification using sulphur compounds: Effects of S/N ratio, endogenous and	
496	exogenous compounds. Bioresour. Technol. 99, 1293-1299.	
497	doi:10.1016/j.biortech.2007.02.007	
498	Caporaso, J.G., Lauber, C.L., Walters, W.A., Berg-lyons, D., Lozupone, C.A., Turnbaugh,	

499 P	J., Fierer	, N., Knight, R	., 2010.	Global patterns	of 16S rRNA	diversity at	a depth of
-------	------------	-----------------	----------	-----------------	-------------	--------------	------------

- 500 millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108, 4516–4522.
- 501 doi:10.1073/pnas.1000080107/-
- 502 /DCSupplemental.www.pnas.org/cgi/doi/10.1073/pnas.1000080107
- 503 Christianson, L., Lepine, C., Tsukuda, S., Saito, K., Summerfelt, S., 2015. Nitrate removal
- 504 effectiveness of fluidized sulfur-based autotrophic denitrification biofilters for
- recirculating aquaculture systems. Aquac. Eng. 68, 10–18.
- 506 doi:10.1016/j.aquaeng.2015.07.002
- 507 D'Acunto, B., Frunzo, L., Mattei, M.R., 2017. Continuum approach to mathematical
- modelling of multispecies biofilms. Ric. Mat. 66, 153–169. doi: 10.1007/s11587-0160294-8.
- 510 Di Capua, F., Ahoranta, S.H., Papirio, S., Lens, P.N.L., Esposito, G., 2016. Impacts of
- 511 sulfur source and temperature on sulfur-driven denitrification by pure and mixed
- 512 cultures of *Thiobacillus*. Process Biochem. 51, 1576–1584.
- 513 doi:10.1016/j.procbio.2016.06.010
- 514 Du, R., Peng, Y., Cao, S., Li, B., Wang, S., Niu, M., 2016. Mechanisms and microbial
- 515 structure of partial denitrification with high nitrite accumulation. Appl. Microbiol.
- 516 Biotechnol. 100, 2011–2021. doi:10.1007/s00253-015-7052-9
- 517 Esposito, G., Frunzo, L., Panico, A., Pirozzi, F., 2011a. Modelling the effect of the OLR
- 518and OFMSW particle size on the performances of an anaerobic co-digestion reactor.
- 519 Process Biochem. 46, 557–565. doi:10.1016/j.procbio.2010.10.010
- 520 Esposito, G., Frunzo, L., Panico, A., Pirozzi, F., 2011b. Model calibration and validation
- for OFMSW and sewage sludge co-digestion reactors. Waste Manag. 31, 2527–2535.
 - 30

- 522 doi:10.1016/j.wasman.2011.07.024
- 523 Gao, L., Zhou, W., Huang, J., He, S., Yan, Y., Zhu, W., Wu, S., Zhang, X., 2017. Nitrogen
- removal by the enhanced floating treatment wetlands from the secondary effluent.
- 525 Bioresour. Technol. 234, 243–252. doi:10.1016/j.biortech.2017.03.036
- 526 Griffiths, R.I., Whiteley, A.S., Anthony, G., Donnell, O., Bailey, M.J., Donnell, A.G.O.,
- 527 2000. Rapid method for coextraction of DNA and RNA from natural environments for
- 528 analysis of ribosomal DNA- and rRNA-based microbial community composition.
- 529 Appl. Environ. Microbiol. 66, 5488–5491. doi:10.1128/AEM.66.12.5488-5491.2000
- 530 Guerrero, L., Montalvo, S., Huiliñir, C., Campos, J.L., Barahona, A., Borja, R., 2016.
- Advances in the biological removal of sulphides from aqueous phase in anaerobic
- 532 processes: A review. Environ. Rev. 24, 84–100. doi:10.1139/er-2015-0046
- 533 Hao, R., Meng, C., Li, J., 2017. Impact of operating condition on the denitrifying bacterial
- community structure in a 3DBER-SAD reactor. J. Ind. Microbiol. Biotechnol. 44, 9–
- 535 21. doi:10.1007/s10295-016-1853-4
- 536 Hills, D.J., Nakano, K., 1984. Effects of particle size on anaerobic digestion of tomato solid
- 537 wastes. Agric. Wastes 10, 285–295. doi:10.1016/0141-4607(84)90004-0
- 538 Kilic, A., Sahinkaya, E., Cinar, O., 2014. Kinetics of autotrophic denitrification process and
- the impact of sulphur/limestone ratio on the process performance. Environ. Technol.
- 540 35, 2796–804. doi:10.1080/09593330.2014.922127
- 541 Li, W., Shan, X.Y., Wang, Z.Y., Lin, X.Y., Li, C.X., Cai, C.Y., Abbas, G., Zhang, M.,
- 542 Shen, L.D., Hu, Z.Q., Zhao, H.P., Zheng, P., 2016. Effect of self-alkalization on nitrite
- 543 accumulation in a high-rate denitrification system: Performance, microflora and
- 544 enzymatic activities. Water Res. 88, 758–765. doi:10.1016/j.watres.2015.11.003
 - 31

