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Abstract
Over the last few decades, due to its relevant function in male reproduction assessment, important molecular achievements
have been made in the molecular characterization of estrogen receptor genes in various species. Our work focuses on a male
seasonal breeder, the bioindicator Podarcis sicula, because of its peculiar gonadal anatomy, similar to that of humans. Based
on the cloned lizard’s gene sequence fragment of estrogen receptor beta, esr2 (GenBank JN705543.1), we found DNA
binding domain identity of 99% as well as a homologous sequence with humans. Furthermore, in order to better illustrate
how this gene is regulated in the lizard’s reproductive system organs, we investigated the transcriptional activity of esr2 in
brain and testis tissues during mating and winter stasis phases of the reproductive cycle. Quantitative real time-polymerase
chain reaction (qRT-PCR) analyses performed on male gonadal tissues demonstrate a significant increase in esr2 expression
during mating compared to the winter stasis period, while in the brain, esr2 shows the opposite trend. Next, we provide
morphological evidence of the detrimental effect on spermatogenesis of a pure anti-estrogen treatment (ICI 182,780) and
the corresponding effect on esr2 expression in lizard specimens during the mating period which, upon treatment, was found
to be no different from the expression levels in winter stasis both in the brain and in the testis. In this study, we explore the
potential use of Podarcis sicula as a model for human testis development and maturation, as well as esr2 expression for
toxicological screening in one-testis gonadectomy.

Keywords: esr2 phylogenetic similarity, Podarcis sicula, qRT-PCR, ICI 182, 780, toxicological assessment

Introduction

Estrogen receptors, like all members of the nuclear
receptor superfamily, share a common domain orga-
nization consisting of a region located in the central
part of the gene that binds DNA (DNA binding
domain, DBD) which is highly conserved; a domain
involved in binding with the ligand, in the dimeriza-
tion and transactivation (ligand binding domain,
LBD); variable N-terminal domain and C-terminal
regions; and a hinge region between the DBD and
LBD showing phylogenetic steroid receptor conser-
vation (Gronemeyer & Laudet 1995; Mahfouz et al.

2016). Estrogen receptor transcriptional activity is
induced by estrogens in response to changing
demands due to factors such as female and male
reproductive status, cognitive function, mood and
environmental pollution (Zhang et al. 2009;
Tohyama et al. 2016; Cooke et al. 2017). In previous
work in this field, estrogen receptor alpha (ER-
ALFA, esr1) and estrogen receptor beta (ER-
BETA, esr2) were immunodetected, and their
cDNA was cloned and quantified in many verte-
brates (Katsu et al. 2004; Verderame & Limatola
2010; Zhang et al. 2017). Further, in teleost fish a
third estrogen receptor class was identified and
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named gamma (ER-GAMMA) (Hawkins et al.
2000), while in some sharks the presence of only
one estrogen receptor form was found (Katsu et al.
2010). All cloned receptors responded similarly to
estrogen level variations whether with down- or up-
regulation of expression in relation to tissue, gender,
and the season for each species. However, they
responded differently to estrogenic endocrine dis-
ruptors (Greytak & Callard 2007; Tohyama et al.
2016). Signal transduction through these nuclear
receptors leads to dramatic changes in gene expres-
sion programs in different vertebrate cell types, typi-
cally due to their binding to DNA or to transcription
modulators (Guerriero & Ciarcia 2001; Guerriero
2009; Guerriero et al. 2018b). esr1 and esr2, in parti-
cular, exhibit different biological roles and functions,
as demonstrated by knock-out experiments in mice
(Blatter & Mahoney 2015). The proposed estrogen
receptor functions of esr2, in particular, include anti-
proliferative action, regulation of apoptosis, control
of antioxidant gene expression, modulation of
immune responses and DNA repair (Nikolos et al.
2018). Furthermore, esr2 is already known to be a
key element in the signal transduction pathway for
endocrine disruptor compounds (Tohyama et al.
2016). Xenobiotics, as well as substances able to
compete with estrogens in the binding with esr2,
even if they were usually unable to activate it, are
known as anti-estrogens (Greytak & Callard 2007;
Verderame et al. 2014; Tohyama et al. 2016; Walker
& Gore 2017). Some of the most used anti-estrogens
in cancer therapy are tamoxifen (Nolvadex) and
raloxifene (Evista), which act as agonists or antago-
nists, depending on the target cells (Zhang et al.
2007; Arevalo et al. 2011; Jensen et al. 2018).
Another known anti-estrogen is the ICI 182,780
(trade names Faslodex, Fulvestrant), which only
exhibits anti-agonistic action toward estrogens and
is thus considered a pure anti-estrogen (Alfinito et al.
2008; Guerriero et al. 2012; Gao et al. 2016). It is
able to cross the blood-brain barrier, penetrate into
brain and hypothalamic tissues, and affect known
neuroendocrine functions. The esr2 gene has been
studied in different tissues in reptiles including brain
and gonads (Katsu et al. 2004, 2010; Verderame
et al. 2014; Mahfouz et al. 2016), but its neuronal
expression has never been investigated in relation to
reproductive events although its importance in the
regulation of reproduction is unquestionable. The
esr2 gene coding for ER-BETA has been cloned
and characterized in many fishes, birds, amphibians
and reptiles (Katsu et al. 2004, 2010; Katsutoshi
et al. 2007; Verderame & Limatola 2010; Zhang
et al. 2014, 2017). The study of its expression in
the brain may allow the monitoring of species.

