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Abstract: Anodic oxidation is an easy and cheap surface treatment to form nanostructures on
the surface of titanium items for improving the interaction between metallic implants and the
biological environment. The long-term success of the devices is related to their stability. In this
work, titanium nanotubes were formed on a dental screw, made of titanium CP2, through an
anodization process using an “organic” solution based on ethylene glycol containing ammonium
fluoride and water. Then, the electrochemical stability in the Hank’s solution of these “organic”
nanotubes has been investigated for 15 days and compared to that of titanium nanotubes on a
similar type of sample grown in an inorganic solution, containing phosphoric and hydrofluoridric
acids. Morphological and crystallographic analysis were performed by using scanning electron
microscopy (SEM) and X-Ray diffractometry (XRD) tests. Electrochemical measurements were
carried out to study the stability of the nanotubes when are in contact with the biological environment.
The morphological measurements revealed long nanotubes, small diameters, smooth side walls,
and a high density of “organic” nanotubes if compared to the “inorganic” ones. XRD analysis
demonstrated the presence of rutile form. An appreciable electrochemical stability has been revealed
by Electrochemical Impedance Spectroscopy (EIS) analysis, suggesting that the “organic” nanotubes
are more suitable for biomedical devices.
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1. Introduction

The natural and amorphous oxide layer (2–5 nm) present on a titanium surface provides its
excellent corrosion resistance. This is one of the reasons why titanium is widely used as implant
material [1,2]. In order to improve the interaction between a titanium implant and a biological
environment, the mechanical, physical, chemical, electrochemical or biochemical surface modifications
of medical devices are needed [3–6]. Among the electrochemical treatments, the anodic oxidation is a
cost-effective, versatile, and simple process widely used in the industrial field. The anodic oxide film
grown on titanium substrate may exhibit a compact, porous or nanotubular structure by changing
the anodizing process parameters, such as the voltage applied, the duration of the anodizing, the
electrolyte composition, and so on [7–14]. With the coming of nanomaterials, it has been observed
that nanostructured surfaces tend to improve cell-implant interaction, stimulating the cell-adhesion
processes [15,16] as the osseointegration mechanism [17–21]. Tsuchiya et al. showed a significant
growth of hydroxyapatite (bone-like calcium phosphate) on TiO2 nanotube layers compared to flat
compact titanium oxide layers [22]. Hilario et al. [17] investigated the influence of the morphology
and the crystalline structure of the titanium nanotubes on the apatite-forming ability, suggesting the
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best compromise between the nanotubes size and their crystalline phase. In addition, these kinds
of nanostructures could be used as a reservoir for drug delivery applications [23–25]. To date,
depending on the anodizing process parameters, several types of nanotubes are possible to obtain on
the metallic substrate [26]. They are different basically in: (i) pore diameters, (ii) wall roughness and
thickness as well as (iii) in length. In previous works [27,28], an anodizing process on a dental implant
screw was presented. In particular, the use of an aqueous solution based on hydrofluoridric acid was
allowed to obtain titanium nanotubes of about 500 nm in length and about 100 nm in diameter on a
dental implant. An increased corrosion resistance and a more active role, to promote the formation of
chemical compounds containing Ca and P in comparison to the untreated samples, were observed
on the anodized specimens. In this paper, titanium nanotubes with different morphologies, in terms
of diameter, length, and side wall roughness, were obtained by anodizing a titanium dental screw
in electrolytic solutions containing organic (ethylene glycol) and inorganic (ammonium fluoride)
compounds as well as water. Little research has focused on the electrochemical characterization in
Hank’s solution of the titanium nanotubes produced through anodizing in different electrolytes [29–31].
However, the corrosion resistance of metals, used as biomaterials, should be evaluated for a long
time frame to ensure their long-term success in the human body [32]. To the authors’ best knowledge,
there is so far no report that describes the electrochemical behavior for a long immersion time in
the physiological media (i.e., Hank’s solution) of the titanium nanotubes grown by using different
electrolytes that compare their stability. Therefore, the aims of this work were: (i) to realize titanium
oxide nanotubes in an organic electrolytic solution, (ii) to investigate their morphological aspect
and their electrochemical behavior in Hank’s solution for 15 days and (iii) to compare the corrosion
resistance properties of the “organic” nanotubes to that of the “inorganic” nanotubes previously grown
and characterized. Electrochemical Impedance Spectroscopy (EIS) and polarization potentiodynamic
(PD) measurements were conducted to test the samples steadiness. The experimental analysis was
supported by morphological and crystallographic measurements, conducted using scanning electron
microscope (SEM) and X-ray diffraction (XRD).

