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Abstract. This study introduces a finite element model based on a two-scale beam-to-beam
homogenization procedure for the analysis of masonry structural members undergoing prevail-
ing axial and bending stress states. The model is developed considering the periodic repetition
of bricks and mortar joints in regular stack bond arrangement and assuming a linear elastic
behavior for the former and a nonlinear response for the latter. At the microscopic hetero-
geneous scale, the behavior of a Unit Cell (UC) made of a single brick and mortar layer is
described through an equivalent Timoshenko beam representation, where a nonlocal damage
formulation with friction plasticity governs the mortar nonlinear constitutive relationship. Bas-
ing on a semi-analytical approach, the microscopic quantities are, then, homogenized to define
an equivalent beam model at the macroscopic scale.

The proposed finite element model is implemented in standard numerical codes to investigate
the response of typical one-dimensional (1D) masonry elements. This study shows the numerical
simulation of two experimental tests: a rectangular wallette under out-of-plane bending and a
circular arch under vertical forces. The results obtained for the proposed model are compared
with those resulting from micromechanical approaches and the experimental outcomes.
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1 INTRODUCTION

Past and recent seismic events have shown that collapse of masonry buildings is frequently
related to the onset of flexural and shear mechanisms. Hence, the development of efficient
numerical procedures to analyze and predict the response of masonry walls is a relevant and
interesting task. As known, among the different approaches for modeling masonry structural
element response [1], the micro-macro models allow to accurately describe the complex non-
linear anisotropic behavior of masonry material, accounting for the details of geometry, ar-
rangement and constitutive response of the components. These, also known as multi-scale
approaches, are a fair compromise between the detailed geometric and mechanical description
of the masonry composite material and the computational efforts. Recently, multi-scale proce-
dures adopting the computational homogenization, where the micro and macro scales exchange
information at each iteration of the global solution procedure, have been successfully employed
[2, 3] to describe the in-plane response of masonry. Some efforts have also been devoted to de-
velop micro-macro techniques for the out-of-plane behavior, usually analyzing a 3D Unit Cell
(UC) at the microscale linked to a shell model at the macro structural level [4]. Both linear
and damage-plastic constitutive behavior is adopted. Kirchhoff-Love thin shells [5] have been
mainly proposed, although a number of works focusing on the homogenization procedure for
thick shells, based on the Mindlin theory [6], has been recently presented.

This study presents a two-scale model for masonry structures subjected to prevailing ax-
ial and bending stress states. Masonry structural elements characterized by a stack bond ar-
rangement along a one-dimensional (1D) direction, like for example columns and arches, are
analyzed. Regular arrangements are considered, made of the periodic repetition of bricks and
mortar joints. Two micromechanical models are also adopted for comparison, separately dis-
cretizing bricks and mortar with 1D and two-dimensional (2D) finite elements (FE) [7]. All
the models use a nonlocal damage constitutive law with friction plasticity for the mortar joints
and a linear elastic relationship for the bricks. In particular, the two-scale approach adopts 1D
beam models at both the microscopic heterogeneous material scale, where a UC made of the
sequence of a brick and a mortar layer is defined, and the macroscopic structural scale, where an
equivalent homogeneous beam is considered. This permits to solve the nonlinear homogeniza-
tion problem at the micro-level by means of a semi-analytical approach, thanks to the simplified
nature of the governing variables and equations and some simplified assumptions on the mortar
constitutive response. The displacement field in the UC is composed of an assigned part, ex-
pressed as function of the macroscopic beam strain components, and an unknown perturbation,
which is due to the heterogeneous nature of the medium. To evaluate the constitutive response
of the mortar joints and solve the evolution problem of the damage and plastic variables, a fiber
discretization is introduced and the differential equations governing the boundary value prob-
lem on the UC are solved by an iterative procedure. The microscopic stress components are,
then, homogenized to obtain the macroscopic beam stress resultants at the Gauss point linked
to the analyzed UC. The equilibrium equations at the macro-level are solved through a FE solu-
tion procedure, adopting the beam force-based formulation, more efficient and accurate than the
displacement-based approach and already applied by the authors to masonry modeling [8]. The
two-scale procedure has been implemented in the MATLAB code, while the micromechanical
models have been introduced in the FEAP FE program [9].