- 545 Liu, Y., Peng, L., Ngo, H.H., Guo, W., Wang, D., Pan, Y., Sun, J., Ni, B.J., 2016.
- 546 Evaluation of nitrous oxide emission from sulfide- and sulfur-based autotrophic
- 547 denitrification processes. Environ. Sci. Technol. 50, 9407–9415.
- 548 doi:10.1021/acs.est.6b02202
- 549 Mattei, M.R., Frunzo, L., D'Acunto, B., Esposito, G., Pirozzi, F., 2015a. Modelling
- 550 microbial population dynamics in multispecies biofilms including Anammox bacteria.
- 551 Ecol. Modell. 304, 44–58. doi:10.1016/j.ecolmodel.2015.02.007
- 552 Mattei, M.R., D'Acunto, B., Esposito, G., Frunzo, L., Pirozzi, F., 2015b. Mathematical
- 553 modeling of competition and coexistence of sulfate-reducing bacteria, acetogens, and
- 554 methanogens in multispecies biofilms. Desalin. Water Treat. 55, 740–748.
- 555 doi:10.1080/19443994.2014.937764
- 556 Mora, M., López, L.R., Gamisans, X., Gabriel, D., 2014. Coupling respirometry and
- 557 titrimetry for the characterization of the biological activity of a SO-NR consortium.
- 558 Chem. Eng. J. 251, 111–115. doi:10.1016/j.cej.2014.04.024
- 559 Moraes, B.S., Foresti, E., 2012. Determination of the intrinsic kinetic parameters of sulfide-
- 560 oxidizing autotrophic denitrification in differential reactors containing immobilized
- 561 biomass. Bioresour. Technol. 104, 250–256. doi:10.1016/j.biortech.2011.11.050
- 562 Papirio, S., Ylinen, A., Zou, G., Peltola, M., Esposito, G., Puhakka, J. aA, 2014. Fluidized-
- bed denitrification for mine waters. Part I: low pH and temperature operation.
- 564 Biodegradation 25, 425–35. doi:10.1007/s10532-013-9671-0
- 565 Park, J.Y., Yoo, Y.J., 2009. Biological nitrate removal in industrial wastewater treatment:
- 566 which electron donor we can choose. Appl Microbiol Biotechnol 82, 415–429.
- 567 doi:10.1007/s00253-008-1799-1
- 32

568	Philips, S.; Laanbroek,	H. J.; Verstraete,	W., 2002.	Origin,	causus and effects of increased
-----	-------------------------	--------------------	-----------	---------	---------------------------------

- 569 nitrite concentrations in aquatic environments. Rev. Environm Sci. Biotechnol 1, 115–
- 570 141. doi:10.1023/A:1020892826575
- 571 Qambrani, N.A., Jung, Y.S., Yang, J.E., Ok, Y.S., Oh, S.-E., 2015. Application of half-
- 572 order kinetics to sulfur-utilizing autotrophic denitrification for groundwater
- 573 remediation. Environ. Earth Sci. 73, 3445–3450. doi:10.1007/s12665-014-3641-7
- 574 Rosenberg, E., Delong, E. F., Lory, S., Stackebrandt, E., and Thompson, F. (Ed.), 2013.
- 575 *The prokaryotes: Alphaproteobacteria and Betaproteobacteria*. Springer, Berlin,
 576 Heidelberg. doi:10.1007/978-3-642-30197-1
- 577 Sahinkaya, E., Yurtsever, A., Aktaş, Ö., Ucar, D., Wang, Z., 2015. Sulfur-based autotrophic
- denitrification of drinking water using a membrane bioreactor. Chem. Eng. J. 268,
- 579 180–186. doi:10.1016/j.cej.2015.01.045
- 580 Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B.,
- 581 Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., Sahl, J.W., Stres, B.,
- 582 Thallinger, G.G., Van Horn, D.J., Weber, C.F., 2009. Introducing mothur: Open-
- source, platform-independent, community-supported software for describing and
- 584 comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.
- 585 doi:10.1128/AEM.01541-09
- 586 Show, K.Y., Lee, D.J., Pan, X., 2013. Simultaneous biological removal of nitrogen-sulfur-
- 587 carbon: Recent advances and challenges. Biotechnol. Adv. 31, 409–420.
- 588 doi:10.1016/j.biotechadv.2012.12.006
- 589 Sierra-Alvarez, R., Beristain-Cardoso, R., Salazar, M., Gómez, J., Razo-Flores, E., Field,
- 590 J.A., 2007. Chemolithotrophic denitrification with elemental sulfur for groundwater
 - 33