Specifically, the expression of esr2 can be used as a
biomarker and its assessment may be considered a
useful component of strategies for the conservation
of species at risk of extinction (Guerriero et al.
2018b). This is because gametogenesis is under the
control of the hypothalamic-pituitary system, which
is substantially similar among the various vertebrate
classes (for a review see Guerriero 2009), and their
hormones. Sex steroid hormones, along with the
pituitary gonadotropins, are able to modulate repro-
ductive events, thanks to the presence of specific
nuclear receptors and microRNAs (Zhang et al.
2009; Cao et al. 2018). The importance of the link-
age between these structures is evident especially in
seasonal breeding species, where environmental sti-
muli are integrated at the level of the central nervous
system with the internal hormonal system and with
endogenous antioxidants to trigger reproductive
behavior (Guerriero et al. 2003, 2004, 2012,
2018b; Guerriero 2007). The use of seasonal breed-
ing animals allows analysis of the physiological
changes of the gonad and the monitoring of possible
molecular “pathways” of the brain-gonad axis that
regulate the progression of events for spermatozoon
and oocyte formation (Guerriero 2009; Guerriero
et al. 2018b). Previous research in our laboratories
has shown that in the lizard Podarcis siculus (Podarcis
sicula) testis, the estrogen receptor protein is at the
highest levels during winter stasis, whereas the low-
est gonadal levels occur during maximum activity or
mating (Ciarcia 1993). The data suggest a seasonal
modulation by the brain along the hypothalamic-
hypophysis-gonad axis. For instance, results of testis
estrogen measurements demonstrated more elevated
levels during the mating phase. These results support
the fact that the highest amount of local binding of
estrogen occurs in winter stasis whereas estrogen
plasma levels are higher in the mating phase (Andò
et al. 1992). Evidence has been found in Podarcis
testis demonstrating the direct influence of estrogens
on the function and maturation of germ cells (Chieffi
& Varriale 2004). Recently, our laboratories reported
the Podarcis sicula esr2 sequence (GenBank
JN705543.1). In the current study we report the
characterization and expression of the esr2 dynamic
in the brain and gonad of the male lizard. We
describe the bioindicator Podarcis sicula followed
through a decade of study, and the possibility of
employing it, from a comparative toxicological per-
spective, as phylogenetically close to mammals, hav-
ing similar anatomical germinal cell compartments.
Finally, to expand our understanding of the role of
Podarcis sicula as a bio-sentinel we address ICI
182,780 treatment to identify in the brain, as well
as in the testis, its toxicological effect on germinal
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cells. These predictable answers will help us both to
understand the brain-gonad feedback in normal sta-
tus, with a possible role of Podarcis sicula testis gona-
dectomy, and to identify variability within the
established brain-gonad dynamics when there is
interference by anti-estrogen compounds.