Two numerical applications on a masonry wallette and an arch are presented, comparing the
results obtained with the two-scale 1D model with the experimental outcomes and with those
evaluated by employing the 1D and 2D micromechanical models.
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2 Micromechanics and homogenization of masonry beam

A heterogeneous masonry beam structural element is modeled, made of the regular repetition
of bricks and mortar arranged in stack bond, as shown in Figure 1(a). The two-scale procedure
presented in [10] is adopted, considering a homogeneous beam at the structural level (Figure
1(b)). The constitutive response at each Gauss integration point is derived via a homogenization
procedure applied to the UC at the microscopic scale (Figure 1(c)). The UC is properly selected
and analyzed to reproduce the behavior of the overall composite material.

Figure 1: Two-scale analysis of a masonry column: (a) heterogeneous masonry column, (b) homogenized beam
model, (c) UC, (d) heterogeneous beam model for the UC.

A beam model is also adopted at the UC scale (Figure 1(d)), and, relying on the rigid section
assumption, the displacement components u1 and u2 at each point of the beam cross-section are
written as:

u1 = u (x)− y ϕ (x) (1)
u2 = v (x) ,

with u, v and ϕ representing the generalized displacement components of the beam, i.e. the
axial and transverse displacements of the point x, and the rotation of the beam cross-section at
x, respectively. The counterclockwise rotation is assumed to be positive.

Considering the periodic texture of the analyzed medium, the displacement components at
the microlevel, u, v and ϕ, are written as the superposition of prescribed fields u, v and ϕ,
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defined as function of the beam generalized strains E, K and Γ, measured at the macroscopic
Gauss point, and unknown periodic fluctuations, u∗, v∗ and ϕ∗, satisfying proper periodicity
conditions on the UC boundary [11], namely:

u (x) = u (x) + u∗ (x)

v (x) = v (x) + v∗ (x) in (0, `) , (2)
ϕ (x) = ϕ (x) + ϕ∗ (x)

with
u∗ (0) = u∗ (`) v∗ (0) = v∗ (`) ϕ∗ (0) = ϕ∗ (`) . (3)

The prescribed displacement fields u, v and ϕ are the solution for the homogeneous UC sub-
jected to the macroscopic strains E, K and Γ, resulting as:

u (x) = E x

v (x) = Γ x+
1

2
K x2 in (0, `) . (4)

ϕ (x) = K x

Taking into account formulas (1), (2) and (4), the beam generalized strain parameters, i.e axial
strain, curvature and shear strain, are derived as:

ε0 = u′ = E + u∗
′

κ = ϕ′ = K + ϕ∗
′

γ = v′ − ϕ = Γ + v∗
′ − ϕ∗

(5)

where the apex ·′ denotes the derivative with respect to x.
Enforcing the average conditions, requiring that the generalized strain parameter average

values have to be equal to the macroscopic strains, equations (5) lead to:

0 =

∫
`

(u∗)
′
dx

0 =

∫
`

(ϕ∗)
′
dx (6)

0 =

∫
`

(v∗)
′
dx−

∫
`

ϕ∗ dx .

which, accounting for the periodicity conditions (3), reduce to the following condition:∫
`

ϕ∗ dx = 0 . (7)

The constitutive response of the mortar material is ruled by the following relationships:

σm = Em (ε− πε)
τm = Gm (γ − πγ) ,

(8)

where σm and τm are the normal and shear stresses, ε and γ are the normal and shear strains,
πε and πγ are the normal and shear inelastic strains due to damage, plasticity or other inelastic
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effects. Moreover, Em and Gm denote the mortar Young’s and shear elastic moduli. Adopting
the constitutive model proposed in [12], it results:

πε = DH (ε) ε (9)
πγ = Dγp ,

where D is the damage variable, with 0 ≤ D ≤ 1, H (ε) ε reproduces the unilateral effect,
being H (ε) = 0 if ε ≤ 0 and H (ε) = 1 if ε > 0, and γp is the shear slip.

To properly account for the fracture modes I and II, the damage evolution is governed by the
equivalent strain parameter Yeq and the mode ratio η, defined as:

Yeq =

√(〈ε〉+
ε0

)2

+

(
γ

γ0

)2

η =
1

ε2eq

[(
〈ε〉+

)2
ηε + γ2 ηγ

]
, (10)

with
ηε =

ε0 σ0
2GcI

, ηγ =
γ0 τ0

2GcII

, εeq =

√(
〈ε〉+

)2
+ γ2 , (11)

σ0 and τ0 being the peak values of the normal and shear stresses, ε0 and γ0 the corresponding
values of the normal and shear strains, GcI and GcII denoting the fracture energies correspond-
ing to modes I and II and the Macaulay brackets 〈·〉+ evaluating the positive part of the number.
The damage is evaluated according to the following law:

D = max
history

{
0,min

{
D̃, 1

}}
with D̃ =

Yeq − 1

(1− η)Yeq
. (12)

The Coulomb law rules the evolution of the friction plasticity on the basis of the following
yield function:

ϕ (σ̃m, τ̃m) = µ σ̃m + |τ̃m| , (13)

where µ is the friction parameter and σ̃m and τ̃m are the normal and shear effective contact
stresses, resulting as:

σ̃m = Em (ε−H (ε) ε) (14)
τ̃m = Gm (γ − γp) . (15)

The plastic slip evolves according to the evolution equation and the loading-unloading Kuhn-
Tucker conditions, expressed as:

γ̇p = λ̇
τ̃m
|τ̃m|

λ̇ ≥ 0 ϕ ≤ 0, λ̇ ϕ = 0 , (16)

where λ is the inelastic multiplier.
Linear elastic constitutive relationships are considered for the brick material, as:

σb = Eb ε
τb = Gb γ ,

(17)

where σb and τb are the normal and shear stresses, while Eb and Gb are the Young’s and shear
elastic moduli in the brick.
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By integrating the material stress components (8) and (17) over the mortar and brick cross-
section in the UC, the resultant axial force, bending moment and shear force are obtained as:

nm = EmAε0 − P
mm = Em I κ−R
tm = GmAsγ − V

nb = EbAε0
mb = Eb I κ
tb = GbAsγ

(18)

in the mortar and brick material, respectively. In equations (18), A, I and As are the area, the
inertia and the shear area of the beam cross-section, respectively. The quantities P , R and V
account for the inelastic strains arising in the mortar and result as:

P =

∫
A

Em πε dA R = −
∫
A

Em y πε dA V =

∫
As

Gm πγ dA . (19)

The upscaling from the micro to the macro structural scale is performed by evaluating the
average resultant stress components in the whole UC, as:

N =
1

`

(∫
`m

nm dx+

∫
`b

nb dx

)
M =

1

`

(∫
`m

mm dx+

∫
`b

mb dx

)
(20)

T =
1

`

(∫
`m

tm dx+

∫
`b

tb dx

)
.

where `, `b and `m are the length of UC, brick and mortar, respectively.

3 Macroscale finite element formulation

A homogeneous Timoshenko beam model is adopted at the macro-level, where the displace-
ment fields are written as:

U1 = U (X)− Y Φ (X) (21)
U2 = V (X) ,

with U , V and Φ denoting the beam generalized displacement components, i.e. the axial and
transverse displacements of the point (X, Y ), and the rotation of the beam cross-section at X ,
respectively. The counterclockwise rotation is assumed as positive. The beam macroscopic
strain components are introduced as:

E = {E K Γ}T , (22)

with E being the axial elongation, K the curvature and Γ the shear strain. The related macro-
scopic stress measures read:

S = {N M T}T , (23)

where N , M and T are the beam axial, flexural and shear stress components.
To solve the beam structural problem at the macro-level, a 2-node 2D beam FE is formulated

adopting the force-based approach and the Gauss-Lobatto integration rule. The element forces
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and displacements are expressed in the basic local reference system, obtained by eliminating
the rigid body motions, by the following vectors:

Q = {Q1 Q2 Q3}T , q = {q1 q2 q3}T , (24)

where Q1 is the axial force, and Q2 and Q3 are the bending moments at the end nodes i and
j. Similarly, q1 is the axial elongation, and q2 and q3 are the nodal rotations. The equilibrated
stress resultants (23) at each beam cross-section are expressed by the following polynomial
interpolation:

S = bQ + Sq , (25)

with the vector Sq = {Nq Mq Tq}T containing the section stresses due to the external loads,
distributed along the reference axis. The section equilibrium matrix b results as:

b =

 1 0 0
0 X/L− 1 X/L
0 1/L 1/L

 ,

L being the length of the beam finite element. The beam strain and stress vectors, E and S, are
related by the section flexibility matrix f . According to the two-scale approach, to determine
the constitutive response at each integration point along the beam, the semi-analytical solution
of the homogenization problem on the UC is computed [10] and the stress resultants in (20)
are derived. The numerical solution of the global incremental nonlinear equilibrium equations
follows a classic step-by-step method and a standard iterative Newton-Raphson algorithm.