2. Materials and Methods

Titanium dental screws, provided by Deltal Medics (Milano, Italy), made of titanium CP2
with the following geometric features; 3 mm in diameter and 8 mm in length—were used as a
samples to be coated. Ammonium fluoride (NH4F), ethylene glycol (EG) and Hank’s solution were
purchased from Sigma Aldrich and used as received. The composition of the Hank’s solution was
0.185 g/L CaCl2·2H2O, 0.09767 g/L MgSO4, 0.4 KCl g/L, 0.06 KH2PO4 g/L, 0.35 g/L NaHCO3,
8.0 g/L NaCl, 0.04788 g/L Na2HPO4, 1.0 g/L D-Glucose, without Phenol Red and sodium bicarbonate.
The electrolytic solution was prepared by mixing 2.5 wt % of NH4F and 12.5 wt % of water in
ethylene glycol.

TiO2 Nanotube Film Preparation

Prior to the anodizing process, titanium screws were sequentially cleaned for 10 min in acetone,
ethanol, and deionized water using an ultrasonic bath. Then they were dried in air. A number of five
screws were used. The anodic oxidation treatment was performed by using the DC power supply
Gen 600-5.5 (TDK, Lambda, Milano, Italy) connected to a two-electrode system, with a platinum rod
as cathode and the titanium screws as anode. The nanotubes formation, conducted in the organic
solution, involves the formation of a layer on the top tubes, named “nano-grass” [33], due to the split
off of the tube walls. The literature offers different methods to remove, the “nano-grass” layer, or to
impede its formation, as the sonication, or supercritical drying, etc. [34–40]. The technique used in
this work involves three subsequent steps: (i) sample anodic oxidation in acid electrolyte to obtain a
porous titanium oxide, (ii) thermal treatment of sample at 700 ◦C for 1 h, (iii) anodizing in the organic
media and (iv) washing in deionized water [35]. The samples were firstly anodized in a 1 M H2SO4

(Sigma Aldrich, Milano, Italy) aqueous solution at 20 V for 20 min, then they were annealed in an
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oven at 700 ◦C for 1 h. Finally, the anodizing process to form the nanotubes array was carried out
in the organic solution aforementioned at 30 V for 1080 min. At the end of the process, the samples
were washed in deionized water to remove the sacrificial porous oxide titanium layer, under which
“organic” nanotubes have grown.

The sample surface was studied using a SEM (SEM, Hitachi TM3000, Hitachi, Japan).
The crystallographic structure was investigated by XRD (XRD, PaNanalytical, X-Pert PRO, Cambridge,
UK), using a CuKα radiation (λ = 1.5404 ) and a Bregg–Brentano geometry, in the range from 5◦ to 80◦

with a step size of 0.013◦. The X-ray generator operated at 40 kV and 40 mA. The apparatus used to
perform the electrochemical tests was a potentiostat (Solartron 1287, Photoanalytical, Milano, Italy)
linked to an Impedance/Gain-phase Analyser (Solartron 1260, Photoanalytical, Milano, Italy) and
connected to a three-electrode electrochemical cell consisting of a platinum rod as counter-electrode,
a saturated calomel electrode (SCE) as reference electrode, and titanium screws as the working electrode.
The analysis was performed at room temperature, exposing a surface of about 3 cm2, in the Hank’s
solution with the following composition (g/L): 0.185 CaCl2·2H2O, 0.098 MgSO4, 0.4 KCl, 0.06 KH2PO4,
0.35 NaHCO3, 8.0 NaCl, 0.048 Na2HPO4, 1.0 D-glucose, pH = 7.4. A potentiodynamic polarization
test was performed in a potential window from −30 mV to +1500 mV vs. the open circuit potential
(OCP) at a scan rate of 0.166 mV/s. The electrochemical impedance spectra were recorded at the OCP
in a frequency range of 104 Hz–0.02 Hz, applying an AC amplitude signal of ±5 mV. The EIS data
were plotted as Bode plots and interpreted on the basis of the electrical equivalent circuits by using
the Zview software (Scribner Associates Inc., Southern Pines, NC, USA) for fitting the experimental
results. The quality of the fit was judged by the χ2 parameter. Each measurement was repeated three
times in order to evaluate the reproducibility.

