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Abstract:  
Partial Least Squared (PLS) regression is a model linking a dependent variable y to a set of X 
(numerical or categorical) explanatory variables. It can be obtained as a series of simple and 
multiple regressions of simple and multiple regressions. PLS is an alternative to classical 
regression model when there are many variables or the variables are correlated. On the other 
hand, an alternative method to regression in order to model data has been studied is called 
Fuzzy Linear Regression (FLR). FLR is one of the modelling techniques based on fuzzy set 
theory. It is applied to many diversified areas such as engineering, biology, finance and so on. 
Development of FLR follows mainly two paths. One of which depends on improving the 
parameter estimation methods. This enables to compute more reliable and more accurate 
parameter estimation in fuzzy setting. Second of which is related to applying these methods to 
data, which usually do not follow strict assumptions. The application point of view of FLR has 
not been examined widely except outlier case. For example, it has not been widely examined 
how FLR behaves under the multivariate case. To overcome such a problem in classic setting, 
one of the methods that are practically useful is PLS. In this paper, FLR is examined based on 
application point of view when it has several explanatory variables by adapting PLS. 
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1. Introduction 
 

Fuzzy set theory (FST) was introduced by Zadeh (1978) in order to model uncertainty 
in linguistic imprecision. Then, this theory draws attention in many diverse fields. One of the 
easily applicable areas is the subject of modeling such as regression. FLR was first proposed 
by Tanaka (1982). In the last three decades, FLR was studied by many researchers in terms 
of improving parameter estimation. Although several researches have been conducted in 
order to improve more reliable parameter estimations, the issues emerging from modeling 
several explanatory variables with respect to application have not been widely examined in 
FLR. Various methods such as PLS by Garthwaite (1994), Principal component analysis are 
developed to overcome this issue in classic regression. In this paper, PLS is adapted to fuzzy 
case when the dependent variable and independent variables are crisp.  

To illustrate why FLR as an alternative modeling tool is employed, instead of using 
classic regression, two data sets are employed. In the first data provided by Tanaka and Guo 
(1999), which is called Houses Data, it is shown that the classic regression failed since some 
variable that will be explained in Section 4 is inconsistent with the intuition. Tanaka and Guo 
(1999) suggested that FLR can be used as an alternative technique to model price against 
five explanatory variables. Then they used linear programming formulation, that will be 
given in detail in Section 4, to estimate the fuzzy parameters of the independent variables in 
the FLR model. However, it also fails since the value of some of the parameters are zero. 
Therefore, the number of independent variables decreases in FLR when the motivation of 
explaining the price with those variables is aimed . Hence, despite of the fact that FLR 
suggested by Tanaka and Guo (1999) as an alternative modeling technique, it still has some 
issues that should be resolved. For this purpose, a very useful technique called PLS is 
employed to construct new variables that will used in FLR. PLS end up with one variable 
which is a linear combination of five independent variables. Then, this new constructed 
variable is used against the price to estimate FLR model. Following the similar steps in the 
second data set, which is called Chocolate Data, we shown that the same problem has 
existed. Therefore, the technique called PLS used in classic regression can be adapted to FLR 
when the dependent and independent variables are crisp. 

The rest of the paper is organized as follows. Sections 2 and 3 give a brief 
description about Partial Least Squares Regression and fuzzy regression respectively. Section 
4 gives a concrete example why classic regression fails and explains why fuzzy regression as 
an alternative technique can be used  when assumptions are violated and the functional 
relationship is unknown. Section 5 gives details of the application of combining PLS and FLR. 
The last section is the conclusions. 
 
 

2. Partial Least Squares or Projection to Latent Structure 
 

Partial Least Squares Regression (PLS-Regression) is a statistical method that bears 
some relation to principal components regression; instead of finding hyperplanes of 
maximum variance between the response and independent variables, it finds a linear 
regression model by projecting the predicted variables and the observable variables to a 
new space. Because both the X (explicative variables) and y (response variable) data are 
projected to new spaces, the PLS family of methods are known as bilinear factor models. 



