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Abstract  34 

Purpose: Alteration in cell death is a hallmark of cancer. A functional role regulating survival, apoptosis and 35 

necroptosis has been attributed to RIP1/3 complexes.  36 

Experimental design: We have investigated the role of RIP1 and the effects of MC2494 in cell death 37 

induction, using different methods as flow cytometry, transcriptome analysis, immunoprecipitation, 38 

enzymatic assays, transfections, mutagenesis and in vivo studies with different mice models.  39 

Results: Here, we show that RIP1 is highly expressed in cancer and we define a novel RIP1/3-SIRT1/2-40 

HAT1/4 complex. Mass Spectrometry identified 5 acetylations in the kinase and death domain of RIP1. The 41 

novel characterised pan-SirT inhibitor, MC2494, increases RIP1 acetylation at 2 additional sites in the death 42 

domain. Mutagenesis of the acetylated lysine decreases RIP1-dependent cell death suggesting a role for 43 

acetylation of the RIP1 complex in cell death modulation. Accordingly, MC2494 displays tumour-selective 44 

potential in vitro, in leukemic blasts ex vivo, and in vivo in both xenograft and allograft cancer models. 45 

Mechanistically, MC2494 induces bona fide tumour-restricted acetylated RIP1/caspase-8-mediated 46 

apoptosis. Excitingly, MC2494 displays tumour-preventive activity by blocking DMBA-induced mammary 47 

gland hyper-proliferation in vivo.  48 

Conclusions: These preventive features might prove useful in patients who may benefit from a recurrence-49 

preventive approach with low toxicity during follow-up phases and in cases of established cancer 50 

predisposition. Thus, targeting the newly identified RIP1 complex may represent an attractive novel 51 

paradigm in cancer treatment and prevention.  52 

 53 

Translational Relevance 54 

It is becoming increasingly clear that cancer is not only a genetic but also an epigenetic disease.  Here, 55 

we identified a novel RIP1-SirT/HAT1 complex controlling survival and death via regulation of RIP1 56 

acetylation. Notwithstanding the increasing interest for sirtuins modulation in tumorigenesis, very little 57 

known is on their involvement in programmed cell death programs. A major goal of epi-drug development is 58 

to increase the therapeutic index and limit development of resistance. One attractive option is to combine 59 

anticancer effects with drugs able to prevent neoplasia. Here, we have developed and report on a novel pan-60 

SirT inhibitor that alters HAT1/SirT equilibrium in the RIP1 complex, showing bona fide anticancer-61 

selective and cancer-preventive activities in vitro, ex vivo and in vivo. Our work expands the current views in 62 

the drug discovery and might prove useful in patients who may benefit from a recurrence-preventive 63 

approach with low toxicity during follow-up phases and in cases of established cancer predisposition. 64 

 65 

 66 
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Introduction 71 

Cell death is a normal process responsible of tissue homeostasis. Different pathways of cell death have been 72 

described (1) and recently classified (2,3). Both the classical apoptosis, autophagy and necroptosis (a new 73 

form of programmed cell death) (4) have been causally connected to cancer. The RIP1 kinase has been 74 

reported displaying a functional role in either regulation of survival or apoptosis and necroptosis (5) and is a 75 

key regulator of many signalling pathways such as inflammation (6), oxidative stress, plasma membrane 76 

permeabilization and cytosolic ATP reduction (7). RIP1, initially identified as a Fas-interacting protein (8,9), 77 

is also named ‘a death domain kinase’, having a 112 amino acid death domain (DD) at its C-terminus. RIP1 78 

is the founding member of the RIP family (10). RIP1 kinase activity is responsible for RIP3 phosphorylation 79 

(11), and subsequently, for MLKL phosphorylation and trimerization, which is necessary to activate the 80 

necroptotic death pathway (12,13). The fact that other RIP family members do not compensate for RIP1-81 

deficiency suggests a unique role for RIP1(10,14). The central deregulation of cell death in tumourigenesis 82 

has become clear, yet, very little is known of RIP1 and cancer. RIP1 and RIP3, as well as necroptosis, are 83 

deregulated in many types of cancers thus presenting a potential therapeutic targets in treatment of cancers 84 

resistant to chemotherapeutic agents or to apoptosis inducers (15,16). Here, we show that RIP1 is highly 85 

expressed in cancer and we define a novel RIP1/3-SIRT1/2-HAT1/4 complex in which RIP1 is subject to 86 

regulation by acetylation. Excitingly, mutation of the acetylated lysine decreases RIP1-dependent cell death, 87 

suggesting a role for acetylation of the RIP1 complex in cell death deregulation and function. Increasing 88 

RIP1 acetylation with a novel multi-acting SirT inhibitor, MC2494, displays tumor-selective therapeutic 89 

potential in vitro, ex vivo, and in vivo inducing tumour-restricted apoptosis. Extraordinarily, MC2494 shows 90 

tumour-preventive activity in vivo. Thus, targeting the newly identified RIP1 complex and its acetylation 91 

may represent a feasible and attractive novel paradigm for therapeutic purposes in cancer treatment and 92 

prevention.  93 

 94 

Materials and Methods 95 

Cell lines, primary cells and ligands. U937, NB4, HL-60, K562, U266, JURKAT, MCF7, MDA-MB231, 96 

LnCap, NIH3T3 and HCT116 cells, were purchased from DSMZ. MCF10A was purchased from ATCC. 97 

HEK293FT and HACAT cells, were ordered from Thermo Fisher Scientific. EPN, hMSC and Primary 98 

normal amniocytes cells, were obtained from University of Campania Luigi Vanvitelli, IT. All cell lines and 99 

primary cells were grown following standard protocols. A more detailed description is reported in 100 

Supplementary Material and Methods. Mycoplasma contamination was regularly examined using EZ-PCR 101 

Mycoplasma kit (Biological Industries), prior to freezing working stabs. All cell lines were tested and 102 

authenticated. Cells were used for experiments within 10-20 passages and then discarded.  AGK2 (Sigma), 103 

MC2494 (and derivatives) were dissolved in DMSO and used at 5x10-5 M. MC2494 was synthetized by 104 