In order to investigate the influence of the nanotubes morphology on the electrochemical stability
of the titanium implant, all measurements carried out on the nano-structures formed in the “organic”
solution, named Ti_NTorg, were compared to the results previously [27,28] obtained from the nanotubes
grown on the same type of dental screw (named as Ti_NTinorg), in an “inorganic” solution and from the
untreated sample, named as Ti pristine. For the sake of clarity, the parameters of the anodic oxidation
process carried out in the “inorganic” or “organic” electrolyte are summarized in Table 1. Five samples
of each type of nanotubes were used to carry out the comparison.

Table 1. Summary of parameters used during the anodic oxidation process conducted in the “inorganic”
or “organic” solution.

Samples Solution Voltage (V) Time (min)

Ti_NTinorg H2O + 1 M H3PO4 + 0.5 wt % HF 30 90
Ti_NTorg EG + 2.5 wt % NH4F + 12.5 wt % H2O 30 1080

3. Results and Discussion

3.1. Morphological Analysis

The top view SEM image, reported in Figure 1a, clearly shows the formation of nanotubes in
the “organic” electrolytic solution by following the procedure adopted in this work. This procedure
obtains an open top porous network of high density, self-organized nanotubes with a mean diameter of
about 70 nm. The cross-sectional SEM image, Figure 1b, reveals the regular alignment of the nanotubes,
about 8 µm in length, the smoothness of the side walls, and the closed backside of the nanotubes,
detached from the titanium substrate.
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displayed significant irregularities. The latter presented a “bamboo type” form, that, according to 
Kontos [39], introduced a small scale surface roughness component. The mean diameter and the 
length of the nanotubes were about 100 nm and 0.5 µm, respectively. In the “inorganic” solution, the 
limited thickness of the nanotubes layer is due to the achievement of a steady state regime between 
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to a higher quantity of water and are responsible for the continuous etching and passivation of the 
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Figure 2. SEM images of the anodized sample in the “inorganic” solution at 30 V for 90 min: (a) top 
view and (b) cross sectional view. X-Ray diffractometry  

Table 2. Geometric features of titanium nanotubes formed in the inorganic, Ti_NTinorg, or in the 
organic electrolyte, Ti_NTorg. 

Samples Solution Diameter (nm) Length (µm) 
Ti_NTinorg H2O + 1 M H3PO4 + 0.5 wt % HF 100 0.5 
Ti_NTorg EG + 2.5 wt % NH4F + 12.5 wt % H2O 70 8 

Figure 1. Scanning electron microscopy (SEM) images of the anodized sample in the “organic” solution
at 30 V for 1080 min: (a) top view and (b) cross sectional view.

The anodization conducted in the “organic” electrolyte obtains long nanotubes (several
micrometers) and a smooth tube wall. In fact, the oxide dissolution at the top side of the nanotubes is
inhibited, and the fluctuations of the current transient accompanied by a pH burst at the pore tip are
damped by decreasing the diffusion constant of the F− in the organic electrolyte [40].

In comparison, the SEM images of the nanostructure obtained by using an inorganic solution are
reported in Figure 2. As shown in the top view micrograph (Figure 2a), the surface was characterized by
ordered nanotubes well separated from each other. The shape and the side walls displayed significant
irregularities. The latter presented a “bamboo type” form, that, according to Kontos [39], introduced a
small scale surface roughness component. The mean diameter and the length of the nanotubes were
about 100 nm and 0.5 µm, respectively. In the “inorganic” solution, the limited thickness of the
nanotubes layer is due to the achievement of a steady state regime between the oxide-growth rate and
the dissolution reaction rate [41]. The ripples at the tube walls are ascribed to a higher quantity of
water and are responsible for the continuous etching and passivation of the cell boundary regions [42].

