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A B S T R A C T

The occurrence of water shortages ascribed to projected climate change, especially in the Mediterranean region,
fosters the interest in remote sensing (RS) applications to optimize water use in agriculture. Remote sensing
evapotranspiration and water demand estimation over large cultivated areas were used to manage irrigation to
minimize losses during the crop growing cycle. The research aimed to explore the potential of the MultiSpectral
Instrument (MSI) sensor on board Sentinel-2A to estimate crop parameters, mainly surface albedo (α) and Leaf
Area Index (LAI) that influence the dynamics of potential evapotranspiration (ETp) and Irrigation Water
Requirements (IWR) of processing tomato crop (Solanum lycopersicum L.). Maximum tomato ETp was calculated
according to the FAO Penman-Monteith equation (FAO-56 PM) using appropriate values of canopy parameters
derived by processing Sentinel-2A data in combination with daily weather information. For comparison, we used
the actual crop evapotranspiration (ETa) derived from the soil water balance (SWB) module in the
Environmental Policy Integrated Climate (EPIC) model and calibrated with in-situ Root Zone Soil Moisture
(RZSM). The experiment was set up in a privately-owned farm located in the Tarquinia irrigation district (Central
Italy) during two growing seasons, within the framework of the EU Project FATIMA (FArming Tools for external
nutrient Inputs and water Management). The results showed that canopy growth, maximum evapotranspiration
(ETp) and IWR were accurately inferred from satellite observations following seasonal rainfall and air tem-
perature patterns. The net estimated IWR from satellite observations for the two-growing seasons was about 272
and 338mm in 2016 and 2017, respectively. Such estimated requirement was lower compared with the actual
amount supplied by the farmer with sprinkler and drip micro-irrigation system in both growing seasons resulting
in 364 (276mm drip micro-irrigation, and 88mm sprinkler) and 662 (574mm drip micro-irrigation, and 88mm
sprinkler) mm, respectively. Our findings indicated the suitability of Sentinel-2A to predict tomato water de-
mand at field level, providing useful information for optimizing the irrigation over extended farmland.

1. Introduction

Evidence suggests that human-induced greenhouse gases emissions
have altered our climate at a relatively rapid rate (Allen et al., 2009;
IPCC, 2013), with the consequence that rising global temperatures and
changes in precipitation pattern drastically exposed water-limited en-
vironments and agriculture, restricting crop yield, production and food
availability (Avramova et al., 2016; McKersie, 2015; Moore and Lobell,
2014). Freshwater scarcity is widely acknowledged as a global systemic

risk in terms of potential impact (Mekonnen and Hoekstra, 2016),
especially in agricultural production, which uses about 70% of total
freshwater withdrawals (WWAP, 2015). In particular, the impacts of
climate change on European (EU) agriculture may increase productivity
in northern latitudes, while in southern latitude projection indicated
reduction in rainfall, and water availability, problems with salinization
and increase in pest and disease outbreaks (Falloon and Betts, 2010;
Kaley et al., 2017).

All above considered, there is an urgent need to seek out
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technological advancements and scalable solutions in the context of
Precision Farming (PF) (Lal and Stewart, 2016; Liaghat and
Balasundram, 2010; Moran et al., 1997; Mulla, 2013; Vuolo et al., 2015;
Zarco-Tejada et al., 2014) to address management strategies on water
inputs in response to seasonal drought.

This objective requires timely and reliable estimation of crop eva-
potranspiration (ET) and Irrigation Water Requirements (IWR) at field
level with high spatial and temporal resolution. Soil water balance
(SWB) models present limitations when applied to wide areas due to
complexity of input data required, with special concern to soil hy-
draulic properties, interaction with groundwater, variability of plant
development due to different crop varieties and management practices.
Diversely, Earth Observation (EO) techniques provide reliable and
suitable data to feed PF applications and serve several end-users (i.e.
farmers, landowners and decision makers). High temporal and spatial
resolution multi-spectral imagery can be used to manage irrigation
scheduling based on near real-time actual crop needs (Calera et al.,
2017). One advantage is the detection of the actual crop development
which influences the entity of evapotranspiration fluxes and hence the
irrigation requirements. Although extensive research has been carried
out on ET crop estimation for water management using EO data, to date
one of the major limitation for their applicability and technological
transfer was the limited spatial and temporal resolution of the sensors
(Bisquert et al., 2016). In this context, the recent advent of Sentinel-2
mission from European Space Agency (ESA), as part of the programme
Copernicus (http://www.copernicus.eu/) (Drusch et al., 2012), has
greatly enhanced the possibilities for a routine monitoring of crop
parameters, such as LAI. The Multi Spectral Instrument (MSI) on board
of Sentinel-2 captures data at 10, 20 and 60-meter spatial resolution
over 13 spectral bands and with a very high temporal resolution of five
days at the equator. Thanks to the rich information content the appli-
cation of inversion techniques of radiative transfer models is now
possible, providing robust physical basis for describing crop reflectance
and estimating crop parameters such as LAI (Herrmann et al., 2011;
Laurent et al., 2014; Richter et al., 2012; Verrelst et al., 2015). The
combination of freely available satellite imagery, high resolution, novel
spectral capabilities, a swath width of 290 km and frequent revisit times
is stimulating the development of operational and commercial uses of
EO data tailored for PF applications, as well as for scientific projects.
The Sentinel-2 mission also provides data to be integrated in a tool for
improving the quality of existing Web-GIS Satellite-based Irrigation
Advisory Services - IAS (Calera et al., 2017; Richter et al., 2012; Vuolo
et al., 2015; D'Urso et al., 2008) or other similar implementations
foreseen in the near future (Pereira, 2017).

This study focuses on the determination of the Irrigation Water
Requirements in tomato crops by means of Copernicus Sentinel-2A
data. It uses Environmental Policy Integrated Climate (EPIC) crop
growth model simulations for the comparison of the predicted crop
evapotranspiration. The work was developed in the context of the
FATIMA project (http://fatima-h2020.eu/), financed by the EU
Commission under the HORIZON 2020 programme to develop and
adopt innovative farming tools and service capacities that help the in-
tensive farm sector to optimize its external input management (nu-
trients, energy and water) and productivity. The results of this research
can be used for developing operational tools for monitoring water use
trends of irrigated crop at commercial farm level in a Mediterranean
environment in Central Italy.