University Sapienza, Rome IT. For MC2494 synthesis details, see Supplementary notes. EX527 (Alexis) was 105 

dissolved in DMSO (Sigma) and used at 5x10-6 M, unless otherwise specified. Staurosporine (Alexis) was 106 

dissolved in DMSO and used at 2x10-6 M. Suramin (Bio Mol) was used at 5x10-5 M.  107 
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 108 

Antibodies. H3K9-14ac, H3K9ac, H3K56ac and RIP1 were from Diagenode and BD. H4ac and p53ac were 109 

from Upstate. H3, Acetyl-lysine, H4 H2A.X (phS139), CPS1, MLYCD, SirT1, SirT2, PCAF and 110 

KAT1/HAT1 were from Abcam. ATM (phS1981) and ATR were from R&D. Acetyl-tubulin was from 111 

Sigma. ERK1/2, IAP, FLIP-L, PARP and RIP3 were from Santa-Cruz. Bax, t-Bid, caspase 3, caspase 8, 112 

CYLD, IKKγ, FADD, FAS, BCL2 were from Cell Signaling. HAT4 was from myBiosurce.  113 

 114 

Morphological analysis. For U937, MCF7 and MDA-MB-231 cancer cell lines morphological analysis was 115 

performed, using bright field light microscopy (20X). 116 

 117 

Reagents. Z-VAD, Z-IETD, Z-LEHD (R&D) were used at 50 μM. N-Acetyl cysteine (NAC) and Nec-1 118 

(Sigma) were used at 50 and 100 μM, respectively. 1 μg of RIP1, RIP(K596/599R) were transfected. H2O2 and 119 

PIETC (Sigma) were used at 1 mM and 10 μM, respectively. C646 (Sigma) was used at 50 μM. 120 

 121 

Cell vitality, Cell cycle, differentiation, death and apoptosis. To study cell vitality, experiments were 122 

performed in triplicate. Cells were diluted 1:1 in Trypan blue (Sigma) and counted. Cell cycle and 123 

differentiation analysis, was performed in triplicate as reported in (17). Apoptosis was measured by caspase 124 

3-7, 8 and 9 (R&D) and quantified by FACS (BD). Apoptosis was measured as pre-G1 DNA fragmentation 125 

or by Annexin V detection as in (17). Apoptosis vs necrosis was measured using apoptosis/necrosis kit as 126 

suggested by the supplier (Enzo life sciences). 127 

 128 

SirTs, HDACs & PCAF assays. SirT1, -2 and -3 assays experiments were performed as suggested by the 129 

supplier (BioMol). Moreover, for SirT1, additional assays were performed: i) HRTF assay; ii) BioMol assay 130 

with a different excitation/emission range; iii) SIRTainty assay (Millipore). SirT3 and 6 assays were 131 

performed in vitro following the supplier’s instructions (ENZO life and Cayman, respectively). To evaluate 132 

the action of MC2494 on SirT4 and 5, we IPed CPS1 and MLYCD (reported as substrates for SirT4 and 133 

SirT5, respectively) and they used in a radiolabelling assay. Finally, both HDAC and PCAF radioactive 134 

assays were performed according to supplier’s instructions (Upstate). A detailed description of in vitro 135 

assays is reported in Supplementary Material and Methods. 136 

 137 

Proliferation and migration analysis in real time. Proliferation and migration analyses were evaluated in 138 

MDA-MB231 cells and performed according to the supplier instruction (xCELLigence, Roche). A detailed 139 

description is in Supplementary Material and Methods. 140 

 141 

RNA, RT-PCR and Chromatin immunoprecipitation (ChIP). Total RNA was extracted with Trizol 142 

(Invitrogen) and converted into cDNA using VILO (Invitrogen). RNA extraction and RT-PCR are detailed in 143 
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the Supplementary Methods. ChIP was carried out as previously reported (18) using H3K9-14ac.  More 144 

detailes are in Supplementary Material and Methods. 145 

 146 

Protein extraction. After PBS wash, cell pellets were suspended in lysis buffer (50 mM Tris-HCl pH 7.4, 147 

150 mM NaCl, 1% NP40, 10 mM NaF, 1 mM PMSF and protease inhibitor cocktail). The lysis reaction was 148 

carried out for 15 min at 4°C. Finally, the samples were centrifuged at 13000 rpm for 30 min at 4°C and 149 

protein concentration quantified by Bradford assay (Bio-Rad). 150 

 151 

Histone extraction. After stimulation with the indicated compounds cells were collected and washed two 152 

times with PBS. Pellets were resuspended in Triton Extraction Buffer (TEB) (PBS containing 0.5% Triton X 153 

100 (v/v), 2 mM PMSF, 0.02% (w/v) NaN3) and the lysis procedure was performed for 10 min at 4°C. The 154 

samples were centrifuged at 2000 rpm for 10 min at 4°C and pellets washed in TEB (half volume). Samples 155 

were then resuspended in 0.2 N HCl and acid histone extraction was carried out overnight at 4°C. The next 156 

day the supernatant was recovered and protein concentration quantified by Bradford assay (Bio-Rad). 157 

 158 

Nucleus/Cytosol extraction. Pellet were resuspended in 2-2.5 volumes of NP-40 Buffer (10mM Tris-HCl 159 

pH 7.0, 10mM NaCl, 3mM MgCl2, 30mM Sucrose, 0.5 % NP-40) and incubate for 10’ on a rotating 160 

platform at 4°C. After centrifugation at 1000 rpm for 10 min at 4°, the supernatant were transfer in a new 161 

tube (cytosolic fraction). Pellet (nuclei) were suspended in 2 mL of NP-40 Buffer and centrifuged at 3000 162 

rpm for 10 min. The supernatant were removed and the pellet of nuclei was washed in Lysis Buffer (20mM 163 

Tris-HCl pH8, 137mM NaCl, 10% glycerol, 1% NP-40, 2mM EDTA) for 10 min in ice. The suspension was 164 

sonicated (4x 30”off/ 30”on high power). Spin out debris 14.000 rpm for 5 min at 4°and the nuclear proteins 165 

were transfer in a new tube. 166 

 167 

Western Blot. 50 μg of proteins were loaded on 10-15% polyacrylamide gels. 5-10 μg of histone extract was 168 

loaded on 15% polyacrylamide gel. The nitrocellulose filters were stained with Ponceau red (Sigma) as 169 

additional control for equal loading. The antibody used, are listed in Supplementary Material and Methods. 170 