- treatment. Water Res. 41, 1253-1262. doi:10.1016/j.watres.2006.12.039 591
- Simard, M.-C., Masson, S., Mercier, G., Benmoussa, H., Blais, J.-F., Coudert, L., 2015. 592
- Autotrophic denitrification using elemental sulfur to remove nitrate from saline 593
- aquarium waters. J. Environ. Eng. 141, 4015037. doi:10.1061/(ASCE)EE.1943-594
- 595 7870.0000977
- Sin, G., Kaelin, D., Kampschreur, M.J., Takács, I., Wett, B., Gernaey, K. V, Rieger, L., 596
- Siegrist, H., Van Loosdrecht, M.C.M., 2008. Modelling nitrite in wastewater treatment 597
- systems: A discussion of different modelling concepts. Water Sci. Technol. 58, 1155-598 599 1171. doi:10.2166/wst.2008.485
- Soares, M.I.M., 2002. Denitrification of groundwater with elemental sulfur. Water Res. 36, 600 1392-1395. doi:10.1016/S0043-1354(01)00326-8 601
- Sun, Y., Nemati, M., 2012. Evaluation of sulfur-based autotrophic denitrification and 602
- denitritation for biological removal of nitrate and nitrite from contaminated waters. 603 Bioresour. Technol. 114, 207-216. doi:10.1016/j.biortech.2012.03.061
- 604
- Vavilin, V.A., Fernandez, B., Palatsi, J., Flotats, X., 2008. Hydrolysis kinetics in anaerobic 605
- 606 degradation of particulate organic material: An overview. Waste Manag. 28, 939-951. doi:10.1016/j.wasman.2007.03.028 607
- Waite, D.W., Vanwonterghem, I., Rinke, C., Parks, D.H., Zhang, Y., Takai, K., Sievert, 608
- S.M., Simon, J., Campbell, B.J., Hanson, T.E., Woyke, T., Klotz, M.G., Hugenholtz, 609
- 610 P., 2017. Comparative genomic analysis of the class Epsilonproteobacteria and
- proposed reclassification to epsilonbacteraeota (phyl. nov.). Front. Microbiol. 8. 611
- doi:10.3389/fmicb.2017.00682 612
- Wang, Y., Bott, C., Nerenberg, R., 2016. Sulfur-based denitrification: Effect of biofilm 613
 - 34

- development on denitrification fluxes. Water Res. 100, 184-193. 614
- doi:10.1016/j.watres.2016.05.020 615
- Xu, G., Peng, J., Feng, C., Fang, F., Chen, S., Xu, Y., Wang, X., 2015. Evaluation of 616
- simultaneous autotrophic and heterotrophic denitrification processes and bacterial 617
- community structure analysis. Appl. Microbiol. Biotechnol. 99, 6527-6536. 618
- doi:10.1007/s00253-015-6532-2 619
- Xu, G., Yin, F., Chen, P.S., Xu, Y., Yu, P.H., 2016. Mathematical modeling of autotrophic 620
- denitrification (AD) process with sulphide as electron donor. Water Res. 91, 225-234. 621 622 doi:10.1016/j.watres.2016.01.011
- Zhang, L., Zhang, C., Hu, C., Liu, H., Bai, Y., Qu, J., 2015a. Sulfur-based mixotrophic 623
- denitrification corresponding to different electron donors and microbial profiling in 624
- anoxic fluidized-bed membrane bioreactors. Water Res. 85, 422-431. 625
- doi:10.1016/j.watres.2015.08.055 626
- Zhang, L., Zhang, C., Hu, C., Liu, H., Qu, J., 2015b. Denitrification of groundwater using a 627
- sulfur-oxidizing autotrophic denitrifying anaerobic fluidized-bed MBR: performance 628
- 629 and bacterial community structure. Appl. Microbiol. Biotechnol. 99, 2815-2827.
- doi:10.1007/s00253-014-6113-9 630

- Zhou, W., Liu, X., Dong, X., Wang, Z., Yuan, Y., Wang, H., He, S., 2015. Sulfur-based 631
- autotrophic denitrification from the micro-polluted water. J. Environ. Sci. (China) 44, 632 633 180-188. doi:10.1016/j.jes.2016.01.002
- Zhou, W., Sun, Y., Wu, B., Zhang, Y., Huang, M., Miyanaga, T., Zhang, Z., 2011.
- Autotrophic denitrification for nitrate and nitrite removal using sulfur-limestone. J. 635
- Environ. Sci. 23, 1761-1769. doi:10.1016/S1001-0742(10)60635-3 636
 - 35

- 637 Zou, G., Papirio, S., van Hullebusch, E.D., Puhakka, J.A., 2015. Fluidized-bed
- 638 denitrification of mining water tolerates high nickel concentrations. Bioresour.
- 639 Technol. 179, 284-290. doi:10-1016/j.biortech.2014.12.044
- 640 Zou, G., Papirio, S., Lakaniemi, A.-M., Ahoranta, S.H., Puhakka, J.A., 2016. High rate
- 641 autotrophic denitrification in fluidized-bed biofilm reactors. Chem. Eng. J. 284, 1287-
- 642 1294. doi:10.1016/j.cej.2015.09.074
- 643