  
Quantitative Methods Inquires 

 
16

PLS-regression is particularly suited when the matrix of predictors has more variables than 
observations, and when there is multicollinearity among X values. By contrast, standard 
regression will fail in these cases. The goal of PLS regression is to predict y from X and to 
describe their common structure. When y is a vector and X is full rank, this goal could be 
accomplished using multiple regression. When the number of predictors is large compared 
to the number of observations, X is likely to be singular and the regression approach is no 
longer feasible (i.e., because of multicollinearity). Several approaches have been developed 
to cope with this problem. One approach is to eliminate some predictors (e.g., using 
stepwise or forward methods) another one, called Principal Component Regression, is to 
perform a Principal Component Analysis (PCA) of the X matrix and then use the principal 
components of X as regressors on y. The orthogonality of the principal components 
overcomes the multicollinearity problem. But, the problem of choosing an optimum subset of 
components remains. Different approaches had been proposed in the past to select the 
optimal number of PCs (Valle et al, 1999): Akaike information criterion, minimum 
description length, imbedded error function, cumulative percent variance, scree test on 
residual percent variance, average eigenvalue, parallel analysis, autocorrelation, cross 
validation based on the PRESS and R-ratio and variance of the reconstruction error. 

Following one of the cited methods, it is possible to keep only a few of the first 
components. 

But they are chosen to explain X rather than y, and so, nothing guarantees that the 
principal components, which ”explain” X, are relevant for y. 

By contrast, PLS regression searches for a set of components (called latent vectors) 
that performs a simultaneous decomposition of X and y with the constraint that these 
components explain as much as possible of the covariance between X and y. This step 
generalizes PCA. It is followed by a regression step where the decomposition of X is used to 
predict y. Simultaneous decomposition of predictors and dependent variables PLS regression 
decomposes both X and y as a product of a common set of orthogonal factors and a set of 
specific loadings. So, the independent variables are decomposed as TP’ where T and P are 
the score and loadings matrices respectively with T’T=I with I being the identity matrix. By 
analogy with PCA, T is called the score matrix, and P the loading matrix (in PLS regression 
the loadings are not orthogonal). The columns of T are the latent vectors. When their 
number is equal to the rank of X, they perform an exact decomposition of X. 
 

2.1 PLS regression and covariance 
 

The latent vectors could be chosen in a lot of different ways. In fact in the previous 
formulation, any set of orthogonal vectors spanning the column space of X could be used to 
play the role of T. In order to specify T, additional conditions are required. For PLS regression 
this amounts to finding two sets of weights w and c in order to create (respectively) a linear 
combination of the columns of X and y such that their covariance is maximum. Specifically, 
the goal is to obtain a first pair of vectors t=Xw and u=Yc with the constraints that w’w =1, 
t’t=1 and t’u be maximal. 

When the first latent vector is found, it is subtracted from both X and y and the 
procedure is re-iterated until X becomes a null matrix. 

The number of latent variables to be retained in the model can be selected according 
to different tools. In cross-validation (Wold, 1975), the training data set is split into a number 
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of subsets, say r. Initially, for a model comprising one latent variable, the first subset of data 
is omitted and a PLS model is built on the remaining (r-1) subsets of data. The prediction 
error sum of squares (PRESS) for the omitted subset of data is then computed and the 
omitted subset restored. The procedure is repeated until every individual subset has been left 
out once. The r individual PRESS’s are then summed to give the total PRESS. The procedure is 
repeated for i={2,3,…, a} latent variables and a corresponding total PRESS is calculated. 
The optimal number of latent variables is chosen to be that which minimizes the total PRESS. 
A nice description of PLS Regression can be found in Tenenhaus (1998) and Camminatiello 
(2006). 
 

3. The review of fuzzy linear regression 
 

Since the first FLR model proposed by Tanaka (1982), the fast growing literature has 
followed two paths. One of which merely depends on developing new parameter estimation 
methods which enable to compute less fuzzier and more useful parameter estimates. Some 
of them mentioned are given in Soliman et.al. (2002), Toyoura et. al. (2004), Chang (2001), 
Alex (2006), Ishibuchi and Nii (2001), Tran and Duckstein (2002). In general, these methods 
can be categorized into two classes, which are called mathematical programming based 
parameter estimation methods and fuzzy least squares method, respectively. Former ones 
are those that are based on mathematical programming. Later ones are based on the 
method proposed by Diamond (1988). Both aim to improve parameter estimates. Second of 
which is based on application of the model. However, this aspect of FLR has not got much 
attention. Generally speaking, the issues emerging from applications such as modelling 
several explanatory variables, interactions among them have been avoided. FLR is a method 
which is more suitable when one or more of the violations occur simultaneously, for 
example, the assumption of linearity between dependent and independent variables may not 
be observed, or instead of numeric data values, data related to one or more variables can 
be described as words such as ”bad” or ”good” or there exists small data set which does not 
satisfy the normality assumption. Under these circumstances, classic regression is observed 
to fail. This situation is exemplified with a solid example in the next section. 