Materials and methods

Wall lizard maintenance and experimental design

Sexually mature male wall lizards (total number 200
with n = 10 per each seasonal collection examined/
10 years, weight range 10–14 g) identified as Podarcis
sicula were collected (wild-caught) in the reference
site of Monti di Lauro, Avellino (I), during two
periods of the year: mating period, when there is
full spermatogenetic activity (May), and winter stasis
when the spermatogenesis is quiescent (November),
in the period 2008–2017. The lizards were captured
and the experiments were carried out in accordance
with the ethical provisions enforced by the National
Committee of the Italian Ministry of Health on in
vivo experimentation (Department for Veterinary
Public Health, Nutrition and Food Safety, SCN/
2D/2000/9213). For 10 days before the experiments,
the captured animals were housed in large terraria
containing rocks, sticks and water. The animals were
fed with mealworms Tenebrio molitor and fresh fruit
ad libitum. All efforts were made to minimize animal
suffering and to reduce the number of specimens
used. Since they are heterotherms, they were eutha-
nized at 4°C. For each specimen, brain and gonad
were aseptically sampled. Some testes were dissected
out and weighed, and only one plunged in Steve’s
solution for histological studies with (n = 2) and
without treatment with ICI 182,780 (n = 2), whereas
the others, together with other tissues and organs,
were quickly frozen at −80°C for molecular analysis.

Treatment with the estrogen receptor down-regulator ICI
182,780

The treatment took place during the mating period
(May). Animals (n = 5 of mating collection/10 years)
were subjected to a thermo-photoperiodic regime
typical of the winter stasis period with a 16:8 h
dark:light cycle and exposed to a controlled tempera-
ture of 10°± 1.5°C. Specimens were injected every
24 h with a subcutaneous dose of anti-estrogen ICI
182,780 (Tocris, catalog number 1047; M.W.
606.77; 6 mg/0.25 mL almond oil/animal). In paral-
lel, control animals (n = 2) were injected with
almond oil only (0.25 mL/animal/day). Collection
of tissues and organs from treated animals occurred

on the 21st day after the beginning of treatment, with
three animals in each of the years from 2008–2017.

Histological analysis of the testis

Only one testis of three euthanized lizards for each
condition (mating with and without ICI 182,780, and
stasis) was fixed in Steve’s solution and subsequently
embedded in paraffin-celloidin according to Peterfi
(Mazzi 1977). Morphological staining was carried out
on histological sections (7 μm thick) using Galgano’s
trichome, and histological analysis was done using a
Nikon-MicroPhot-FXA light microscope.