 171 

Immunoprecipitation assay. MDA-MB-231 and HEK293FT cells were lysed in NP-40 (0.5%), Tris-HCl 172 

pH 8.0 (20 mM), NaCl, (150 mM), PMSF (1 mM), 10% glycerol, EDTA (1 mM) and 1X protease inhibitor 173 

mix (Sigma) for 20’ on ice. Cell debris was removed and the protein soluble fraction was incubated with 174 

antibody overnight at 4°C. The immune complexes were immunoprecipitated with Sepharose-protein A/G 175 

Plus (Santa-Cruz) or with GFP -TRAP_A beads (Cromotech) for 2h at 4°C. Proteins were then eluted, 176 

resuspended and analyzed by western blot.  177 

 178 

CETSA assay. HEK293FT cells were harvested and washed with PBS after treatment with 179 

MC2494 (50 μM) and an equal amount of DMSO, as control, for 1 h. The respective samples were 180 
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suspended in PBS (1.5 mL), divided into aliquots (100 μl), and heated at different temperatures 181 

(25°-37°-44°-53°-57°) for 3 min by Thermo Mixer (Eppendorf, Milan, Italy), followed by cooling 182 

for 3 min at 4C. After incubation, lysis buffer (100 μl) was added to the samples and incubated for 183 

15 min. The samples were then centrifuged at 13,000 rpm for 30 min at 4°C, the supernatant was 184 

removed and protein concentration was determined using a Bradford assay (Bio-Rad). Of the total 185 

protein extract, 20 μg was loaded on 10% SDS-PAGE and western blott analysis was performed. 186 

The antibody used were SirT1, SirT2 and SirT3 (Abcam). 187 

 188 

Transfections. RIP1-GFP, RIP-GFP(K596/599R) were transfected in HEK293FT cells with Lipofectamine 2000 189 

(Invitrogen). TRAIL promoter mutants were used as previously described (17). 190 

 191 

RNA interference 192 
To silence RIP1 and Caspase8 were used specific pre-designed SiRNA for RIP1 (SI00288092) and CASP8 193 

(SI02661946) purchased from Qiagen. U937 cells were transfected with Nucleofector™ Technology and 194 

siRNA were used at 1 μM. To silence SIRT1 gene expression, HEK293 cells were transfected with a 195 

specific SirT1 siRNA directed against human SirT1 (On-Target plus SMART pool), which was 196 

purchased from Dharmacon, and with a specific pre-designed SiRNA for SirT1 purchased from Ambion. 197 

A scrambled siRNA was used as a control. Cells were transfected with the indicated siRNAs at 50 nM of 198 

concentration, using DharmaFECT1 Transfection reagent (Dharmacon). 199 

 200 

Allograft experiments. All animal procedures were conducted according to national and international 201 

guidelines. The breast cancer 4T1–Luc model was a gift from Dr. P. Steeg, (NIH, Bethesda, USA). Approval 202 

was obtained from the Institutional Animal Care and Ethical Committee at CEINGE and “Federico II” 203 

University of Naples (Protocol #29, 01/09/2009), and the Italian Ministry of Health, Dipartimento Sanità 204 

Pubblica Veterinaria D.L. 116/92, confirming that all of the experiments conform to the relevant regulatory 205 

standards. A detailed description of procedures is in Supplementary Material and Methods. 206 

 207 

Cancer prevention & mito-mice. MC2494 was dissolved in DMSO and diluted 1:5 in vehicle (corn oil). 208 

7,12-dimethylbenz(α)anthracene (DMBA, Sigma) was dissolved in acetone (8 mM). 8 female MITO-Luc 209 

mice (repTOP™ mitoIRE, Italy) (19) 2 months of age were housed in plastic cages, fed ad libitum with a 210 

standard diet (4RF21 standard diet, Mucedola, Italy). Room temperature was within 22-25°C and humidity 211 

of 50 ± 10%. Animals were divided into two groups and s.c. treated with 50 mg/kg MC2494 or placebo (corn 212 

oil) every day at 02.00 PM for 9 days. At day 6, mice were subjected to a single s.c. intra-glandular injection 213 

of DMBA (left) or vehicle (right gland); at day 9, after the last in vivo imaging acquisition, mice were 214 

sacrificed, mammary glands explanted for ex vivo imaging and fixed for analysis. A detailed description is in 215 

Supplementary Material and Methods. Imaging in vivo procedure was as in (20,21) and is detailed in 216 

Supplementary Material and Methods. 217 
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 218 

Xenograft experiments and Pulse generator in vivo. All procedures involving animals and their care were 219 

conducted in conformity with institutional guidelines, which are in compliance with national (D.L. No. 116, 220 

G.U., Suppl. 40, Feb. 18, 1992; Circolare No. 8, G.U., July 1994) and international (EEC Council Directive 221 

86/609, O.J. L 358. 1, Dec 12, 1987; Guide for the Care and Use of Laboratory Animals, United States 222 

National Research Council, 1996) laws. A detailed description of procedures and histology, 223 

immunohistochemistry and TUNEL assay in vivo are explained in Supplementary Material and Methods. 224 

High resolution nanoLC−Tandem Mass Spectrometry Mass spectrometry analysis was performed on a Q 225 

Exactive Orbitrap mass spectrometer equipped with an EASY-Spray nano-electrospray ion source (Thermo 226 

Fisher Scientific, Bremen, Germany) and coupled to a Thermo Scientific Dionex UltiMate 3000RSLC nano 227 

system (Thermo Fisher Scientific). A detailed description and data processing are in Supplementary Material 228 

and Methods. 229 

 230 

IP-Mass spectrometry. For mass spectrometry analysis RIP1 was overexpressed using a GFP-tagged vector 231 

and immunoprecipitated with GFP-trap_A beads. The data dependent mass spectra were acquired with the 232 

LTQ-Orbitrap mass spectrometer (Thermo Scientific). A detail description of these procedures is in 233 

Supplementary Material and Methods. 234 

 235 

Results 236 

RIP1 is highly expressed in cancer cells and interacts with HAT1 and SirT1/2 237 

Programmed necrosis or necroptosis is an alternative form of programmed cell death in which the RIP1-238 