Also, Kim et. al. (1996) investigated various circumstances where classic regression 
excels fuzzy regression or vice versa. 

Fuzzy linear regression model is generally given as follows: 
 

0 1 1 2 2
ˆ ...i n nY A A X A X A X               (3.1) 

 

where 
ˆ , ,i i jY X A   denotes fuzzy numbers which can be symmetric or asymmetric or 

trapezoidal fuzzy numbers. 
Symmetric or asymmetric or trapezoidal fuzzy numbers can be chosen based on 

information which will be believed that it represents inherent uncertainty in FLR. For 
example, it is believed that asymmetric fuzzy numbers represent uncertainty in parameters. 
Then, the model 

is constructed based on those numbers. As it can been seen, the expression in (3.1) 
exhibits the generic case for FLR. The model given in (3.1) does not have error term since it is 
included in the parameters of model. The special forms of model (3.1) can be written 
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depending on the type of variables. The Table 1 summarizes the cases which should be used 
in modeling. 
 
 

Table 1: Type of variables 

Y X A 

Reel Reel Fuzzy 
Fuzzy Reel Fuzzy 
Fuzzy Fuzzy Fuzzy 

 
 
 

Throughout the paper symmetric triangular fuzzy numbers are employed for the sake 
of simplicity. Linear programming based method is used in order to estimate parameters. 

 

4. Implementing fuzzy linear regression 
 

The parameter estimation method used in this paper is based on the method proposed 
by Tanaka (1982). For this purpose, the formula below is employed to estimate parameters 
of FLR. 
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  (4.1) 

To illustrate why classic regression failed, we used a data set (Tanaka and Guo, 
1999) whose name is House price which is given in Table 2. 

Table 2: house price data 

N y x1
 

x2
 

x3
 

x4
 

x5
 

1 606 1 38,09 36,43 5 1 
2 710 1 62,1 25,5 6 1 
3 808 1 63,76 44,71 7 1 
4 826 1 74,52 38,09 8 1 
5 865 1 75,38 41,1 7 2 
6 852 2 52,99 26,49 4 2 
7 917 2 62,93 26,49 5 2 
8 1031 2 72,04 33,12 6 3 
9 1092 2 76,12 42,64 7 2 
10 1203 2 90,26 43,06 7 2 
11 1394 3 85,7 31,33 6 3 
12 1420 3 95,27 27,64 6 3 
13 1601 3 105,98 27,64 6 3 
14 1632 3 79,25 66,81 6 3 
15 1699 3 120,5 32,25 6 3 



  
Quantitative Methods Inquires 

 
19

 
 

The explanatory variables x1, x2, x3, x4and x5 are quality of the construction material, 
area of the first floor, area of the second floor, total number of rooms, number of Japanese 
room, respectively. The response variable y is the price of houses whose last four digits are 
dropped for the sake of simplicity. 
When classic regression analysis is used, the model is obtained as follows: 

y=-112.4+236.48x1+9.3568 x2+8.2294 x3-37.889 x4-17.253 x5  (4.2) 
It is observed that as the x4 (total number of rooms) increases, y (price) decreases. 

This is contradictory to common sense. Therefore, FLR can be substituted as an alternative 
modeling approach. However, this also creates problems which should be addresses too. 
The same data produce FLR as follows: 

 

      321 0,786.40,833.5634.37,167.45~̂ xxxy      (4.3) 

 
Also, this model explains response variable using fewer variables although there is 

no procedure available in FLR which can be used as variable selection method. Therefore, 
when several explanatory variables exist in FLR, it should be expected that some problems 
similar to those in regression or the problems related to FLR may emerge. To overcome these 
kinds of problem, PLS is an alternative method that can also be used in FLR. In order to 
illustrate the usage of PLS in FLR, a data set consisting of seven variables given in Table 3 are 
used. Based on the results of PLS, just one variable (component) which can be written in the 
form of other variables is obtained as combination of other variables. Then FLR is conducted 
for this variable.  
 