RNA extraction and cDNA synthesis

Total RNA was extracted by homogenization tissue in
Trizol (Invitrogen), according to the manufacturer’s
instructions. Briefly, testes and brain (50 mg) from
euthanized Podarcis sicula (n = 5) of each phase of the
reproductive cycle – mating and winter stasis – and in
mating treated with ICI 182,780, during the years
2008–2017, were homogenized in 1 mL of Trizol
reagent buffer, and then the homogenized samples
were kept at room temperature for 15 min. A volume
of 0.2 mL of chloroform per 1 mL of Trizol reagent
was added. The samples were vortexed vigorously for
15 s, then incubated for 3 min at room temperature
and centrifuged for 15 min at 4°C at 12,000 × g. After
centrifugation, the upper aqueous layer was trans-
ferred to a fresh tube, then RNA was precipitated
after mixing with isopropyl alcohol. Isopropyl alcohol
(0.5 mL) was added to 1 mL of Trizol reagent used in
the initial homogenization. Afterward, samples were
incubated for 10 min at 30°C and centrifuged at 4°C
for 10 min at 12,000 × g. The RNA pellet was
detected after removing supernatant, then washed
with 1 mL of 75% ethanol, centrifuged at 7500 × g
for 5 min at 4°C. The RNA pellet was air-dried for
10 min, then resuspended in 100 µL diethylpyrocar-
bonate (DEPC)-treated water and stored at −80°C.
The quality and the amount of purified RNA were
assessed using spectrophotometer measurements at
260 and 280 nm (only samples with a ratio 260/
280 ≥ 1.8 were accepted and further processed) and
by electrophoresis under denaturing conditions on
1% agarose gel according to Raven et al. (1979). To
avoid the amplification of contaminant genomic
DNA, we purified the total RNA from genomic
DNA with an Ambion DNA-free kit. Total cDNA
was synthesized from total RNA in duplicates for each
sample to minimize reaction variations. One hundred
nanograms of RNA in 20 μL reaction volume was
used for each cDNA synthesis reaction using
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MMLV reverse transcriptase (Promega ImpProm II
kit) according to the manufacturer’s instructions.

DNA sequence alignment and phylogenetic tree

The partial estrogen receptor beta (ER-BETA) pro-
tein sequence from Podarcis sicula (AFD18855.1)
was aligned to all of the reference proteins available
in the National Center for Biotechnology
Information (NCBI) database by using protein-pro-
tein BLAST (BLASTp). Identified sequences were
aligned and used to build a phylogenetic tree by
using COBALT.

Quantitative real time-polymerase chain reaction (qRT-
PCR)

Quantification of esr2 mRNA by RT-PCR was per-
formed on five Podarcis sicula of each examined condi-
tion and the analyses were performed on two different
tissues: testis and brain. 12S rRNA was used as a refer-
ence gene. qRT-PCRwas carried out in aOneStep Plus
Real-Time PCR System (Applied Biosystems), using
SYBR Green (Applied Biosystems). Each reaction was
performed in a 20-μL reaction volume containing 1 μL
of a 1:5 dilution of cDNA preparation, 10 μL of 2x
SYBR_ Green qPCR Kit (Applied Biosystems), and 5
μL 0.8 μM of each primer (PRIMM Biotech Products
and Services, Milan, Italy). The specificity of the
qRT-PCR was verified by sequencing the reaction pro-
duct. Negative controls were performed on samples
without cDNA in the reaction mix. Melting curves
from each reaction were analyzed and all showed only
one peak at the same Tm, indicating the absence of
primer dimers or side products. The primers were
designed on the esr2 sequence (JN705543.1) using the
Primer3 software. The forward primer was 5ʹ-
AAGAGAGCGCTGTGGCTATC-3ʹ and the reverse
primer was 5ʹ-CAGTGCATTGACCAGCAGTT-3ʹ,
giving a product size of 150 base pairs (bp). The PCR
for the genes included an initial denaturation step at 95°
C for 5min, followed by 45 amplification cycles consist-
ing of denaturation at 95°C for 30 s, annealing at 60°C
for 30 s and an extension at 72°C for 60 s, plus a final
extension at 72°C for 1 min. To ensure that a single
product was amplified, melt curve analysis was per-
formed on the PCR products at the end of each run.
The PCR products were further assayed on a 2% agar-
ose gel. The relative expression value was calculated as a
fold change with the formula 2- ΔΔCt (Livak &
Schmittgen 2001).

Statistical analysis

Multiple group data were analyzed using one-way
analysis of variance (ANOVA). The Student’s t-test
was used to compare means between the groups.
Statistically, significant differences are defined out-
side of the 95% confidence interval. Data are shown
as a mean ± standard error of the mean (SEM).
Statistical parameters are reported in the respective
figures and figure legends.