Table 2 summarizes the dimension of the nanotubes obtained by using inorganic or organic
electrolytic solution.

Metals 2018, 8, x FOR PEER REVIEW  4 of 11 

 

  
(a) (b) 

Figure 1. Scanning electron microscopy (SEM) images of the anodized sample in the “organic” 
solution at 30 V for 1080 min: (a) top view and (b) cross sectional view. 

The anodization conducted in the “organic” electrolyte obtains long nanotubes (several 
micrometers) and a smooth tube wall. In fact, the oxide dissolution at the top side of the nanotubes is 
inhibited, and the fluctuations of the current transient accompanied by a pH burst at the pore tip are 
damped by decreasing the diffusion constant of the F− in the organic electrolyte [40]. 

In comparison, the SEM images of the nanostructure obtained by using an inorganic solution 
are reported in Figure 2. As shown in the top view micrograph (Figure 2a), the surface was 
characterized by ordered nanotubes well separated from each other. The shape and the side walls 
displayed significant irregularities. The latter presented a “bamboo type” form, that, according to 
Kontos [39], introduced a small scale surface roughness component. The mean diameter and the 
length of the nanotubes were about 100 nm and 0.5 µm, respectively. In the “inorganic” solution, the 
limited thickness of the nanotubes layer is due to the achievement of a steady state regime between 
the oxide-growth rate and the dissolution reaction rate [41]. The ripples at the tube walls are ascribed 
to a higher quantity of water and are responsible for the continuous etching and passivation of the 
cell boundary regions [42]. 

Table 2 summarizes the dimension of the nanotubes obtained by using inorganic or organic 
electrolytic solution. 

  
(a) (b) 

Figure 2. SEM images of the anodized sample in the “inorganic” solution at 30 V for 90 min: (a) top 
view and (b) cross sectional view. X-Ray diffractometry  

Table 2. Geometric features of titanium nanotubes formed in the inorganic, Ti_NTinorg, or in the 
organic electrolyte, Ti_NTorg. 

Samples Solution Diameter (nm) Length (µm) 
Ti_NTinorg H2O + 1 M H3PO4 + 0.5 wt % HF 100 0.5 
Ti_NTorg EG + 2.5 wt % NH4F + 12.5 wt % H2O 70 8 

Figure 2. SEM images of the anodized sample in the “inorganic” solution at 30 V for 90 min: (a) top
view and (b) cross sectional view. X-Ray diffractometry.

Table 2. Geometric features of titanium nanotubes formed in the inorganic, Ti_NTinorg, or in the organic
electrolyte, Ti_NTorg.

Samples Solution Diameter (nm) Length (µm)

Ti_NTinorg H2O + 1 M H3PO4 + 0.5 wt % HF 100 0.5
Ti_NTorg EG + 2.5 wt % NH4F + 12.5 wt % H2O 70 8
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3.2. XRD Analysis

The XRD patterns of the anodized samples in the “organic” electrolytic solution (Ti_NTorg),
anodized in “inorganic” media, (Ti_NTinorg), and of the un-treated sample (Ti pristine), are reported
in Figure 3. The graph reveals the characteristics of the diffraction peaks of titanium at 2θ values
of 35.09◦, 38.42◦, 40.17◦, 53.05◦, 62.9◦, 70.66◦, and 76.19◦ corresponding to (100), (002), (101), (102),
(110), (103) and (112) planes, respectively, for all the tested samples. Although, in this research the
traditional Bragg–Brentano system was used, the sample anodized in viscous electrolyte, characterized
by a nanotubes layer thick 8 µm, showed a weak peak at 2θ values of 27.37◦, corresponding to the
(110) phase [17,43]. This event highlighted the presence of a rutile structure of titanium oxide, due to
the annealing process carried out at 700 ◦C to avoid the formation of the “nano-grass” layer during the
anodization in the “organic” electrolyte.
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(curve orange), and Ti_NTorg (curve green).

As can see from Figure 3, the peaks intensity changed with the morphology of the sample.
Indeed, the Ti_NTorg sample presented higher peaks intensity if compared to the Ti_NTinorg sample,
probably due to the roughness of the tube walls, which are smooth for the former and rippled for the
latter and strongly affect the X-ray signal.