RIP3 complex displays a functional role. To explore RIP1 function in cancer, RIP1 protein levels were 239 

evaluated in different cancer cells (Fig. 1A), showing a generally high expression of RIP1. Mass 240 

spectrometry analysis performed after RIP1 immunoprecipitation (ProteomeXchange, PRIDE database, 241 

dataset identifier PXD007198), identified a new RIP1-HAT1-SirT1 complex (Fig. 1B). RIP1-HAT1-SirT1 242 

complex was validated by western blot. Both RIP3 (with a weak signal) and HAT4, known interactors of 243 

RIP1 and HAT1 respectively (22-24), were found in the complex (Fig. 1C). The fact that both SirT1 and 244 

HAT1 immunoprecipitations were reciprocally detecting RIP1, strongly corroborated and strengthen the 245 

existence of the RIP1-HAT1-SirT1 single complex (Supplementary Fig. S1). The observation that both 246 

HAT1 and SirT1 (and 2) were detectable within the RIP1-IP, prompted us to investigate whether these 247 

acetyltransferases/deacetylases might regulate RIP1 by (de)acetylation. By probing RIP1 248 

immunoprecipitated cells with anti-acetyl-lysine antibody, we observed the presence of an acetylated form of 249 

RIP1 (Fig. 1D). Given that RIP1 acetylation has been very debated (25) and never proven in living cells, to 250 

investigate the location of RIP1 acetylation sites, high-resolution tandem mass spectrometry was applied. To 251 

this end, peptides resulting after digestion with trypsin were separated and analysed by nano-HPLC coupled 252 

to an Orbitrap Q-Exactive mass spectrometer. Data-dependent HCD spectra were obtained on the five most 253 

intense mass peaks generated in each scan at 17500 resolution. Amino acid sequences of high confidence 254 
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peptides obtained by high-resolution tandem mass spectrometry are reported in Supplementary Fig. S2; S3; 255 

S4 and Supplementary Table S1. Five acetylated lysine residues were identified (Fig. 1E); of these, K115 256 

was localized within the RIP1 kinase domain, whereas K625, K627, K642, K648 were mapped within the 257 

RIP1 death domain, suggesting a potential role for acetylation in RIP1 kinase and cell death-regulating 258 

functions. Given that RIP1 is localised in the cytoplasm (26), HAT1 and SirT1 location in the different 259 

cellular compartments was studied. Interestingly, while RIP1 confirmed exclusive cytosolic localization, 260 

HAT1 and SirT1 were found in both nuclear and cytosolic compartments, with a higher expression in the 261 

cytosol (Fig. 1F). 262 

 263 

RIP1 acetylation module is enhanced by SirT inhibition at sites K596-K599 264 

To assess RIP1, HAT1 and SirT1/2 relationship, we measured RIP1 acetylation using a newly synthesised 265 

pan-SirT inhibitor, MC2494 (Fig. 2A; Supplementary Table S2 and Supplementary note) an AGK-2-related 266 

molecule (27). This compound displays inhibitory actions against SirT1, SirT2 and SirT3/4/5/6, revealing 267 

unique features when compared to SirT1- and 2-selective inhibitors (27-29) (Fig. 2B). The IC50 values for 268 

SirT1 and 2 inhibition were 38.5μM and 58.6μM, respectively (Supplementary Fig. S5A). While MC2494-269 

SirT1 modulation was corroborated on a panel of orthogonal in vitro assays (Supplementary Fig. S5B), 270 

MC2494 was inactive against both HATs (PCAF) and HDACs (Supplementary Fig. S5C and D), suggesting 271 

high pan-SirT specificity. Direct binding between Sirtuins and MC2494, was corroborated by CETSA assay 272 

(30) (Supplementary Fig. S5E). Interestingly, while the presence of MC2494 protected SirTs from thermal 273 

degradation, SirT1/2/3 mRNA and protein levels were reduced in three different cancer systems by MC2494, 274 

differently from normal cells (Fig. 2C and D), assuming features of cancer-selectivity. In agreement with the 275 

pan inhibitory action, MC2494-induced levels of p53K382 and tubulin acetylation were highly increased, as 276 

were H3 (K9-14ac and K56ac) and H4 acetylations (Supplementary Fig. S5F). Excitingly, a strong increase 277 

of RIP1 acetylation was observed (Fig. 2E) upon MC2494 stimulation strengthening a possible role of SirTs 278 

in modulating RIP1 (de)acetylation. Mass spectrometry analyses were applied to corroborate this data. Under 279 

MC2494 treatment conditions, no qualitative differences were detected in RIP1 acetylation with the 280 

exception of the di-acetylated peptide 592-603 ([M+2H]+ at m/z 777.88), containing two additional 281 

acetylation sites (K596-K599), only detected following MC2494 treatment (Fig. 2F). Interestingly, this 282 

region was also identified as the top score deacetylation site (P-Value: 0.015) by the Predict(S) algorithm of 283 

the ASEB web server for lysine acetylation/deacetylation site prediction by selecting the database of 129 284 

known deacetylation sites of SirT1. Finally, MC2494 regulated the newly identified RIP1 interactome, 285 

decreasing SirT1 expression in the complex, thus unbalancing SirT1 in favour of HAT1. Also HAT4 and 286 

RIP3 were still detectable with a slight increase of RIP3 (Fig. 2G). Interestingly when the HAT inhibitor 287 

C646 was used, this drug was able to abrogate RIP1 acetylation, corroborating the involvement of the acetyl 288 

transferases in RIP1 acetylation (Supplementary Fig. S6A). This evidence is also supported by the presence 289 

of PCAF in the complex. (Supplementary Fig. S6B). Moreover, a siRNA approach was performed to 290 

corroborate and strengthen this data. Upon SirT1 silencing, RIP1 acetylation increased, clarifying the SirT1-291 
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mediated action mechanism of MC2494. (Fig. 2H). These results indicate that RIP1 acetylation at K596-292 

K599 is governed by SirT inhibition using this novel pan-SirT inhibitor. To gain more insights into the role 293 

of MC2494 in RIP1 acetylation, immunoprecipitation assay was carried out in cells stimulated with one 294 

inactive derivative of MC2494, MC2582 (Supplementary Table S2). As expected, MC2582 has no effect on 295 