Results

DNA sequence alignments

Figure 1a shows the sequence alignment of Podarcis
sicula protein with the four best protein matches in
the BLAST database of other species that belong to
different families of the order Squamata, class
Reptilia – Phyton bivittatus (Pythonidae), Plestiodon
finitimus (Scincidae), Anolis carolinensis
(Polychrotidae) and Elaphe quadrivirgata
(Colubridae) – together with the human sequence
showing phylogenetic relationships based on multi-
ple sequence alignment and conserved protein
domains. Figure 1b displays identities (%) with
Podarcis sicula partial sequence (SmartBLAST) as
well as the conserved domains of esr2. In particular,
Podarcis sicula DBD shows 99% sequence identity
with the human sequence. The LBD is also highly
conserved between Podarcis sicula and Homo sapiens,
showing 83% sequence identity.
Figure 1c shows the detailed multiple sequence

alignment of the selected proteins, and the DBD
and LBD are indicated.

Expression levels of esr2 during the reproductive stages

Figure 2a depicts the typical testicular organization
during the mating period. The seminiferous
tubules are well developed and all the germinal
cells in different stages of maturation are clearly
evident, including many sperm. Figure 2b shows
representative sections of testis during the winter
stasis phase; in the testis, the spermatogenetic pro-
cesses appear substantially slowed down, with a
reduced germinal epithelium, large lumen and
gaps between the germ cells. Many degenerations
are found in the seminiferous tubules, especially at
spermatids; only a few very rare sperm are present,
which will not be used for fertilization. After con-
firming the reproductive phase, we investigated the
expression of the esr2 gene by qRT-PCR both in
the testis and in the brain (Figure 2c). We included
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Figure 1. (a) Phylogenetic tree of Podarcis sicula ER-BETA partial protein sequence and the four best sequence matches together with the
human sequence, showing phylogenetic relationships based on multiple sequence alignment and conserved protein domains. (b)
SmartBLAST identities (%) with Podarcis sicula partial sequence are indicated. The values 99% and 83% are the sequence identities of
human DBD and LBD domains, respectively, vs Podarcis sicula. (c) Multiple sequence alignment of the sequences aligned in (a). The red
color indicates identical residues (Cobalt). Conserved domains are indicated: DBD in blue and LBD in green.
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brains in our analysis to assess the possible impact
of esr2 on the crosstalk brain-gonadal axis. Finally,
we merged the data obtained in the various years
considered to improve statistical power in the ana-
lysis of the combined pool of data. The qRT-PCR
analysis in the gonadal tissues showed a significant
increase of estrogen receptor beta gene expression
during the mating phase compared to the winter
stasis phase. Differently from gonads, the expres-
sion of esr2 in the brain is significantly higher in the
winter stasis phase compared to the reproductive
phase.

Treatment with an estrogen receptor down-regulator (ICI
182,780)

In order to better understand the role of esr2 in the
regulation of gonadal activity, we treated animals
with the anti-estrogen ICI 182,780. Figure 3a high-
lights the histological organization of gonadal tissue
upon treatment with the anti-estrogen. Treatment of
animals with estrogen receptor down-regulator dur-
ing the mating period of the reproductive cycle
induces histological changes. In the testis, some
seminiferous tubules show a slowdown of spermato-
genesis processes, with a reduced lumen and few
sperm. Severe testicular changes occurred, including
an arrest of spermatogenesis at the secondary sper-
matocyte level. Treatment with ICI 182,780 induces
a reorganization of the seminiferous tubules compar-
able to the winter stasis period.

We also analyzed the expression levels of esr2 upon
treatment with the estrogen receptor down-regulator
ICI 182,780, both in the brain (Figure 3b) and in
male gonads (Figure 3c) of lizards collected in the
period 2008–2017.
The anti-estrogen inhibits the expression of esr2 in

the brain, showing levels not statistically different
from those in the winter stasis period, in line with
the histological results. Along the same line, in the
male gonads, treatment with ICI 182,780 is shown
to be effective as evidenced by expression levels in
the treated animals being lower than in animals in
the mating period, but injected with vehicle only;
and these lower levels were also not significantly
different from those of the winter stasis period.