The use of an “organic” electrolyte induced an increase of the nanotubes length and also
involved a crystalline phase of the titanium oxide, in rutile form, due to a necessary heat treatment.
Zywitzki et al. [35] measured the nanoindentation and tested the mechanical properties, in term of
hardness and Young’s modulus, of amorphous, anatase, and rutile forms of titanium oxide layers
grown by reactive pulse magnetron sputtering. They have verified that the rutile form presented
higher mechanical properties in comparison to the amorphous titanium oxide. Indeed, the hardness
(as the mean pressure that a material can support under load [44]) and the Young’s modulus of the
rutile form are about 17 GPa and 260 GPa, respectively. While, the amorphous titanium oxide presents
values of about 7 GPa of hardness and of about 160 GPa Young’s modulus. A high hardness value
and a low Young’s modulus are the “desiderata” requirements for a dental implant, since the former
enhances the wear resistance while the latter reduces the stress shielding phenomena. In addition,
the rutile phase seems to improve the apatite formation in comparison to the amorphous titanium
oxide [22].

3.3. Electrochemical Analysis

The potentiodynamic polarization curve of the Ti_NTorg sample is sketched in Figure 4 and
it is compared to the un-treated sample, Ti pristine, and to the specimen anodized in “inorganic”
electrolyte, Ti_NTinorg. From a brief glimpse at the obtained curves, it was possible to see that the
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presence of the nanotubes layer severely influenced the sample’s electrochemical behavior. It was
possible to note a change of the corrosion potential values, Ecorr, and a variation of the passive current
values, ip. Indeed, the Ti_NTinorg specimen showed a more noble corrosion potential (Ecorr = −0.12 V)
in comparison to the titanium pristine sample (Ecorr = −0.30 V), which was due to the formation
of the anodic oxide layer. The passive film protects the metal from the environment, retarding the
electrons passage across its self. Consequently, a lower passive current (ip ~1.12 × 10−7 A/cm2) for
the Ti_NTinorg sample was recorded. The sample with longer nanotubes, (Ti_NTorg), obtained in the
“organic” electrolyte, exhibited the highest corrosion potential (Ecorr = −0.065 V), due to the greater
thickness of the anodic oxide formed on its surface. At the same time, the sample showed the highest
passive current (ip ~7.35 × 10−6 A/cm2). On the other hand, since the Ti_NTorg sample is expected to
have a very large area per unit geometric area, if compared to the untreated and Ti_NTinorg samples,
it was able to expose a wider reactive surface [45], exhibiting an “apparent” higher passive current.
In addition, ip, for the sample Ti_NTorg remained constant during the experiment, suggesting a larger
passivity range of the anodic oxide grown on its surface. In comparison, the Ti_NTinorg sample
presented a slight variation of the ip through the test. Regarding the accurate evaluation of the passive
current, a detailed study is needed to verify the previous hypothesis.
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for the anodized samples in the” inorganic” (Ti_NTinorg sample), the “organic” (Ti_NTorg sample)
electrolytic solution, and un-treated (Ti pristine sample).

The results of the EIS analysis carried out in Hanks’ solution for 360 h on the Ti_NTorg samples are
reported in the form of Bode plots in Figure 5. The impedance modulus curves recorded for the entire
duration of the experiment were almost overlapping, excluding the curve recorded at t = 0. Indeed, it is
possible to imagine that, at the beginning of the test, chemical reactions started to develop on the
surface, reaching equilibrium after a certain period of time. The overlapping of the remaining curves
indicated the stability of these kinds of nanotubes in the test solution. They present a morphological
aspect more defined than those nanotubes obtained in the acidic solutions. A slight decrease of the
impedance modulus value was exhibited only in the low frequency range. In the phase angle plot
(see Figure 5b) at the beginning of the test (t = 0) a rapid rise of the phase angle, from −10◦ to −60◦ in
the frequency range from 20 kHz to 1 Hz, was observed. In addition, a decrease of the phase angle to a
value of about 45◦ in the lowest frequency range was recorded. The trend of the curves suggested the
presence of a second constant time due to the structure of the double-layer oxide. It was made of a
porous outer layer of lower impedance and a dense inner layer, usually defined as a “barrier layer”,
associated to high impedance and responsible for corrosion protection [46]. As the immersion time
elapsed, the maximum of the phase angle, recorded in the middle frequency range at the beginning of



Metals 2018, 8, 489 7 of 11

the test, slightly decreased until 216 h. Afterwards, it gradually moved toward the high frequency
range, indicating a very slow decrease of corrosion protection ability.Metals 2018, 8, x FOR PEER REVIEW  7 of 11 
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Figure 5. Impedance (a) and phase angle (b) plots of the Ti_NTorg samples immersed in Hanks’ solution
for 15 days.