2. Methodological approach to estimate potential
evapotranspiration from Earth Observation

Over the past two decades, the improvements in the technical
capabilities of spaceborne EO sensors allowed different approach for
implementing potential evapotranspiration (ETp) estimation from sa-
tellite imagery. Several reviews have attempted to evaluate ETp EO-
based methods and their performances, with special focus on irrigation

management in agriculture, considering scales and temporal evolution
during the growing season (Allen et al., 2011; Calera et al., 2017;
D'Urso, 2010). To date, according to those reviews, two main groups of
EO-based methods for ET estimation can be distinguished. The first
group considers observations in the thermal range to estimate latent
heat flux as a residual of surface energy balance, hence the actual
evapotranspiration ETa, accordingly to different schematizations (Allen
et al., 2007; Bastiaanssen et al., 1998; Kalma et al., 2008; Kustas et al.,
2016). Surface energy balance methods can detect crop water stress but
suffer from the technical limitations of thermal observations from space
in terms of spatial and temporal resolution. The second group con-
templates visible (VIS) and near-infrared (NIR) wavelengths for char-
acterizing the crop development in the application of the FAO-56
Penman–Monteith (FAO-56 PM) model (Allen et al., 1998); in this case,
it is generally assumed that the crop is in “standard conditions”, i.e. in a
disease-free environment with adequate fertilization and sufficient soil
water availability (irrigation applied). Often this value of evapo-
transpiration is referred to as “potential”, which might introduce some
confusion with the term “reference”, for this reason, we prefer to use in
this text the complete definition of FAO-56 PM, i.e. evapotranspiration
in standard conditions ETp, which means maximum value of crop
evapotranspiration. Thus, we derive the maximum IWR for a crop at a
given development stage. Under the hypothesis of a uniform soil cover,
the Penman-Monteith approach derives surface resistances to heat and
vapour transfer to the atmosphere by using vegetation parameters,
namely Leaf Area Index (LAI – key parameter characterizing the
structure and functioning of vegetation cover, that influence crop pro-
ductivity), surface albedo (α-influences the net radiation of the surface,
which is the primary source of the energy exchange for the evaporation
process), and crop height (hc - influences the aerodynamic resistance
term of the FAO-56 Penman-Monteith equation and the turbulent
transfer of vapour from the crop into the atmosphere) (Allen et al.,
1998; D'Urso, 2001). Since for a crop in standard conditions, a
minimum value of stomatal resistance can be considered for most
herbaceous crops (≈100 sm−1), the surface resistance became a func-
tion of LAI only. This is also referred in the FAO-56 paper as the “one-
step” or “direct” approach. During recent years, there has been a con-
sistent effort to estimate vegetation parameters (α-LAI) from EO in the
VIS and NIR regions (Atzberger and Richter, 2012; Vuolo et al., 2015),
allowing to adapt the Penman–Monteith equation to be used directly
with EO based LAI and α value (D'Urso, 2010), which can be measured
in the field for providing an assessment of accuracy of the ET method, in
addition to the below mentioned micro-meteorological techniques, and
to derive the maximum IWR. The use of EO-based “one-step” FAO-56
PM method has become more popular recently for assessing ETp under
different hydro-climatic regions and crops such as wheat, cotton, corn,
grapes and orchards (Farg et al., 2012; Glenn et al., 2011; Vanino et al.,
2015). This approach has the advantage of being easily implemented,
especially over homogeneous landscapes represented by irrigated
farmland under unstressed conditions (Anderson et al., 2012).

Another category of EO methods for estimating ETp is based on the
traditional concept of the so-called crop coefficient (Kc), defined as the
ratio of the unstressed crop evapotranspiration to the reference eva-
potranspiration (ET0). Kc is specific to each crop and reflects the canopy
development due to agronomic practices (including irrigation) over the
course of the growing season. Hence, in this “two-steps” approach, ETp

is estimated as the product of the reference evapotranspiration (ET0,
depending only from atmospheric conditions) and the Kc. Several stu-
dies have demonstrated the linear relationship between Kc and different
Vegetation Index (VIs), such as the Normalized Difference Vegetation
Index (NDVI, Tucker et al., 1979) or the Soil Adjusted Vegetation Index
(SAVI, Huete, 1988), derived from spectral observations in the VIS and
NIR region (D'Urso and Calera, 2006; Neale et al., 1989). However, the
determination of the empirical parameters of the relationship between
Kc and VIs would requires measurements of ET over well irrigated
crops, by using micro-meteorological methods such as lysimeters,
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Bowen Ratio, and Eddy Covariance. This calibration procedure is
seldom applied, leaving the definition of Kc (VIs) to visual field in-
spections of crop growth and phenology, which are subjective and
qualitative.

3. Materials and methods

3.1. Study area

The study area is in the Nitrate Vulnerable Zone (NVZ) of Tarquinia
Municipality coastal plain (Viterbo Province, Lazio Region; 7 km NW of
Tarquinia, 2.7 km from seashore - 42° 69′ N and 11° 69′ E, at an average
altitude of 25m above sea level, with 3% mean slope) and it is part of
the Water User Association (WUA) district of “Maremma Etrusca”, one
of the largest agricultural irrigation districts of Western Central Italy.
The WUA manages the agricultural irrigation infrastructural network in
a supply mode using river and artificial channel waters (Fig. 1). The
area is characterized by intensive agricultural management due to the
production of irrigated crops (mostly processing tomato) and the large
use of mineral N fertilizer, causing groundwater pollution. Therefore, it
was selected as the Italian pilot case study for the FATIMA project to:

• Establish innovative and new farm tools and service capacities that
help the intensive farm sector.

• Optimize productivity and external management inputs (water,
nutrients and energy).

The area is on Pleistocene medium and low marine terraces
(Quaternary period), during the Pleistocene epoch, and on recent local
lowlands with limited costal aquifers salt-water intrusion. The climate
is typical Mediterranean (Koppen classification: Csa) characterized by
warm dry summers, mild winters, and with an average annual rainfall
of approximately 600mm, mainly concentrated in autumn and spring.
The mean daily temperature is 15.3 °C (ranging from 7.7 °C in January
and of 23.7 °C in July).

3.2. Experimental field plots description

The experimental campaign was carried out during the 2016 and
2017 growing seasons within a 20 ha privately owned farm, with a crop
rotation of durum wheat (Triticum durum Desf. var. Iride) and proces-
sing tomato (Solanum lycopersicum L. var. Vulcano) (Fig. 1). The soil
present a clay loam texture, and is classified as Calcaric Cambic
Phaeozems according to FAO system (IUSS-WRB, 2015).

Tomato plants (variety “Vulcano”) were transplanted at four-leaves
stage 5th May 2016 and 29th April 2017, in an experimental area of
about 3 ha with a plant density of 2.9 plants m−2. The tomato variety
selected was suitable for mechanized harvesting which requires de-
terminate or bush-like growth (max 0.4–0.6m), resistance to overripe
and contemporaneity of fruit ripe. Irrigation was provided by a
sprinkler system in the first three weeks after transplanting and by
micro-irrigation (combined by fertilization) during the rest of the
growing season. Irrigation scheduling was established by the farmer
based on his own practical experience.

During the 2016 and 2017 growing seasons the total rainfall was 75
and 18mm. The irrigation water applied by micro-irrigation was re-
corded through a flanged - cast iron water flow meter (Bontempi
DN065), resulting in a total amount of 276 and 574mm/ha for 2016
and 2017 respectively. Pest and weeds control was performed ac-
cording to the current farming management practice. The crop was
harvested on 18th August 2016 (90.7 ton/ha yield) and on 8th August
2017 (72.3 ton/ha yield), when ripe fruit rate reached about 90%, with
an average crop cycle length of around 106 days.

3.3. Data set and processing procedure

The data set and the processing procedure to estimate ETp and IWR
are summarized in Fig. 2.