Discussion

In this study, we first analyzed the partial
sequence of the mRNA for esr2, which we identi-
fied in the lizard Podarcis sicula (deposited under
the accession number GenBank JN705543.1)
looking for sequence homologies and confirming
the evolutionarily well-conserved domains.
Observing in detail the amino acid sequence of
esr2 of Podarcis sicula, we clearly recognize the
three classical domains of the estrogen receptor
superfamily (Guerriero et al. 2009; Mahfouz
et al. 2016). Estimating the evolutionary distance
between the partial sequence of esr2 of the Podarcis
sicula lizard and the sequences of esr2 deposited in
the BLAST database, it emerges, as expected, that

Figure 2. Histological variation in the stages of spermatogenesis (left) and expression of the esr2 gene by qRT-PCR both in the testis and in
the brain (right) in Podarcis sicula: (a) mating period: in testis tubules all spermatogenetic stages, including many sperm, are present; (b)
winter stasis period: all spermatogenetic stages are present but quiescient, with only a few sperm; (c) qRT-PCR expression analysis of esr2
gene of Podarcis sicula in testis and brain samples, in the mating period (May) and winter stasis period (November) at the reference site. The
relative expression of esr2 is indicated as -fold change of the mean expression relative to the winter stasis period for testis and brain samples
± SEM (*p < 0.05). Reference gene, 12S rRNA gene.
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the sequence esr2 of Podarcis sicula is placed
among the reptiles. The sequence alignments also
indicated that the lizard sequence is close to the

birds’ orthologs but, interestingly, closer to the
mammals than to amphibians and fishes (data
not shown). In particular, an overall 76%

Figure 3. Histological organization of gonadal tissue and expression levels of esr2 upon treatment with the anti-estrogen ICI 182,780 during
the mating period (a) Seminiferous tubules show reduced lumen and few sperm; (b,c) qRT-PCR expression analysis of esr2 gene of Podarcis
sicula brain (b) and testis (c) specimens, in the mating phase (May) and upon treatment in the mating period with the anti-estrogen ICI
182,780. The relative expression of esr2 is indicated as -fold change of the mean expression relative to the stasis period ± SEM (*p < 0.05).
Reference gene, 12S rRNA gene.
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sequence identity between human and lizard esr2
sequences emerged. It is interesting, then, to
emphasize how the conserved DNA-binding
domain shows an identity of 99% with Homo
sapiens as well as to the closest species, clearly
indicating a strict correlation of structure/function
in DNA binding and recognition of target genes.

Further, we demonstrate that Podarcis sicula estrogen
receptor is actively transcribed in the brain as in
another endocrine tissue already reported, the testis
(Ciarcia 1993; Verderame et al. 2014). The lowest
gene expression levels were detected in the brain with
the concomitantly highest esr2 transcription levels in
testis during mating. Moreover, comparison of esr2
gene expression during the mating period compared
to the winter stasis of the reproductive phase showed
upregulation in the testis and downregulation in the
brain. Those seasonal variations in gene expression
followed the estradiol pattern in Podarcis sicula testis
(Ciarcia 1993), and this result is in agreement with
various studies showing that testes produce estradiol
and that esr2 is very sensitive to estradiol changes – as,
for example, in mammal rat testis, where ER-BETA is
detected in spermatogenetic cells of various stages and
in Sertoli cells, suggesting that estrogens directly affect
germ and somatic cells during testicular development
and spermatogenesis (Oliveira et al. 2001; Cooke et al.
2017). Podarcis is one bioindicator species for estradiol
exposure altering esr2 expression as detected by in situ
hybridization studies by Verderame et al. (2014), and
estrogen receptor mRNA using real-time PCR in pri-
mary cultures of lizard testis cells (Cardone et al.
1998). Our laboratories have demonstrated that there
are close dynamics between brain and testis and that
seasonal correspondence in the main phases of the
reproductive cycle follows the feedback of the brain-
gonad axis. Podarcis sicula, as a seasonal breeder,
allowed us to better characterize how the gene esr2 is
regulated in the brain of this lizard.