The electrochemical behavior of the Ti_NTorg sample was evaluated by using a simple electrical
equivalent circuit model (see Figure 6), Rs(RtQPEt)(RbQPEb), widely reported in literature [47,48], in order
to simulate the structure of the nanotubes composed by a double-layer oxide, as aforementioned.

The model adopted was made of three modules connected in series. A resistor Rs, to indicate the
electrolytic solution resistance, was connected in series to a parallel combination of a constant phase
element QPEt and a resistance Rt. They represent the non-ideal behavior of the double layer capacitance
of the nanotubes porous outer layer and its resistance, respectively. This mesh was in turn linked in series
to another parallel combination of a constant phase element QPEb and a resistance Rb. The latter represent
the non-ideal behavior of the double layer capacitance of the nanotubes barrier layer and its resistance,
respectively. The impedance of a constant phase element QPE is defined as ZCPE = [Q (jωn)]−1, with n = 1
for an ideal capacitor, n = −1 for ideal inductor and n = 0 for ideal resistor [49].
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Figure 6. Electrical equivalent circuit model used for fitting the impedance spectra of the Ti_NTorg samples.

A good agreement between the experimental and fitting data was obtained, as confirmed by the
χ2 values reported in Table 3, where also the electrical equivalent circuit parameters are reported.

At the onset of immersion in the Hanks’ solution, the resistance of the porous outer layer, Rt,
was 1.17 × 104 Ω·cm2 and the resistance of the barrier layer, Rb, was 1.73 × 105 Ω·cm2, in agreement
with the results in literature [50]. This data indicated that the porous layer showed a smaller resistance
than the barrier layer, which clearly dominates the corrosion protection. In the following immersion
days, Rt was essentially constant throughout the measurement, revealing a stability of the outer porous
layer. The resistance values of Rb increased by about one order of magnitude and remained constant
for the duration of the test. Generally, a high value of the barrier layer resistance, Rb, suggests higher
corrosion protection ability. The capacitance of the outer porous layer value, QPEt, and that of
the inner layer, QPEb, changed very little throughout the duration of the experiment, suggesting
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the long-term stability of the system under study. The value “n” of the constant phase element
representing the outer porous and the inner layers, which changed from 0.7 to 0.86, was indicative of a
near-capacitive behavior.

Table 3. Electrical equivalent circuit parameters of the Ti_NTorg sample.

Immersion Time (h) Ecorr
(mV)

Rs
(Ω·cm2)

Rt
(Ω·cm2)

QPEt
(F·cm−2) nt

Rb
(Ω·cm2)

QPEb
(F·cm−2) nb χ2

0 −136 340.0 1.17 × 104 5.30 × 10−5 0.86 1.73 × 105 1.36 × 10−4 0.80 0.0056
24 −240 306.6 9.01 × 103 8.40 × 10−5 0.74 1.49 × 106 2.00 × 10−4 0.75 0.0036
29 −257 303.0 8.80 × 103 8.72 × 10−5 0.72 1.17 × 106 2.26 × 10−4 0.76 0.0027
216 −249 261.0 8.55 × 103 9.35 × 10−5 0.70 1.35 × 106 2.49 × 10−4 0.77 0.0046
360 −242 205.4 9.26 × 103 5.78 × 10−5 0.71 1.44 × 106 3.30 × 10−4 0.84 0.0098

It is noteworthy that the nanotubes porous outer layer values, Rt, estimated by fitting the EIS data,
presented a similar trend as the Ecorr values that were recorded in the early stage of immersion of each test,
as well as verified in earlier work [28]. As a matter of fact, they showed a decrease after the first 24 h of
immersion in the test solution, up to a value that remained essentially constant throughout the duration
of the test (Figure 7). The Ecorr values variation, from −136 mV to an almost constant value of about
−250 mV, confirmed the lack of an EIS curve overlapping those recorded at the beginning of the test.
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The trend of the Ecorr values indicated that, after 24 h of immersion in the test solution, the equilibrium
between the formation and the dissolution of the surface oxide on the nanotubes was already achieved.