This included daily meteorological information, EO data from
Sentinel-2A satellite, in-situ crop parameters and soil water content
measurements, records of irrigation applied. The flowchart highlighted
that field measures were used both to validate EO maps and to calibrate
EPIC model. In details, canopy reflectance and LAI measures were used

Fig. 1. Study area location and experimental field plots within the privately-owned farm in Tarquinia Municipality coastal plain (western Central Italy).
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to validate α and LAI maps, while LAI, soil moisture and tomato yield
were used to EPIC model calibration. After EO maps validation and
model calibration, ET was estimated by EO-based direct FAO-56 PM
method and EPIC model. Both ET results were compared using per-
formance statistical indicators as detailed in Section 3.4.3.

3.3.1. Meteorological data
Daily meteorological data (from 2004 to present) include solar ra-

diation (S - Wm−2), air temperature (Ta - °C), air humidity (RH - %),
wind speed (U - ms−1) and rainfall (R - mm). They were measured at
the Agrometeorological Service station of Lazio Region (ARSIAL) lo-
cated in the Tarquinia Municipality (Central Italy). This data were used
to compute FAO-56 PM reference evapotranspiration (ET0) and the IWR
for 2016 and 2017.

Table 1 shows the weather conditions in 2016 and 2017. In the
period January to August, the two years presented similar mean tem-
perature, i.e. 17.3 °C (2016) and 17.1 °C (2017). This was higher than
the long-term (2004–2017) average of 16.1 °C. Conversely, rainfall,
from January to August, was extremely different for the two years, 260
vs 120mm in 2016 and 2017, respectively. As for temperature, both
years showed a deviation respect to the rainfall long-term average of

−92mm in 2016 and −232mm in 2017.
Seasonal variation in ET0 is shown in Fig. 3 for 2016 and 2017.

Cumulative ET0 during the two growing seasons was 513mm (from 3rd

May to 18th of August 2016) and 516mm (from 29th April to 8th of
August 2017). In 2016 growing season the average daily ET0 was
4.73mmd−1, ranging from 2.13mmd−1 (11th May) to 7.69mmd−1

Fig. 2. Flowchart showing data sets and processing procedure required to estimate crop potential evapotranspiration (ETp), and Irrigation Water Requirements
(IWR), EO-based direct FAO-56 PM method. Where, sr: minimum stomatal resistance (sm−1), hc: crop height (m), S: Solar radiation (Wm−2), Ta: Air temperature
(°C), RH: Air humidity (%), U: Wind speed (ms−1), R: Rainfall (mm).

Table 1
Monthly (January–August) mean temperature (°C) and rainfall (mm) during the
2016 and 2017 growing seasons in comparison with the long-term (2004–2017)
average at Agrometeorological Service station of Lazio Region (ARSIAL) - in
Tarquinia Municipality (western Central Italy).

Jan Feb Mar Apr May Jun Jul Aug

Temperature 2016 (°C) 9.8 11.8 11.9 15.7 18.0 22.3 24.6 24.5
Temperature 2017 (°C) 7.1 10.9 12.1 13.9 18.5 23.4 24.9 25.5
Temperature long-term

average
8.8 8.1 11.2 14.3 17.0 21.3 23.6 24.4

Rainfall 2016 (mm) 36.6 99.2 34.0 10.2 34.8 41.6 3.2 0.4
Rainfall 2017 (mm) 16.2 43.9 17.5 23.4 6.7 11.0 0.0 0.9
Rainfall long-term average 75.4 58.4 71.8 38.2 31.0 21.5 45.5 9.9
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(7th August), while in 2017 the average daily ET0 was 5.06mmd−1,
ranging from 2.87mmd−1 (30th June) to 8.77mmd−1 (16th July).

3.3.2. Earth Observation products
We have used EO data acquired from the Copernicus Sentinel-2

satellite. The Sentinel-2 mission is based on a constellation of two

identical satellites (Sentinel-2A, launched on 23rd June 2015, and
Sentinel-2B, launched on 7th March 2017) both orbiting at an altitude of
786 km, 180° apart for optimal coverage and data delivery. Together
they cover all Earth's land surfaces, large islands, inland and coastal
waters every five days at the equator (http://www.esa.int/Our_
Activities/Observing_the_Earth/Copernicus/Sentinel-2), ESA delivers
Level 1C orthorectified Top of Atmosphere (TOA) reflectance through
the Copernicus Open Access Hub (https://scihub.copernicus.eu/

Fig. 3. Reference evapotranspiration (FAO-56 PM ET0, in mmd−1) and rainfall events mm d−1 for the growing season 2016 (a) and 2017 (b) for the experimental
field.

Table 2
Sentinel-2 dataset: central wavelength, bandwidth, and spatial resolution for the 13 spectral bands of the MSI. Purpose of each band is also shown.

Band Center Spectral width Spatial resolution Purpose

λ Δλ

# nm nm m

B1 443 20 60 Atmospheric correction (aerosol scattering)
B2 490 65 10 Sensitive to vegetation senescing, carotenoid, browning and soil background; atmospheric correction (aerosol scattering)
B3 560 35 10 Green peak, sensitive to total chlorophyll in vegetation
B4 665 30 10 Maximum chlorophyll absorption
B5 705 15 20 Position of red edge; consolidation of atmospheric corrections/flourescence baseline.
B6 740 15 20 Position of red edge, atmospheric correction, retrieval of aerosol load.
B7 783 20 20 Leaf Area Index (LAI), edge of the Near-Infrared (NIR) plateau.
B8 842 115 10 LAI
B8a 865 20 20 NIR plateau, sensitive to total chlorophyll, biomass, LAI and protein; water vapour absorption reference; retrieval of

aerosol load and type.
B9 945 20 60 Water vapour absorption, atmospheric correction.
B10 1375 30 60 Detection of thin cirrus for atmospheric correction.
B11 1610 90 20 Sensitive to lignin, starch and forest above ground biomass. Snow/ice/cloud separation.
B12 2190 180 20 Assessment of Mediterranean vegetation conditions. Distinction of clay soils for the monitoring of soil erosion. Distinction

between live biomass, dead biomass and soil, e.g. for burn scars mapping.

Note: The nine bands used for LAI estimation are highlighted in bold, while for bands used in the α calculation see Table 3.

Table 3
Weighting coefficients for the calculation of albedo by using Eq. (1).

Band Center
λ

Spectral width
Δλ

Esun ωbi

Number (μm) (μm) (Wm−2) (−)

1 0.443 0.020 1893
2 0.490 0.065 1927 0.1324
3 0.560 0.035 1846 0.1269
4 0.665 0.030 1528 0.1051
5 0.705 0.015 1413 0.0971
6 0.740 0.015 1294 0.0890
7 0.783 0.020 1190 0.0818
8 0.842 0.115 1050 0.0722
8a 0.865 0.020 970
9 0.945 0.020 831
10 1.375 0.030 360
11 1.610 0.090 242 0.0167
12 2.190 0.180 3 0.0002

Table 4
Temporal frequency of the Sentinel-2A cloud free images available for the field
experimental trial, during the 2016 and 2017 growing seasons. Date in bold
refers to the day when field vegetation measures were done.