5. Implementing PLS into fuzzy linear regression 
 

On consider the following data sample. The data consisting of the price, weight and 
nutritional information was gathered for a number of chocolates commonly available in 
Queensland stores. The data was gathered in April 2002 in Brisbane. There are 7 varieties 
and 7 variables, plus the names of the chocolates are row names. 

 
Table 3: Chocolates Data 

N Unit.Price Size Energy Protein Fat Carbohydrate Sodium 
1 1,76 50 1970 3,1 27,2 53,2 75 
2 2,56 45 2250 7,2 30,1 59,4 110 
3 1,62 60 1890 4,7 19,5 67,9 160 
4 2,56 50 2030 5,6 20,4 67,4 250 
5 2,33 55 1623 2,2 9,2 73,3 90 
6 2,58 60 1980 8,5 20,6 63,3 130 
7 2,78   42.5 1970 5 20 69 148 

 
 
 

As it can be seen in the previous section, FLR may fail if some of the explanatory 
variables are correlated when independent and dependent variables are crisp. This situation 
also creates problems for FLR. To overcome this kind of a problem, a method called PLS used 
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in classic regression can also be used in FLR. The Chocolate Data consists of six independent 
and one dependent variable. The dependent variable price is tried to be explained by 
independent variables such as size, energy and so on. In this example, the classic regression 
failed. Then FLR is run to estimate parameters but the similar situation observed in the 
previous example is encountered. One of the frequently faced problems in classic regression 
has appeared. It is called correlated explanatory variables. This problem is expected since 
independent and dependent variables are crisp values. Then PLS is used to construct new 
variables (components) to be used in FLR model. For our case, After running PLS, one 
independent variable (component) is obtained which is denoted by X*. 
When the linear programming formula is run for the data obtained after PLS, the resulting 
fuzzy regression model is obtained as follows: 
 

    *12.1,27.478.0,14.2ˆ Xy        (5.1) 

 
where X* is the component which is a linear combination of the independent 

variables after PLS is calculated. 
The constant term of FLR is (2.14, 0.78) and the coefficient of X is (4.27, 1.12). These 

are symmetric fuzzy numbers which can be written as (1.36, 2.92) and (3.15, 5.39). Suppose 
that X*=0.25, then the predicted price is (2.14, 0.78)+(4.27, 1.12)0.25= (3.21, 1.06) is 
obtained. This means that the price ranges between 2.15 and 4.27 when X*=0.25. 

Instead of using correlated explanatory variables, the component, which is a linear 
combination of six independent variables such as size, energy, protein, fat, carbohydrate, 
and sodium, is used to estimate the price by using FLR. 
 
 

6.  Conclusion 
 

When the assumptions related to classic regression are violated such as correlated 
independent variables or correlated errors or other types of violations that can be found in 
the literature, some type of remedies are suggested. When functional relationship is not 
known in advance, FLR is introduced as an alternative method which helps model crisp/crisp 
or crisp/fuzzy data. On the other hand, PLS is used for reducing number of independent 
variables to obtain components. What it is observed in classic regression as problems is also 
observed in FLR as well. Thus, the methods used for regression can be used for FLR. In this 
paper, we use PLS for FLR. In the first data set which is house data set, first of all, parameter 
estimates are calculated for regression model but there is contradiction between one of the 
independent variable and dependent variable which is that when the number of rooms 
increase, the price of house decreases. Also, the correct functional relationship between 
dependent variable and independent variable is not know. Then, the parameters of FRL is 
calculated. This model has three independent variables. However, FLR is more realistic than 
classic regression. In the second data set which is called Chocolate Data, the similar problem 
is encountered. We followed the similar steps to reach the final regression model since the 
relationship between the dependent variable and the interdependent variables are 
unknown. Therefore, this led to choose the FLR as an alternative modeling tool. Before 
running FLR, PLS is employed to reduce the number of independent variables. Then based 
on the reduced number of independent variable, which is one component consisting of 
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linear combination of independent variables. Then we predicted FLR model using component 
as an independent variable and the price as a dependent variable. Therefore, what model 
suggested is that the component variable as a combination of independent variables 
explains the price in the interval. As a further study, extending PLS method to be used for the 
case of fuzzy/fuzzy is a subject which should be examined. 
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