RIP1 acetylation. (Supplementary Fig. S7). 296 

 297 

Pan SirT inhibition induces caspase 8 dependent cancer-selective cell death 298 

To define the potential biomedical effects of pan-SirT inhibition and RIP1 complex acetylation the action of 299 

MC2494 was investigated on both leukaemia and breast (BC) cancer cells. In contrast to EX527 (SirT1i) and 300 

AGK-2 (SirT2i), MC2494 induced strong proliferation arrest (Fig. 3A and Supplementary Fig S8-S9C) and 301 

importantly, did not affect cell cycle or differentiation (Supplementary Fig. S9A and B). When quantified in 302 

real time, MC2494 reduced cell proliferation and migration rate measured by cell index and slope at early 303 

time points (Fig. 3B). These data strongly imply wide-ranging anti-proliferative effects. Given the 304 

hypothesized tumour-selective action, we evaluated the cytotoxic effect of MC2494 by comparing its effect 305 

on a broad panel of cancer cells and normal (or immortalized, non-cancer) cells. Notably, MC2494 induced 306 

cell death in cancer without displaying significant cytotoxicity in normal cells (Fig. 3C). These findings 307 

strongly suggest that cell death induction by MC2494 is tumour-specific. Caspase-3/7, -8, -9 activation (Fig. 308 

3D) and dissipation of mitochondrial membrane potential (MMD) (Fig. 3E) were induced by MC2494 in 309 

cancer cells as was DNA damage measured as increased expression of ATM, ATR and γH2AX (Fig. 3F). 310 

Both players of the extrinsic and intrinsic apoptotic pathways were modulated (Supplementary Fig. S9D and 311 

E). To gain mechanistic insights the caspase-8 Z-IETD, caspase-9 Z-LEHD and pan-caspase Z-VAD 312 

inhibitors were tested for their ability to block MC2494 action. Only Z-IETD and ZVAD completely blocked 313 

MC2494-induced programmed cell death (PCD), whereas cell death was unaltered in presence of Z-LEHD 314 

suggesting that caspase-9 activation is dispensable (Fig. 3G). Interestingly, an increment of ROS production 315 

occurred upon MC2494 treatment indicating a possible link between caspase activation, ROS production and 316 

RIP1 expression (Fig. 3H) (31).Therefore, we tested the effect of N-acetyl-cysteine (NAC) (32), a known 317 

ROS scavenger. Remarkably, in U937 cells, NAC abolished MC2494-induced PCD demonstrating a causal 318 

relevance for ROS production (Fig. 3H).  319 

 320 

RIP1 and its acetylation causally activate cancer-selective cell death pathways 321 

To gain insights into PCD mechanism(s), we analysed the transcriptome of U937 cells treated with MC2494 322 

in comparison with cells treated with the lead SirT1 inhibitor EX527 (Supplementary Fig. S10A). The 1245 323 

MC2494 specifically modulated probes were characterized for their relative abundance of Gene Ontology 324 

Biological Processes using DAVID (Supplementary Fig. S10B -11). MC2494 deregulated 116 annotated 325 

genes related to PCD (fdr=0,0029) suggesting that this modulation might account for its apoptotic action (or 326 

part of it). Strikingly, among the PCD-related targets, DR5 was selectively up-regulated by MC2494 327 

(Supplementary Fig. S10C, p < 0,001), suggesting that its modulation may account for a potential cancer-328 
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selective PCD. Corroborating the transcriptome, PCR confirmed DR5 induction and supported TRAIL 329 

mRNA up-regulation by MC2494 already after 24h of induction. Interestingly, H3ac ChIP followed by 330 

qPCR revealed strong acetylation at TRAIL and DR5 promoters after the treatment (Fig. 4A). To elucidate 331 

the acetylation modulation at TRAIL and DR5 promoters, SirT1 ChIP followed by qPCR was performed. 332 

Interestingly, SirT1 occupancy was found at those promoters and was decreased after MC2494 treatment, 333 

suggesting an active role for SirT1 at TRAIL and DR5 promoters (Fig. 4B). We investigated TRAILp by a 334 

deletion mapping approach (Fig. 4C). Whereas HDACi selectively target the proximal GC-box and 335 

complexes binding to it (17), MC2494-dependent TRAIL activation was strongly reduced by mutations of 336 

promoter-distal areas containing the distal GC-box, AP-1 and ISRE. Conversely, mutation of promoter-337 

proximal GC-box led to over 2.5-fold increase, highlighting a potential repressive role of MC2494 on 338 

chromatin at this region. Thus, MC2494-driven TRAIL activation causally activates the tumour-selective 339 

TRAIL/DR5 pathway. To extend the hypothesis that both caspase-8 and RIP1 causally act during MC2494 340 

PCD, we performed loss-of-function experiments in U937 cells. Upon silencing of either caspase-8 or RIP1, 341 

MC2494-mediated PCD was abolished, suggesting a potentially crucial link between caspase-8 activation 342 

and RIP1 function (33) in promoting PCD by MC2494 (Fig. 4C). In support, a similar PCD suppression was 343 

observed when pharmacologically blocked RIP1 function after the co-administered with its inhibitor 344 

Necrostatine-1 (Nec-1) (34) (Fig. 4D). Since RIP1 regulates different types of cell death and survival, we 345 

aimed to further distinguish between PCD and necrosis. Data with double Annexin V-propidium iodide (PI) 346 

staining strongly indicated that MC2494, like staurosporine, only induced PCD (Fig. 4E). Intriguingly, 347 

expression of the E3 ubiquitin ligases IAPs is fully abrogated (35) (Fig. 4E), whereas the expression of IKKγ 348 

(NEMO)(36) is induced in absence of a principal deubiquitinating enzyme, CYLD (37,38) (Fig. 4F). 349 

Collectively, the data suggest a scenario in which, following SirT inhibition by MC2494 treatment, a PCD 350 

pathway is activated, with RIP1 and caspase-8 mediating death and having a causal role. Since RIP1 is 351 

acetylated and in presence of MC2494 the new acetylation occurs at site 596-599 in the RIP1 death domain, 352 

we applied a mutational approach. Upon transfection in cancer cells, RIP1-mediated cell death was reduced 353 

of about 40% with the mutant K596-599R, suggesting that these newly acetylated sites may regulate RIP1 354 

apoptotic function (Fig. 4G). To strength this data, we investigated the effect of MC2494 on RIP1K596-599R 355 