Year DOY Date Year DOY Date

2016 130 9/5 2017 131 11/5
160 8/6 151 31/5
165 15/6 154 3/6
177 25/6 164 13/6
190 8/7 174 23/6
200 18/7 184 5/7
217 4/8 194 13/7
220 7/8 204 23/7

214 2/8
221 7/8

DOY – Day of the year.
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dhus/#/home); added value product can be obtained through the
Sentinel Application Platform (SNAP), a software package tailored to
the Sentinel-2 characteristics, developed by ESA (http://step.esa.int/
main/toolboxes/sentinel-2-toolbox/sentinel-2-toolbox-features/). In
particular the Sen2Cor algorithm (Müller-Wilm, n.d) process Level 1C
data to an orthoimage Bottom of Atmosphere (BoA) corrected re-
flectance product (Level 2A), while the Biophysical Processor computes

crop biophysical products (Level 2B) from Sentinel-2 reflectance data.
The technical characteristics of the MSI on-board the Sentinel-2

satellites are outlined in Table 2.
In the context of FATIMA project, the University of Natural

Resources and Life Science (BOKU) has implemented for all the project
study areas a data service platform for processing Sentinel-2 data
(Vuolo et al., 2016). The service platform provides access to individual
Sentinel-2 granules (ortho-rectified image tiles of 100×100 km2 in
UTM/WGS84 projection) processed at level-2A (BoA) using the ESA
Sen2Cor algorithm (Müller-Wilm, n.d). The platform also provide
value-added products - obtained from the Sentinel Application Platform
(SNAP) biophysical processor - with a focus on agricultural vegetation
monitoring, such as LAI, and Fraction of vegetation Cover (Fvc: used in
this study for the calculation of the Rn - net rainfall)., The improved
spectral and spatial resolution of the Sentinel-2 satellite data allows the
application of canopy radiative transfer models and computational ef-
ficient inversion techniques based e.g. on artificial neural network
(ANN) to estimate crop biophysical parameters. In particular for LAI
and Fvc, are obtained by an ANN algorithm trained using radiative
transfer simulations from PROSPECT (Jacquemoud and Baret, 1990),
and SAIL (Verhoef, 1984) models, and tailored for Sentinel-2 data.
Detailed description of the algorithm can be found in Weiss and Baret,
2016. The algorithm requires eight Sentinel-2 spectral bands (B3-B7,
B8a, B11 and B12) at 10 and 20m pixel size, which are all resample to
10m pixel size to derive LAI and Fvc. Experimental studies have shown
the accuracy of this approach for LAI (Atzberger and Richter, 2012;
Vuolo et al., 2016; Weiss and Baret, 2016) estimation in different en-
vironments and crops.

The broadband surface albedo is calculated as the integration of at-
surface reflectance across the shortwave spectrum (D'Urso and Calera,

Fig. 4. Layout of experimental field. Blue dot represents the soil moisture measurements point, while green dot represents crop parameters (LAI, spectral reflectance
and chlorophyll content) measurements point. Sentinel-2A grid (pixel at 10m resolution) is also shown. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Table 5
Date of crop parameter field measurements.

Year DOY DAT Date LAI MC-100 Field spec

2016 159 35 07/06 x
160 36 08/06 x x
174 50 22/06 x
175 51 23/06 x x
188 64 07/07 x
189 65 08/07 x x
209 85 27/07a x

2017 156 37 05/06 x x x
174 55 23/06 x x
194 75 13/7 x x
214 95 2/8 x x

DOY – Day of the year.
DAT – Day after transplanting.
LAI – Leaf area index.
MC-100 – Chlorophyll concentration meter instruments (Apogee Instruments,
2014).
Field Spec – Portable spectroradiometer instrument.

a For this date, due to the presence of cloud not Field Spec measurements
neither Sentinel-2A image were available.
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2006), as shown in equation (Eq. (1)).

∑= ∙α ρ ω| |
bi bi bi (1)

where α is albedo, ρbi is surface reflectance for a given band bi at Level-
2A Sentinel-2A surface reflectance, obtained using the ESA's Sen2Cor
algorithm (Version 2.3.1), ωbi is the weighting coefficient representing
the solar radiation fraction derived from the solar irradiance spectrum
(Thuillier et al., 2003) within the spectral range (spectral response
curves) for bands bi (indicated with Esun in Table 3) and is calculated as
equation (Eq. (2)):

∫
∫

=
∙

∙
ω

R dλ

R dλ
bi

LO
UP

sλ

sλ0.4
2.4
bi

bi

(2)

where Rsλ is extra-terrestrial irradiance for wavelength λ (μm); and UPbi
and LObi are upper and lower wavelength bounds for Sentinel-2A band
bi, respectively.

Since 19th December 2017, a new version of the spectral response

function is available (https://earth.esa.int/documents/247904/
685211/S2-SRF_COPE-GSEG-EOPG-TN-15-0007_3.0.xlsx - accessed on
9th February 2018). The site provides an excel file with the spectral
response functions. All the visible and near infrared bands have
changed a little, even if only three bands have significant changes, B1,
B2 and B8: B2 equivalent wavelength changes by 4 nm, B1 by 1 nm, and
B8 by 2 nm. The SWIR bands did not change. Table 3 lists the bands
settings for Sentinel-2A bands 1, 9, 10 (all not available after Sen2Cor
processing), 8a (in the spectral range of band 8) and band 12 (negligible
value for weighting coefficient) not taken into account for the albedo
calculation.

This calculation procedure has been validated by BOKU through a
comparison to ground measurements of albedo obtained with a
Campbell CNR-1 radiometer installed at 2m height from top of canopy,
over a broad range of LAI values and vegetation classes (Vuolo et al.,
2016).

Table 4 shows the temporal frequency of the Sentinel-2A (tiles
32TQM and 32TQN) cloud-free images, and derived products (α, LAI)

Fig. 5. Relationship between potential evapotranspiration (ETp) and crop height (hc) ranging from 0.1 and 0.6 m during season 2016 (top graph) and 2017 (bottom
graph).
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which allowed to monitor the vegetation development throughout the
2016 and 2017 growing seasons.

3.3.3. In-situ crop and soil measurements
Crop and soil were characterized in selected geo-located positions

during field campaigns carried in the experimental site at main phe-
nological stages in the growing seasons 2016 and 2017. Crop mea-
surements consisted of LAI, spectral reflectance and chlorophyll con-
tent, executed in 5 specific locations distributed along 4 transects of
60 m in each field (Fig. 4, green dots).

Measurements were taken in coincidence of Sentinel-2A acquisi-
tions (Table 5).

The LAI was measured non-destructively by using a portable canopy
digital analyzer (LAI-2000 Plant Canopy Analyzer, LI-COR), under
conditions of diffuse illumination at sunset, in the day antecedent to the
spectroradiometer measurements. The LAI value at each location is
resulting as the average of 3 repetitions of 8 below canopy readings
taken within a 5m radius of the georeferenced location. An opaque
cover (view cap) on the optical sensor, with an open wedge of 180°, was
used to avoid the influence of neighboring obstacles, such as the op-
erator (Gower and Norman, 1991; Li-Cor, 1992).