In order to study the expression levels of esr2 from
Podarcis sicula, we investigated, by qRT-PCR, the
esr2 expression in both the gonads and the brain of
adult male lizards collected during the winter stasis
and the mating period. The histological analysis of
the tissues allowed verification of the expected tissue
organization of the relative reproductive period and
the effect of anti-estrogen treatments.

The analysis of the expression of esr2 in the reptile
Podarcis sicula, by qRT-PCR, highlighted an interest-
ing seasonal dynamic between the brain and the
gonads, as in mammalian species (Pentikainen
et al. 2000; Cooke et al. 2017). In the lizard, levels
of estradiol show seasonal variations in accordance
with the reproductive cycle via ER-BETA (Chieffi &
Varriale 2004). The estrogen receptor levels are

modulated by a series of complex processes that
involve the control of expression and post-transcrip-
tional modifications (Guerriero et al. 2005b, 2009;
Greytak & Callard 2007; Tohyama et al. 2016;
Cooke et al. 2017).
Our present and previous results indicate that the

testis should be considered a valid tissue model for
endocrine disruption assessment. This idea may be
supported by the high conservation degree of the
sequences of the DBD and LDB domains and by
the spatial organization of germ cells. An interesting
confirmation is provided by the data of Cohen et al.
(2012) in the lizard Anolis, that show a similar neuro-
distribution in the brain between vertebrates as also
confirmed by Guerriero et al. (2009) and Mahfouz
et al. (2016). The work by Cohen et al. (2012)
examines reptile brain ER-BETA distribution, doc-
umenting a similar pattern to that found in birds and
mammals, which suggests that this receptor may per-
form similar functions across multiple vertebrate
taxa, whereas lizard testis coexpresses androgen
receptor and estrogen receptor alpha and beta
(Verderame et al. 2014). Further studies are needed
to elucidate the general vertebrate mechanism
underlying esr2 actions and fertility, but there is
strong evidence of ER-BETA predominance within
the seminiferous tubules in the early gametogenesis
event (O’Donnel et al. 2001).
In recent years, many high-persistence molecules,