(Fig. 4H). While the point mutation has no impact on the binding between HAT1 and RIP1, cell death 356 

induction and RIP1 acetylation undergo to a reduction, suggesting the important role of these K residues in 357 

driving anticancer activity of MC2494 (Fig. 4I). 358 

 359 

MC2494 exerts cancer cell-selective action ex vivo and in vivo 360 

For primary cancers, acute leukaemia blasts were treated ex vivo with MC2494 showing a strong increment 361 

in pre-G1 phase (Fig. 5A). MC2494-mediated PCD was clearly detectable at 24 and 48 hours in all 9 primary 362 

acute myeloid leukaemia (AML) blasts and one acute lymphoid leukaemia (ALL) blast, underscoring that in 363 

primary cancer, MC2494 induces apoptosis (Fig. 5A and  Supplementary Table S3). Pharmacokinetic and in 364 

vitro half-life studies strengthened a possible use of MC2494 in vitro and in vivo (Supplementary Fig. 12A-365 
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D). In vivo, MC2494 strongly reduced tumour growth in allograft models as quantified by direct photon 366 

emission of luciferase-expressing immuno-competent mice (Fig. 5B and Supplementary Table S4). 367 

Moreover, the MDA-MB-231 breast cancer-based xenograft model treated with MC2494 displayed a strong 368 

anticancer effect visible as decreased tumour mass. When MC2494 was inoculated by in vivo chemo-369 

electroporation, the anticancer effect increased, suggesting its potential in vivo also in superficial tumours (as 370 

melanoma or other skin tumours in rapid proliferation) (Fig. 5C). Following MC2494, apoptosis (tunnel 371 

assay), histone and non-histone SirT targeting, SirT1, SirT2, RIP1 and KAT1/HAT1 were observed in 372 

tumours (Fig. 5D) extending results obtained in cell lines. 373 

 374 

MC2494 exerts cancer-preventive action in vivo 375 

It is a widely shared opinion that cancer prevention is a better approach than treatment. A strategy might 376 

include prevention of cancer recurrences and/or action in genetically predisposed patients. Thus, we 377 

evaluated the ability of MC2494 to prevent early proliferation occurring in mammary glands after carcinogen 378 

exposition. Two groups of MITO-Luc reporter mice (19) (on line Methods) were subcutaneously treated 379 

with a daily dose of 50 mg/kg MC2494 or placebo (corn oil) for 9 days (9D); at D6, right and left mammary 380 

glands were exposed to 7,12-Dimethylbenz[a] anthracen (DMBA) or vehicle, respectively. As expected, 3D 381 

after DMBA injection in the left mammary gland, bioluminescent emission was detectable in the mice pre-382 

treated with placebo (Fig. 6A, placebo). Excitingly, no bioluminescence was detected in the MC2494-pre-383 

treated animals, suggesting that the compound was able to fully abrogate DMBA-induced malignant 384 

proliferation in vivo (Fig. 6A-C). In keeping with these data, Ki-67 proliferation marker was highly 385 

expressed in the mammary glands treated with DMBA (Fig. 6D, lower panel, left), but to a much lower 386 

extent in glands explanted from MC2494-pre-treated mice (Fig. 6D lower panel, right, and Fig. 6E). 387 

Increased acetylation of H3K9 in tissues obtained from MC2494-treated mice confirmed that the MC2494 388 

was inhibiting this and likely other epi-targets (Fig. 6F and Supplementary Fig. S11). These experiments 389 

suggest that MC2494 counteracts hyper-proliferation occurring during the early steps of carcinogenesis, 390 

strongly supporting that MC2494 is not only active against an ‘on-going’ cancer, but also acts in a cancer-391 

preventive manner in vivo. 392 

 393 

Discussion  394 

Our study identifies a new role for Sirtuins and HATs (mainly HAT1) (39) in modulating programmed death 395 

pathways. This occurs via a newly identified RIP1-SirT1/2/HAT1-containing complex and via regulation of 396 

RIP1 acetylation. RIP1 (and its acetylation) might represent a key regulatory restriction point between 397 

survival, stress and death. In full agreement MC2494, a novel pan-SirT inhibitor (SirTi) (40), alters the 398 

HAT1/SirT equilibrium in the RIP1 complex. The fact that our MS approach combined with affinity-based 399 

chromatography enrichment reveals not only the existence of the RIP1/KAT1/SirT axes, but also the 400 

presence of seven RIP1 acetylation sites (the majority of which are in the death domain) adds to a possible 401 

regulatory role for acetylation of RIP1-mediated death. In support, mutation of K596-599 to arginine alters 402 
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RIP1 apoptotic function, suggesting its complex regulation by post-translational modifications.  403 

The finding that RIP1 is a main player in PCD represents a paradigm shift, identifying (acetylated) RIP1 as 404 

an apoptotic player altered in cancer and a potential target of intervention. Based on our findings, we 405 

hypothesized that Sirtuins play a key role in restricting RIP1-caspase8 apoptosis in cancer. The importance 406 

of caspase8 is demonstrated by its causal role, since pharmacological inhibition and silencing fully block 407 

SirTi-driven death. Pan-SirT inhibition-mediated anticancer activity is also causally linked to ROS and RIP1, 408 

given that treatment with both NAC and Nec-1, and RIP1 silencing, abolish PCD. Whether this action also 409 

accounts for the tumour-specificity of the pan-SirTi remains to be established. Evidence that both TRAIL 410 

and DR5 are up-regulated upon treatment is reminiscent of findings that we (and others) (41) reported for 411 

HDACi (17). The contribution of TRAIL tumour-selective PCD by SirTi is unlikely attributable to HDAC 412 

inhibition as MC2494 does not affect the activity of HDACs. Secondly, cis-acting elements responsible for 413 

MC2494 TRAIL transcriptional activation are distinct from those reported for HDACi (17). While our 414 

findings strongly suggest that anticancer action of pan-SirTi can be linked to RIP1 acetylation and TRAIL-415 