Canopy reflectance was measured by means of portable spec-
tradiometer (ASD FieldSpec HH, Boulder, USA) operating in the wa-
velength range 325–1075 nm with 1 nm spectral resolution, controlled
by a laptop equipped with the software provided by the instrument
manufacturer. The instrument lens had a field of view of 25° and it was
positioned at about 1m above the canopy. All spectral readings were
collected under clear sky conditions with no wind, between 9:30 and
11:30 local time (satellite overpass around 10:30 UTC), in correspon-
dence of the same location of the LAI measurements. The measurement
protocol included: collection of white reference on a calibrated
Spectralon panel of dimensions 25×25 cm (SRT-99-100 Labsphere,
Sutton, USA); collection of 3 sets of 10 reflectance spectra within 2m
from the reference location, which were successively averaged to re-
duce the signal/noise ratio of each measurements.

Soil water content was recorded continuously at 0.3m depth in 5
points in the center of each pair of transect for the crop measurements
(Fig. 4, blue dots), distant 15m each other; in addition, at the center
position of the transect a Profile probe PR 2/6 (Frequency Domain
Reflectometry) giving readings at 10/20/30/40/60 and 100 cm
(https://www.delta-t.co.uk/product/pr2/). All the probes of the same
transect were connected to a GP2 datalogger (Delta T device, https://
www.delta-t.co.uk/product/gp2/). Data from GP2, expressed as volu-
metric water content and °C, had been retrieved each other week on
average during growing season. The soil water content readings were

used for calibrating and validating the soil water balance in EPIC (see
Section 3.4.2).

3.4. Methodology

3.4.1. Determination of crop evapotranspiration by Earth Observation-
direct approach

The EO-direct approach for calculation of ETp described in Section 2
is applied by using the crop parameters (α and LAI) derived from
processing of Sentinel-2A data, assuming fixed values for the stomatal
resistance (sr≈ 100 sm−1) and hc (0.4 m), for the calculation of the
aerodynamic resistance, in the case of herbaceous crop. The assumption
of a constant hc is consistent with the sensitivity analysis published by
Consoli et al. (2006) – which report a value of 0.6 m for tree crops - and
D'Urso (2010), considered valid for irrigated environments with the
radiative component of the FAO-56PM equation dominant over the
aerodynamic term. So doing, the calculation of ETp requires standard
meteorological data, LAI and surface α. To confirm the validity of this
assumption a sensitivity analysis of the influence of fixed hc (0.4 m) on
ETp was performed for the year 2016 and 2017 (Fig. 5).

The assumption of average constant value of hc= 0.4m determines
an error percentage, ranging from −2% (as respect to the crop eight of
0.1 m) and 1% (as respect to the 0.6m crop eight), on ETp cumulated
value during irrigation seasons 2016 and 2017 (from May to August).

The IWR is then calculated by considering the following simplified
equation (Eq. (3)):

= −IWR ET Rp n (3)

where Rn is net rainfall. Runoff and percolation are considered negli-
gible considering the low amount of rainfall during the two growing
seasons.

Rn was calculated in equation (Eq. (4)) as a function of the actual
rainfall (R), LAI and Fractional Cover (Fvc) by using the semi-empirical
model of interception proposed by Braden (1985).
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where R is the actual rainfall in (mmd−1), and a in (mm d−1) is an
empirical parameter representing the crop saturation per unit foliage
area (~0.28 for most crops).

3.4.2. Soil water balance and actual evapotranspiration computing using
EPIC model and calibration procedure

Micrometeorological methods such eddy-covariance are often not

Fig. 6. Spectral variation of tomato reflectance curves for 2016 (a) and 2017 (b). In situ LAI (measurement taken on 7th and 22th June and 7th July) for 2016, and
LAI from Sentinel-2A for 2017 are also reported.
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applicable in many conditions, due to their requirements in terms of
crop uniformity and plot extension; these limits unfortunately occur
very often in Mediterranean agricultural systems, due to high frag-
mentation and complex landscape. Hence, in order to validate the EO-
based estimation of ET for the irrigated tomato and to verify the ex-
istence of the standard conditions underlying the PM direct approach,
the soil water balance (SWB) was calculated using the EPIC biophysical
model (Williams, 1995). EPIC successfully tested in many pedo-climatic
situations (Farina et al., 2011) was selected for its capability of simu-
lating daily crop growth and SWB. Mandatory inputs to run the model
are: meteorological data, soil characteristics, crop growth data (i.e.
plants density and crop growing period) and management (such as
tillage, irrigation volumes and amount of fertilizers distributed). EPIC
was calibrated using LAI (derived from field measurements and Sen-
tinel-2A) and observed soil water content.

Fig. 7. Comparison between field spectral measurements (black line) and Sentinel-2A Bottom-of-Atmosphere (BoA) spectral reflectance (black circle point) for 2016
(left panel) and 2017 (right panel). Standard deviation for both Filed Spec (gray area) and Sentinel-2A (vertical bar) are also shown. The plots include only Sentinel-
2A data in the spectral domain (350–1075 nm) corresponding to the Field Spec in-situ data.

Table 6
Statistical parameters for Leaf Area Index (LAI) values from field observation
and Sentinel-2A product (n= 60).

LAI
[m2/m2]

In-situ
LAI-2000

Sentinel-2A - LAI by ANN

Minimum 0.61 0.81
Average 2.35 2.51
Median 1.77 2.77
Max 4.37 4.86
Range 3.76 4.05
Standard deviation 1.24 1.05
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SWB (mm) is estimated by the model as the difference between the
water inputs (rainfall + irrigation) and outputs (runoff, percolation,
and evapotranspiration) (Williams, 1995) at rooting depths, con-
sidering different layers. Actual rainfall and irrigation were input to the
model. Runoff volume is estimated by the curve number technique
(USDA, 1972). Water that does not run-off percolates and flows from
the surface to the bottom layers, when soil water content exceeds Field
Capacity. EPIC model offers several equations to calculate potential ET.
Considering the experimental site conditions and data availability, the
PM method was selected because it perform better in terms of crop
growth and SWB. During calibration step, a set of sensitive model
parameters at crop and soil level were selected and adjusted to max-
imize the agreement between model simulation and observations. For
the variables affecting the crop growth, plant density and harvest index
were input to the model according to the values measured in the field.
Maximum LAI, the fraction of growing season when LAI declines, and
the LAI decline rate were adjusted, in order to fit the estimated daily
LAI output to data estimated by Sentinel-2A. At soil level, the value of
the following parameters was modified respect to default values: root

growth-soil strength (set to 1.5 to minimize stress on root growth), soil
evaporation coefficient (set to 1.5 to better predict soil evaporation rate
from top 20 cm soil depth) and the PM adjustment factor (set to 1 to
better estimate PM-ETp).