To evaluate the influence of the electrolyte solution used to grow the titanium nanotubes on the
electrochemical stability of the implant, a comparison between samples anodized in an inorganic
or organic media was considered. In Table 4 the equivalent circuit parameters of the Ti_NTinorg,
previously obtained, are reported.

Table 4. Electrical equivalent circuit parameters of the Ti_NTinorg sample.

Immersion Time (h) Ecorr (mV) Rs
(Ω·cm2)

Rt
(Ω·cm2)

QPEt
(F·cm−2) nt

Rb
(Ω·cm2)

QPEb
(F·cm−2) nb χ2

0 −254 236.8 1.03 × 104 9.87 × 10−6 0.65 1.40 × 105 1.10 × 10−4 0.83 0.0031
24 −176 310.1 2.84 × 104 2.13 × 10−5 0.73 2.17 × 106 8.02 × 10−4 0.90 0.0040
29 −268 353.3 7.32 × 103 2.52 × 10−5 0.74 3.32 × 105 1.39 × 10−3 0.92 0.0019

216 −234 336.4 1.92 × 104 2.14 × 10−5 0.84 1.88 × 105 1.17 × 10−4 0.92 0.0004
360 −258 273.4 8.72 × 103 2.51 × 10−5 0.81 3.15 × 105 1.24 × 10−4 0.91 0.0009

By comparing the two sets of the equivalent circuits parameters, it was possible to verify that the
Rt parameter for the Ti_NTinorg sample shifted in the range from 7.32 × 103 Ω·cm2 to 2.84 × 104 Ω·cm2.
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The Rt parameter for the Ti_NTorg specimen remained essentially constant. On the other hand, the Rb
values for the “inorganic” nanotubes shifted in the range from 1.40 × 105 Ω·cm2 to 2.17 × 106 Ω·cm2.
While the Rb values for the “organic” nanotubes improved by one order of magnitude, reaching a
constant value and highlighting the instability of the nanotubes grown in the inorganic solution,
which presented variable Rt and Rb values. The Rb value for the organic sample was higher than
the inorganic sample. It suggested that the barrier layer formed in the organic nanotubes had better
resistance to corrosion, which is most likely due to these reasons: (i) the presence of a rutile phase
observed in these kinds of nanotubes, which are the most dense titanium oxide (4.25 g·cm3) and
the most thermodynamically stable [51], (ii) the morphology of the “organic” nanotubes. The latter
allowed a much slower replacement of the electrolytic solution within longer and narrower “organic”
nanotubes than that showed by the “inorganic” nanotubes, characterized by greater accessibility.
Looking at the parameters obtained at the beginning of the test, both samples, Ti_NTinorg and Ti_NTorg

seemed to present similar values of Rt and Rb; however, in this case, as in the potentiodynamic
polarization curves, the contribution of the “real” area should be taken into account.

4. Conclusions

The anodic oxidation performed on a dental screw in an “organic” solution obtained nanotubes
about 70 nm in diameters, about 8 in length µm, and smooth side walls. The XRD pattern has revealed
the presence of a rutile structure, as the results of the heat treatment were performed to prevent the
formation of an unavoidable nanograss layer. On the other hand, the rutile form could improve
the bone-bonding ability and could provide better mechanical properties compared to amorphous
titanium oxide. The potentiodynamic polarization test showed a high corrosion potential, due to the
anodic oxide formed and its thickness, but also a high passive current for the greater area exposed by
the “organic” nanotubes, which were longer than the “inorganic” nanotubes and displayed a higher
density. The EIS tests conducted for 15 days in Hank’s solution demonstrated a higher stabilized
surface of the “organic” nanostructures, in comparison to the “inorganic” nanotubes, which evinces
their use for long-term medical devices.
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