DR5 axis activation in cancer (42), the possible tumour-selective activity of pan-SirTi via TRAIL is a key 416 

element since normal cells of diverse origin are all insensitive to pan-SirT inhibition. Although the role of 417 

oxidative stress in TRAIL-mediated apoptosis has been reported (43), our data show that impairment of 418 

either caspase-8 or RIP1 fully blocks SirTi action and that RIP1 acetylation mutant is blandly able to 419 

regulate cell death. Possibly, the presence of 7 different RIP1 acetylation sites (only 2 of which, are 420 

modulated in these settings by SirTi) suggests that acetylation might control RIP1 cell death functions in a 421 

very defined manner. These evidences propose the existence of a caspase-8/RIP1ac-dependent death 422 

paradigm of cell death, bound to epigenetic players such as (but not restricted to) Sirtuins and type-B HATs 423 

(HAT1) (44). Interestingly, SirT1 interferes with apoptosis induced by oxidative stress, deacetylating and 424 

activating FOXO1(45) FOXO3a (46), and FOXO4 (47), inducing GADD45 and the mitochondrial 425 

antioxidant manganese superoxide dismutase. Each of these factors might contribute to ROS tolerance by 426 

SirT1 alteration in cancer. Deregulation of ROS production, oxidative stress, and FOXO activity are 427 

essential steps in cancer development and progression. Moreover, SirTi induction of apoptosis is 428 

accompanied by a marked reduction of IAP and FLICE-inhibitory protein (c-FLIP). Interestingly, IAP 429 

reduction (and DR5 activation co-occurrence) was recently reported combining IAP inhibitors with 430 

lexatumumab (48). This combination results in apoptosis and vanguish cancer resistance by caspase-431 

8/RIP1ac activation. Thus new therapeutic regimens may involve SirTi and remodulation of the RIP1-432 

containing complexes in cancer bypassing resistance to conventional drugs. Consistently, both xenograft and 433 

allograft in vivo cancer models responded to SirT inhibition with arrest of progression and disease regression 434 

along with increase in apoptotic markers, block of proliferation, SirT and HAT1 expression resetting and 435 

acetylation within tumours. Ex vivo leukaemia blasts also undergo PCD upon pan-SirT inhibition, suggesting 436 

a broad range of anticancer actions by MC2494. Though a number of anticancer studies involving SirTi in 437 

vivo have been reported (49,50), to our knowledge, cancer-prevention in vivo has never been described. The 438 

ability of pan-SirT inhibition to fully prevent chemically-induced breast carcinogenesis, concomitantly 439 
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increasing acetylation in vivo, ex vivo and during quantitative measurements, shows its potential use in 440 

cancer-preventive settings, which has not been demonstrated before in vivo. These preventive features might 441 

prove useful in patients who may benefit from a recurrence-preventive approach with low toxicity during 442 

follow-up phases and in cases of established cancer predisposition. 443 
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FIGURE LEGENDS 593 

Figure 1. RIP1 expression, interactome, acetylation and location. A, RIP1 protein expression in different 594 

cancer cell lines. B, Mass spectroscopy analysis of RIP1 interactome performed in HEK293FT RIP1-GFP 595 

cells. C, Western blot analysis of RIP1-GFP immunoprecipitated in HEK293FT cells shows the presence of 596 

RIP1, SirT1, KAT1/HAT1, SirT2, HAT4 and RIP3 proteins. D, Western blot analysis of RIP1-GFP 597 

immunoprecipitated with GFP Trap_A beads in HEK293FT cells. Top panel: WB with ac-lysines antibody 598 

reveals RIP1 acetylation levels, Lower panel: WB for RIP1 and KAT1/HAT1. E, Schematic representation 599 

of acetylated lysines and their localization within the RIP1 subdomains. F, Nucleo/Cytosol localisation of 600 

RIP1, SirT1and HAT1 performed in HEK293FT cells. 601 

Figure 2. The novel pan-SirT inhibitor MC2494 affects RIP1 acetylation. A, Structure of MC2494. B, in 602 

vitro inhibition of SirT1/2/3/4/5/6 by MC2494. Enzymatic assays carried out with MC2494 (50 μM) and 603 

Suramin (100 μM), EX527 (5 μM), AGK2 (50 μM) were used as controls. C, mRNA evaluation of SirT1, 604 

SirT2 and SirT3 in HEK293FT, MDA-MB231 and U937 cancer cells. D, mRNA evaluation of SirT1, SirT2 605 

and SirT3 in HACAT “normal” cells. E, Western blot analysis of RIP1-GFP immunoprecipitated in 606 

HEK293FT. Top panel: WB with ac-lysines antibody reveals a strong increase of RIP1 acetylation levels 607 

after MC2494 treatment, Lower panel: WB for RIP1. F, Schematic representation of the acetylated lysines 608 

upon MC2494 and their localization within the RIP1 subdomains. Extracted ion chromatogram 609 

corresponding to the monoacetylated RIP1 peptides. G, Molecular complex analysis after MC2494 610 

treatment. Western blot analysis of RIP1-GFP immunoprecipitates in HEK293FT cells confirms the presence 611 

of SirT1, HAT1, RIP1, HAT4 and RIP3 proteins. After MC2494 treatment a reduction of SirT1 and a slight 612 

increase of HAT1 is observed. H, Evaluation of acetyl RIP1 in SirT1 loss of function condition. Graph 613 

showed the mean of three independent experiments with error bars indicating standard deviation. 614 

Figure 3. MC2494 affects proliferation and induces caspase8-dependent apoptosis. A, Proliferation curve in 615 

U937 cells in presence of the indicated compounds and analysis of cell death as evaluation of preG1 phase. 616 

MC2494 and AGK2 were used at 50 μM, EX527 at 5 μM. B, Left: MDA-MB-231 cell growth following 617 

MC2494, monitored in real time. Right: Migration rate measure as slope (1/h) monitored within the 24 h 618 

from the indicated treatments. MC2494 was used at 50 μM. C, Induction of preG1 phase upon MC2494 619 

treatment in cancer and normal cell lines. D, E, FACS analysis of caspase 8, 9 and 3/7 activation and MMD. 620 