3.4.3. Statistical analyses
Four types of metrics were calculated in order to assess the per-

formance of the simulations:

1. the Root Mean Square Error (RMSE), a difference-based evaluation,
giving an indication of the coincidence or lack of coincidence be-
tween simulated and measured value, was calculated. RMSE in-
dicates the difference between measured and simulated values and
has the advantage of producing a result in the same units as that
used for measurement. The calculated RMSE can be compared with
the size of difference that is considered acceptable;

2. the Pearsons's r coefficient of correlation that is a measure of the
correlation between measured and predicted data. It assesses the
linear relationship, i.e. values of one variable show a continuous
increase or decrease as values increase or decrease on a second
variable, even though the trend may not be linear. High values of
the Pearson correlation coefficient suggest high predictability.

3. the linear regression R2 was also used. In the regression between
observed and model-estimated values estimates of the intercept and
the slope are good indicators of accuracy. Best values of intercept
and slope are zero and 1, respectively.

4. the Root Mean Square Difference (RMSD) was used in order to
compare two estimates (as in the case of the two modelled estimates
of ET, FAO-56 PM and EPIC), rather than comparing an estimate and
measured value.

Fig. 8. Scatterplot (year 2016, n= 18) of field LAI measured vs. Sentinel-2A
LAI product; reported dates are for field measurements while corresponding
date of Sentinel-2A acquisition images are 8th and 23rd June, and 8th July.

Fig. 9. Time evolution of Sentinel-2A LAI product for the growing seasons 2016 (a) and 2017 (b). For year 2016 average value of LAI from field measurements
(included the date of July 27th where no Sentinel-2A images were available) are also plotted in the respective graph. (yellow square= transplanting date; red
square= harvesting date). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 7
Soil bulk density (g/cm3), water content at Field Capacity (vol/vol) and at
Wilting Point (vol/vol) for the top and subsoil of the soils in the 2016 and 2017
experimental trials.

Soil feature Topsoil Subsoil

2016 plot
Bulk density 1.22 1.38
Field Capacity 27.2 32.8
Wilting Point 13.6 17.2

2017 plot
Bulk density 1.25 1.37
Field Capacity 28.7 31.7
Wilting Point 14.1 14.7
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4. Results and discussion

This section first focuses on the analysis of the spectral consistency
of Sentinel-2A BoA reflectance data, and quality of Sentinel-2A data for
the retrieval of LAI, compared with ground measurements. Then, it
presents the inter-comparison of the EO-based ETp with the ETa derived
from the SWB predicted by EPIC model.

4.1. Spectral data

To verify the spectral consistency of Sentinel-2A BoA reflectance
data with ground reflectance measurements, in different atmospheric
condition and illumination-viewing geometry of the sensors, we have
used the spectroradiometer measurements reported in the Section 3.3.3.

Reflectance spectra of tomato canopy varied significantly during the
growing season and between years. Fig. 6 presents the continuous
spectra, from Field Spec, for the two-experimental campaigns, with the
corresponding in-situ LAI for 2016 and LAI from Sentinel-2A for 2017.

At the beginning of the inflorescence emergence stage (beginning of
June) and in correspondence of low LAI, the reflectance in the Red
spectral region (maximum Chl absorption around 670 nm) is higher,
while the NIR reflectance (from 785 to 900 nm) is lower. By the in-
creasing of LAI, (in the mid-season second half of June until first decade
of July - at the flowering stage) reflectance in the Red region decreases,
conversely the NIR reflectance increases. The difference in the increase
of reflectance in the red-edge (from 710 to 750 nm), i.e. the slope
connecting the local minimum reflectance in the Red region, maximum

Fig. 10. Daily evolution of Soil Moisture balance (mm d−1) represented with gray bars, calculated starting from Frequency Domain Reflectometry (FDR) measures in
the 0–50 cm RSMZ (gray line), and in the 50–100 cm deep soil zone (blue line) for 2016 (top chart), and 2017 (bottom chart). With orange dotted line are showed also
the daily ETp values (mm). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 8
Water losses by deep percolation according to the irrigation volumes provided
by the farmer for the 2016 and 2017 crop seasons.

Crop season 2016a 2017

Deep percolation (m3/ha) 636 3049
Total irrigation (m3/ha) 3340 6620
% of water losses on total irrigation 19 46

a Water losses were observed only during the first 5 May–8 June period
(irrigation supply was applied in two times by sprinkler system).
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absorption of chlorophyll, and the region with high reflectance values
of the NIR plateau, affected by plant cell structure and leaf layers can be
also clearly noticed.

The peaks around 760 nm for the acquisition of 23rd June 2016 and
23rd June 2017 were due to variability in the atmospheric water
column which are generally smoothed in successive steps of the ana-
lysis.

In Fig. 7 the values of Sentinel-2A BoA reflectance are superimposed
to the spectral measurements taken in coincidence of the satellite ac-
quisition. The BoA values for the Sentinel-2A images are representing
the average value for the portion of field where spectral measurement
were taken (around 20 pixels at 10m resolution) while the spectra
represented are the average of all the measurements taken. A good
agreement between Sentinel-2A signatures and the reflectance mea-
sured with the Field Spec was found, although differences can be no-
ticed among different spectral bands and surface reflectance changes
within the acquisition dates. Although the spectral variation, the crop
reflectance curves maintain the same behavior in both years. Different
value (in terms of reflectance units) can be observed between the two-
years (lower in 2017 with respect to 2016). This can be ascribed to the

climatic conditions in the two years, characterized by different seasonal
rainfall and temperature patterns.

4.2. Leaf Area Index data

The quality assessment of the LAI derived from the Sentinel-2A was
performed through comparison with non-destructive field reference
measurements (LAI-2000 Plant Canopy Analyzer), described in Section
3.3.3. Table 6 reports the main statistical parameters for the 2016 field
campaign related to LAI measured and satellite estimates.

The satellite estimations and the ground observations are sig-
nificantly correlated with one another, r= 0.83, p < 0.01, with
R2=0.69, and RMSE of 0.56m2/m2 (25% of the mean value), con-
firming the high potential and quality of Sentinel-2A data for the re-
trieval of LAI based on the full spectral information available
(Herrmann et al., 2011; Vuolo et al., 2016). Fig. 8 shows the scatterplot
(for three different date) of field and satellite LAI estimates of years
2016.

The time evolution of LAI - according to phenological stages from
BBCH scale (Meier, 2001) - for the 2016 and 2017 growing seasons
(from transplanting to harvest) is described in Fig. 9. In 2016 during the
month of May at leaves development and formation of side shoots stage
(BBCH 1-2) the LAI value was<1m2m−2. From the first week of June
at inflorescence emergence stage (BBCH 5) canopy progressively devel-
oped, reaching the maximum around the second half of June at the
flowering stage (BBCH 6), with LAI values around 3.5 (Sentinel-2A) and
2.96 (field measurements) in 2016, and 2.47 in 2017. From this peak,
during the development of fruit (BBCH 7) and ripening of fruit and seed in
(BBCH 8) the LAI decreased down to the minimum before the harvest.