defined as emerging contaminants, have become of
concern because of their ability to disrupt the endo-
crine system and their recalcitrance in the environmen-
tal matrix (Santos et al. 2010). Particular importance
has been given to pharmaceutical products derived not
only from human but also from veterinary use. Among
the therapeutic classes, antibiotics, epileptic agents and
sex hormones are predominant (Santos et al. 2010).
Steroids such as the synthetic hormone 17 alpha estra-
diol (main hormone of the small contraceptive) and the
natural hormone 17 beta estradiol (used as a drug in
hormone replacement therapy) are added to the anti-
steroids; in particular the antiestrogens, based on their
mechanism of action, are classified into impeded
antagonists, such as estradiol, which interacts with
ER but rapidly dissociates; aromatase inhibitors, such
as anastrozole, which block the conversion of andro-
gens into estrogens; the triphenylethylene antagonists
which in turn are divided into two families: the selec-
tive ER modulators, such as the drug Nolvadex, and
the selective destroyers of ER, such as Faslodex whose
bioactive molecule is ICI 182,780. Our attention has
focused on ICI 182,780. It is known that estradiol
administration stimulates proliferation of spermatogo-
nia in otherwise inactive testes in teleosts, amphibians
and reptiles, and in each of these classes, tamoxifen
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and ICI 182,780 prevent this stimulation process
(Minucci et al. 1995; Guerriero et al. 2000; Chieffi
et al. 2002). On the basis of the human species’ esr2
identity with Podarcis sicula, we treated the bioindicator
Podarcis sicula with ICI 182,780. ICI 182,780 is a 7-
alkylsulfinyl, an analog of endogenous estrogen 17-
beta-estradiol. It binds to estrogen receptors with
high affinity, preventing binding with estrogens. In
this way it prevents the receptor’s dimerization and
promotes its degradation, causing the abrogation of
the transcription of the sensitive estrogen genes
(Morris & Wakeling 2002). The damage caused by
ICI 182,780 at the brain level is already known
(Chieffi et al. 2002; Alfinito et al. 2008; Guerriero
et al. 2012; Gao et al. 2016) and can be studied follow-
ing the sensitivities of several different biomarkers and
approaches (Guerriero et al. 2003, 2005a,b; Bartiromo
et al. 2013; Guerriero et al. 2018a,2018b; D’Errico
et al. 2018). In particular, morphological studies have
shown that ICI 182,780 changes the hypophysis histo-
morphometrically with an increase and/or reduction of
its weight (Gao et al. 2016), and increases the concen-
tration of calcium channels (Zhao et al. 2006).
Biochemical studies have allowed detection of altera-
tions of the lactate dehydrogenase pattern (Nunez &
McCarthy 2003) and extracellular phosphorylation of
the kinases ERK1/2 (Wong et al. 2003). Indeed,
through molecular studies it was possible to demon-
strate that ICI 182,780 acts on the antioxidant
defense, whereby after treatment with ICI 182,780
there is an increase in the concentration of the
PHGPx\gpx4 mRNA, indicating the presence of a
damage shelter (Guerriero et al. 2012), and this alters
estrogen receptor expression in mammals (Gao et al.
2016). Our present results indicate that anti-estrogen
treatment has a detrimental effect on spermatogenesis
too via esr2 brain expression as already detected in the
mammalian species by Oliveira et al. (2001). This
allowed us to verify that by interfering with the
maturation process with an endocrine disruptor treat-
ment such as ICI 182,780 for 21 days, Podarcis sicula
gonads and brain obtained esr2 levels closer to winter
stasis. Assessing changes in estrogen receptor expres-
sion in animals exposed and not exposed to endocrine
disruptor compounds is critical for our understanding
of the role of these receptors in endocrine disruptors
in the natural environment (Rie et al. 2005; Guerriero
2011; Guerriero et al. 2014; Verderame et al. 2014).
In this study, not only has a histological alteration
been noted, but also the return of expression levels
of esr2 to values not significantly different from winter
stasis for both the gonads and the brain. Thus, the
role of esr2 in the control of reproductive function
suggests its use as a biomarker of anti-estrogen
damage.

Conclusions

In the current study, we show that the esr2 protein
sequence of the lizard Podarcis sicula is evolutionarily
very conserved, with a high sequence identity with the
human ortholog. Furthermore, we report the transcrip-
tion activity of esr2 by qRT-PCR in brain and testis in
the main reproductive phases, i.e. during the period of
maximum activity of gonads, and in winter stasis. The
observed pattern will help us to both detect the normal
feedback within the established brain-gonad dynamics
when there is interference by anti-estrogen com-
pounds, and to identify variability within this dynamic.
These findings will allow the use of esr2 as a

biomarker in the bioindicator Podarcis sicula for
biomonitoring environmentally restored sites, and
further allow the development of quick and efficient
tests by gonadectomy in pollution biomonitoring
programs. This methodology may also be used for
making predictions of risk based on future mathe-
matical models. Certainly, the high conservation of
the sequence of esr2 and the general cytological
organization close to that of humans strongly sug-
gest the use of Podarcis sicula as an excellent model
to monitor the sexual maturation state following
exposure to various substances, thus opening new
horizons for the conservation of species, including
the human species.
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