The experiments were carry out in U937 cells upon treatment with MC2494 (50 μM). F, Western blot 621 

analysis of DNA damage evaluation performed in U937 cells upon treatment with MC2494 (50 μM). G, 622 

apoptosis induced by MC2494 (50 μM and 24 h) in U937 cells is selectively blocked by pan- and caspase 8 623 

inhibitors (ZVAD and IETD), but not by caspase 9 (LEHD). H, ROS production following MC2494 (50 624 

μM), PIETC (10 μM) and H2O2 (1 mM) for 24 h, MC2494-mediated apoptosis was blocked by NAC (50 625 

μM). Curves and graph presented showed the mean of at least three different experiments with an error bars 626 

indicating standard deviation. 627 
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Figure 4. The TRAIL-DR5 axis mediates MC2494 cell death. A, TRAIL and DR5 expression upon MC2494 629 

(50 μM) for 24-30 h (left), H3K9ac ChIP assay of DR5, TRAIL promoters followed by qPCR (right). B, 630 

SirT1 ChIP assay at DR5 and TRAIL promoters followed by qPCR. C, Schematic representation of TRAIL 631 

promoter and deletion mapping (upper). Transient transfection assay reveals that TRAIL promoter distal 632 

boxes (containing GC-box, AP-1 and ISRE) are essential for activation by MC2494 (lower). D, siRNA 633 

silencing of caspase 8 or RIP1 and RIP1 pharmacological inhibition with Necrostatine-1 (Nec-1 100 μM) 634 

abolishes MC2494 apoptosis in U937 cells. E, Apoptosis (left) and necrosis (Annexin/PI) (right) assays 635 

following treatment with MC2494 (50 μM) or vehicle for 24 h in U937 cells. F, Western blot analysis in 636 

U937 cells shows a reduction of IAP expression, a no-modulation of CYLD and an increment of IKK 637 

protein levels following MC2494 treatment (50 μM and 24 h). ERKs are loading controls. G, Evaluation of 638 

RIP1-death impairment in HEK293FT cells transfected with RIP1wt or with the RIP(K596/599R) mutant. H, 639 

Evaluation of cell death induced by MC2494 in HEK293FT cells transfected with RIP1wt or with the 640 

RIP1(K596/599R) mutant. I, Protein expression evaluation by western blot of acetyl lysine (upper) and RIP1 641 

(lower) in HEK293FT cells transfected with RIP1wt and RIP(K596/599R) mutant. Graph showed the mean of 642 

three independent experiments with error bars indicating standard deviation. 643 

 644 

Figure 5. MC2494 displays broad anticancer action in vitro, ex vivo and in vivo. A, Induction of apoptosis by 645 

MC2494 (50 μM) for 24 and 48 h in 10 ex vivo primary AML and ALL blasts. B, Representative images of 646 

two orthotopic allografted mice with 4T1-luc cells into mammary fat pad. Bioluminescence imaging levels 647 

of vehicle- (DMSO) and MC2494-treated mice were acquired at 0 (T0), and after 7 (T7) days of daily 648 

treatment, and quantified as photon/s. See (Supplementary information Table S4) for BLI data in photon/sec. 649 

Results are Ʃ ± SEM. from 7 mice each in the vehicle- and MC2494-treated groups. C, MC2494 reduces 650 

subcutaneous tumor growth of MDA-MB-231 xenograft using s.c. injection of 5X106 cells into the left leg of 651 

nude mice by and its combination with electrochemotherapy. In vivo growth in volume of tumors induced. 652 

Two controls (vehicle alone and electroporation of vehicle) are reported to exclude possible effects of the 653 

vehicle and electroporation in vivo. In the control groups (animals treated with vehicle or electroporation), 654 

tumor volumes strongly increased over a 28-day period whereas MC2494 caused a significant reduction (p 655 

value 0.005 and 0.001, respectively). An even greater growth inhibition was obtained by the combination of 656 

MC2494/electrochemotherapy, (p value < 0.001) compared to both controls. The weight of all mice assigned 657 

to the various groups fell within the same range, providing no immediate evidence for overt toxic effects. 658 

Ki67 and TUNEL scores were performed at the end of treatment. The proliferation index was significantly 659 

lower in tumours of treated mice compared to controls (p=0.002). Apoptotic index was significantly higher 660 

in tumours of MC2494-treated mice (p=0.002). D, Immunohistochemical analysis for the apo-index, Ki67, 661 

H3K56ac, ac-tubulin, SirT1, SirT2, RIP1 and KAT1/HAT1 levels in tumours). Curves and graph presented 662 

showed the mean of at least two different experiments with an error bars indicating standard deviation. 663 
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Figure 6. MC2494 exerts cancer preventive effects in vivo. A, Optical imaging analysis of bioluminescence 665 

from MITO-Luc reporter mice injected in the mammary fat pad with DMBA (left) or vehicle (right gland); 666 

bioluminescent emission is represented using a pseudo-colour scale. Magnified inserts highlight details of 667 

photon emission from mammary glands. B, Quantitation of (A). Bars represent average photon emission ± 668 

SEM from 4 animals/group measured within the mouse areas shown in the magnified inserts in (A); 669 

bioluminescent emission is completely prevented in MC2494 group as compared to placebo. *** p < 0.001 670 

DMBA (n=4) vs vehicle-treated (n=4) mammary glands calculated using unpaired t-test. C, Ex vivo imaging 671 

of mammary glands from 2 representative mice from each group. D, Immunohistochemistry of breast slices 672 

obtained from each group stained for Ki67 antibody reveals a marked reduction of cell proliferation in the 673 

DMBA + MC2494 as compared to DMBA. E, Quantitation of immunohistochemistry in (d). Bars represent 674 

the average ± SEM of the Ki67 index expressed as the ratio between Ki67-positive cells vs total. *** p < 675 

0.001 DMBA vs vehicle-treated mammary glands calculated using 2-way ANOVA followed by the 676 

Bonferroni post-hoc test. F, Immunohistochemistry and relative quantization of H3K9 acetylation on breast 677 

slices obtained from each group; increased H3K9ac is visible in MC2494-treated animals corroborating 678 

SirT1/2 inhibition in vivo. Graph showed the mean of three independent experiments with error bars 679 

indicating standard deviation. 680 
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