Due to the different meteorological trend characterized by different
seasonal rainfall and temperature patterns, there is a clear decrease on
the LAI in 2017 as respect to the 2016. This decrease confirms the
importance of LAI on the crop productivity (Breda, 2003). In fact, there
has been a large difference in yield in the two year, with 90.7 ton/ha
(2016) and 72.3 ton/ha (2017), and this is clearly visible in the Sen-
tinel-2A data confirming its potential to detect actual crop development
conditions.

4.3. Soil Moisture, crop evapotranspiration and Irrigation Water
Requirements

To evaluate the Soil Moisture balance, it was necessary to take into
account some different physical and hydrological characteristics of the
soils of the two experimental plots (2016 and 2017). Soil dry bulk
density (BD), water content at Field Capacity (FC) and at Wilting Point
(WP) measured at the beginning of each trial as average for the top and
subsoils are reported in Table 7. These data were used to convert the
moisture volumes measured with Frequency Domain Reflectometry
(FDR) into mm of water present in the soil space (voids volumes).

The daily evolution of Soil Moisture content (mm d−1) measured by
Frequency Domain Reflectometry (FDR) probes, normalized in two
depth ranges as the Root Zone Soil Moisture (RZSM) from 0 to 50 cm
soil thickness, and the deep soil zone (not affected by most of the roots),
from 50 to 100 cm of depth, are reported in Fig. 10 for the two years
under investigation (2016 and 2017).

According to these two soil thicknesses, a simple daily balance was
performed by considering also the Rain and the ETp.

According to the Soil Moisture balance, as previous showed in
Fig. 10, an overall estimation of the water losses due to deep percola-
tion is reported in the following Table 8.

The Fig. 10 clearly shows as in the 2016 the water losses are con-
centrated in the first period of the crop season, form May to beginning
of June. After this date the irrigation scheduling seems to be more ef-
ficient and the balance is always positive, as expression of the differ-
ence of moisture from RSZM to the deep soil zone. On the contrary, in
the 2017, the soil moisture balance is always negative; the water

Fig. 11. Comparison between measured Frequency Domain Reflectometry
(FDR) probe content (mm d−1) and simulated (EPIC) Root Zone Soil Moisture
(RZSM) content (mmd−1), at 0–60 (2016 - from 6th May to 1st august n= 89)
and 0–40 (2017 - from 6th June to 2nd August n=56) cm soil depth.

Table 9
Statistical parameters for ETp, and ETa during the period from 5 May to 8
August for 2016 and 2017 growing seasons.

ETa ETp

2016
Minimum 0.46 0.49
Average 3.30 3.32
Max 5.78 6.02
Range 5.51 5.53
Seasonal 314 315

2017
Minimum 0.33 0.33
Average 3.53 3.66
Max 6.80 6.90
Range 6.47 6.57
Seasonal 336 348
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amount given with the irrigation scheduling were always overestimated
by the farmer, despite the ETp trend (and consequently the IWR cal-
culated by EO). These different trends are to be related to the different
soil hydrological characteristics, topographic position (on fair slope or
flat area) and also to the fixed irrigation scheduling adopted by the
farmer.

To evaluate the effectiveness of the soil water balance, a further
comparison between FDR measures and these predicted by the EPIC
model was performed in the RZSM depth range, as reported below in
Fig.11. Good agreement (r= 0.86, R2= 0.75, p < 0.01 and RMSE
21.07mmd−1) between simulated and measured soil water content in
the root zone was observed.

With regards to the estimation of the daily ETa, EPIC computes
evaporation from soil and plant separately. Potential soil water

evaporation is estimated as a function of potential evaporation and LAI
using also exponential functions of soil depth and water content. For the
plant evaporation the estimation is a linear function of potential eva-
poration and LAI.

Table 9 provides an overview of ETp, and ETa (EPIC) trends for the
period from May 5th to August 8th for 2016 and 2017 growing seasons.

ETa, derived from EPIC model, varied from 0.46mmd−1 (May 20th)
to 5.78mmd−1 (June 25th) in 2016, and from 0.33mmd−1 (7th May)
to 6.80mmd−1 (20th June) in 2017. The seasonal values of ETa in the
growing season ranged from 314mm in 2016 to 336mm in 2017.

ETp varied from 0.49 (11th May) to 6.02mmd−1 (23th June) in
2016, and from 0.33 (7th May) to 6.90mmd−1 (2nd July) in 2017. The
seasonal values of ETp in the growing season ranged from 315mm in
2016 to 348mm in 2017.

Fig. 12. Actual evapotranspiration (ETa) vs. potential evapotranspiration (ETp) estimated by EO direct approach from 5th May to 8th August at main phenological
stages, in 2016 (a) and in 2017 (b) processing tomato growing season.

Table 10
Micro-irrigation applied in 2016 and 2017 growing season (volume in mm/ha).

2016 Total month

May Day 5 44
Volume 44a

June Day 9 13 16 19 20 22 25 28 146
Volume 44a 15 15 15.6 15.6 15.6 12.5 12.5

July Day 1 4 7 10 13 16 19 22 26 30 133
Volume 12.5 12.5 12.5 14.4 14.4 12.5 13.7 13.7 14.4 12.5

August Day 1 4 7 41
Volume 13.7 13.1 14.3

Total season 364

2017 Total month

May Day 14 31 88
Volume 44a 44a

June Day 8 13 20 23 26 29 200
Volume 59.3 45.6 18.3 31.9 18.3 27.4

July Day 3 6 8 11 13 15 17 19 22 24 26 28 347
Volume 32 22.8 41 32 32 27.4 36.5 32 23 18.3 18.3 32

August Day 2 27
Volume 27

Total season 662

Bold highlighted the total amount per month and season.
a Sprinkler irrigation. The amount of water applied with this irrigation system has been estimated based on the amount of water delivered of each plant (around

5 l) multiplied for the number of plants per ha (29.000).
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A good agreement was found, r= 0.85 p < 0.01, R2= 0.73 for
2016, and r= 0.83 p < 0.01, R2= 0.70 for 2017, and RMSD of 0.99
and 1.08mmd−1for year 2016 and 2017 respectively, between tomato
actual evapotranspiration (ETa) derived from EPIC model, and ETp es-
timated from EO-direct approach. The scatterplot in Fig. 12 shows the
average daily value, for the main phenological stage, of ET aggregated
at field scale (each point represents the average value of 20 measure-
ments) derived from EPIC model (ETa) and EO-direct approach (ETp).

Irrigation was applied starting from transplanting and ended around
one week before the harvest. The first irrigations were provided by
sprinkler system, while for the rest of the season micro-irrigation was
applied (Table 10).

Table 11 reports the irrigation volumes provided by the farmer,
with micro-irrigation system, and the IWR derived by EO-direct ap-
proach in the same period.

To compare the evolution of IWR estimated by EO-direct approach
and the actual irrigation applied by the farmer, daily value of IWR was

Table 11
Comparison between water recorded data, and IWR estimate from EO-direct
approach method during the two growing seasons.

Year Month Water meter IWR

Volume (mm/ha)

2016 May 44 8
June 146 103
July 133 135
August 41 26
Total 364 272

2017 May 88 49
June 200 117
July 347 150
August 27 22
Total 662 338

Fig. 13. Comparison between irrigation applied (mm) and accumulated IWR (mm) at same date, for year 2016 (top chart), and 2017 (bottom chart). Cumulated
rainfall (mm) is also shown.
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accumulated at the same day of the irrigation as shown in Fig. 13.
The analysis of the data highlight that in both year the amount of

water applied by the farmer is higher than satellite IWR estimates, al-
though with differences between the two years (around +20% in 2016,
and +50% in 2017). This discrepancy could be explained by con-
sidering the following factors:

• Lower precipitation (−75%) in 2017 compared to 2016

• Higher percolation rate, as shown in Fig. 10, below the root zone

• Soil characteristic together with the prolonged drought period fa-
vored the creation of very deep cracks, the increase of evaporation
from cracks (from 12 to 30%) and the water loss from the root zone
through percolation down to the bottom of cracks. Ritchie and
Adams (1974) observed that cracks can increase evaporation by
12–30% (0.3 to 0.8 mm d−1). Thus, the effect of cracks on water
vapour movement and soil moisture evaporation is relatively im-
portant after a dry layer is formed at uncovered soil.

Those factors influenced the farmer behavior which, especially in
situation of drought period tends to apply quantities of water that are
considerably higher than the real needs of the crop, also considering
that in this WUA the water allocation (and the application of corre-
sponding fees) is done based on of the extension of irrigated area and
not of water volumes. As a consequence, farmers are not motivated to
adopt efficient water saving strategies, which results in generalized
over-irrigation and misuses of water resources.

Fig. 14 shows the temporal evolution of the main parameters (LAI,
ETp and IWR) derived from this study for year 2016.

4.4. Web-GIS Satellite-based - IAS setting up

Some initiatives, implementing satellite-based irrigation advisory
services, were developed and they proved to provide economic benefits
creating advantages for the environment and opportunities for all of the
users of water resources (Calera et al., 2017). Through these services
the farmers and managers of water resources, evaluate the volume of

Fig. 14. An example of time-series maps of Leaf Area Index (LAI), potential evapotranspiration (ETp) estimated by Earth Observation (EO) direct approach, and
Irrigation Water Requirements (IWR) for the tomato study field.
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irrigation water to be applied, get estimates of the growth and phe-
nology of crops, and know the meteorological conditions in their area.
For them, it means (i) a correct and economic scheduling of irrigation;
(ii) a reduction of water and energy inputs; (iii) an optimization of work
and production. In the FATIMA project, for the Italian pilot area two
web-application have been developed: IRRISAT (http://fatima.irrisat.
com/) (Fig. 15), dedicated to farmers and IRRISAT MTE (http://fatima.
irrisat.com/italy/) (Fig. 16) dedicated to WUA. The maps and suggested
irrigation volume applications are timely published on a dedicated web-
based dashboard interface, with restricted access to farmers and water
basin authorities, in order to better control the irrigation process and
consequently improve its overall efficiency. An intuitive dashboard has
been developed to give farmers the ability to monitor the canopy de-
velopment, irrigation advice, evapotranspiration at plot level. Data as
time series of LAI, ETp beside other variables of potential interest (e.g.

time series of IWR, rainfall, and air temperature) are shown in charts
(Fig. 15). A similar interface was developed for the Irrigation Consortia
and Water User associations. The tool allows the evaluation of crop
water requirements aggregated at district level, for a more efficient
management of the conveyance and distribution network. The GIS tools
are going to be further expanded to link the financial management of
the irrigation fees at farm level to the IWR (Fig. 16).

5. Summary and conclusion

This manuscript provides the descriptions of a methodology to es-
timate ETp of processing tomato crop (Solanum lycopersicum L.) and the
associated quantitative calibration of the remote sensing reflectance
products derived from the MSI sensor on board Sentinel-2A, which are
critical for the retrievals of ET constituents' parameters like LAI and α.

Fig. 15. IRRISAT: time series of ETp, IWR and air temperature (minimum, average and maximum values).
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The main advances provided by our research activities is – thanks to the
improved spectral/spatial and temporal resolution of the Sentinel-2
satellite – to provide a more physically-based methodologies (i.e. ap-
plication of radiative transfer models), to detect the actual crop de-
velopment and the estimate of the crop parameters (e.g. LAI) which
influence the entity of evapotranspiration fluxes and hence the IWR, by
using all the available spectral information, surpassing the traditional
Kc approach based on tabulate data (coming from paper FAO-56), or on
the linear relationship between Kc and VIs, which uses a limited
numbers of spectral bands, and thus is not able to detect reflectance
behavior of surface patterns with the same accuracy.

The results obtained confirmed the spectral consistency of Sentinel-
2A data with ground reflectance measurements and the high potential
and quality of Sentinel-2A data for the retrieval of LAI. Results indicate

a good agreement between ETp estimated by EO direct approach and
the ETa measured by means of a calibrated SWB. This approach con-
firms the validity of combining Penman-Monteith model with EO based
vegetation parameters.

The results indicate that farmers tend to over-irrigate the crop. This
behavior can mainly ascribed to the following factor:

• unavailability of supporting information about climate and canopy
development, and

• in most cases, even in presence of metered distribution networks,
the water allocation (and the application of corresponding fees) is
done on the basis of the extension of irrigated area and not of water
volumes. As a consequence, farmers are not motivated to adopt ef-
ficient water saving strategies, which results in generalized over-

Fig. 16. IRRISAT Map Time Explorer (MTE): time series of NDVI, LAI, ETP and IWR.
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irrigation and misuses of water resources.

In this context the availability of reliable, objective and timely in-
formation about the actual development of crop (and hence its
Irrigation Water Requirements) allows the implementations of efficient
water distribution criteria based on the actual irrigation needs of crops.
The enhanced capabilities provided by ESA Sentinel-2 (A and B) mis-
sion, with global coverage at 10 days revisit frequency of each single
satellite (5 days combined constellation) and 10–20m spatial resolu-
tions, are particularly suitable for mapping crops and irrigated areas,
and related IWR, with satisfactory accuracy and in a cost-effective way,
also considering the opportunities for combining the data with that
from complementary systems, such as Landsat-8, to obtain cloud free
dense time series over large geographic regions.

The availability of this unprecedented multi-spectral observations
combined with the impressive.

progresses in the field of Information and Communication
Technologies can facilitate the improvement/development of IAS using
EO data as an operational service for supporting irrigation water
management. Hence, nowadays satellite images are delivered via
Internet within few hours from the acquisition time, and they can be
quickly processed to get final-users products distributed in near-real
time.

The services can provide to farmers and water resource manager
sounder quantitative information about the spatial/temporal variability
of crop growth conditions and its related IWR, improving crop pro-
duction efficiency and reducing its environmental impact.

This information would be helpful to achieve the commitment to the
increasingly stringent regulatory requirements (e.g. the EU Water
Framework Directive 2000/60, water metering and full cost recovery,
and the Rural Development Program 2014–2020, Ex-ante con-
ditionalities on Water Resources), which imposes a substantial increase
in the efficiency of water use in agriculture for the next decades from
farmers and irrigation managers.
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