4 NUMERICAL APPLICATIONS

To validate the proposed two-scale procedure two numerical applications are presented.
These consist in the simulation of two masonry structural members subjected to monotoni-
cally increasing loads: a rectangular wallette under out-of-plane bending and a circular arch
under vertical forces. Both tests are numerically simulated adopting the proposed two-scale
model (Two-Scale 1D) compared with two micromechanical approaches (Micro 1D and Micro
2D) and the experimental outcomes.

4.1 Wallette four-point out-of-plane bending test

The first numerical application concerns the four-point out-of-plane bending response of
a masonry wallette, experimentally tested in [13]. Figure 2 illustrates the specimen geome-
try and boundary conditions, and the used 1D discretization. The wallette sizes are: height
675 mm, width 520 mm and thickness 100 mm (Figure 2(a)). The clay brick, having sizes of
T = 100 mm, b = 200 mm and `b = 50 mm, are aligned transversally to the flexure plane
and the mortar length `m is equal to 12.5 mm. The top and bottom of the wallette are simply
supported at the middle of the outermost brick alignments, and two forces, distributed along the
width, act orthogonally to the specimen plane. The distance between the forces is 250 mm. The
distance between each force and the nearest support is 187.5 mm.

Accounting for the symmetry of the specimen, the Two-Scale 1D numerical model considers
only one half of the wallette, adopting two beam FEs, as illustrated Figure 2(b). Table 1 contains
the material model parameters, deduced from the experimental measurements in [13] on the
brick and mortar responses. The tensile and shear fracture energies given in [13] as force per
unit length have been divided by the area of the three bed mortar joints located in the central
beam region, where the moment is constant.
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F

F

F

Figure 2: Four-point out-of-plane bending test of the masonry wallette: (a) specimen geometry and (b) macrome-
chanical beam model (dimensions in mm).

Brick Mortar

Eb = 16700 MPa
νb = 0.13

Em = 5000 MPa
νm = 0.08
σ0 = 0.4 MPa
τ0 = 1.9 MPa
GcI = 1.81× 10−4 MPa
GcII = 1.6× 10−2 MPa
µ = 0.82

Table 1: Four-point out-of-plane bending test of the masonry wallette: material parameters for the bricks and
mortar.

Figure 3 plots the nonlinear response of the wallette in terms of maximum bending moment
m per unit width versus the corresponding cross-section curvature K. The numerical results
for the Two-Scale 1D model (red line) are compared with the experimental data (blue line) and
the results of two micromechanical approaches: a beam FE model (Micro 1D - black dots) and
the 2D FE model presented in [7] (Micro 2D - yellow line). The shaded area corresponds to
the experimental confidence region, where the upper and lower bound linear-parabola curves
have been evaluated by adopting the upper and lower values of the confidence intervals for the
parameters, also considered in [14]. The Micro 1D approach discretizes each bed mortar joint
and each brick with a homogeneuos beam FE. The Micro 2D approach models the structure
in the flexure plane and discretizes the bed mortar joints and the bricks with quadrilateral FEs
having uniform thickness. In both models, the FEs representing the bricks behave as linear elas-
tic and those representing the mortar joints adopt the damage-friction constitutive relationship
described in Section 2. For the Micro 2D model, the cross-section curvature K is evaluated as
the average value occurring in the central region where the moment is constant, following the
proposal in [14].

The numerical curves are contained in the confidence area and satisfactorily describe the
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Figure 3: Four-point out-of-plane bending test of the masonry wallette: maximum moment m per unit width versus
curvature K.

initial stiffness, the peak strength and the collapse mechanisms of the wallette. Although the
experimental maximum strength of the specimen is overestimated, the results for the Two-Scale
1D model fully agree with those of the micromechanical approaches, proving the efficiency
of the proposed homogenization procedure. The difference between the numerical and the
experimental curves mostly depends on the calibration of the material parameters, whose ex-
perimental measurements are affected by considerable uncertainty. Despite this consideration,
the proposed numerical procedure results accurate and computationally very fast and efficient.

4.2 Bending of a circular arch

The second numerical application studies the response a masonry circular arch subjected to
an eccentric concentrated vertical force. The specimen has been tested during the experimental
campaign by Cancelliere et al. [15] and has been numerically studied by Addessi et al. [1].
Figure 4 shows the geometry of the arch, also reporting the conventional numbering of the
23 bricks. The following data are set for the geometry of the specimen: internal radius r =
456 mm, width w = 255 mm, thickness t = 120 mm, height f = 510 mm and internal distance
between the abutments da = 900 mm. The sizes of the clay bricks are w = 255 mm, t =
120 mm and `b = 55 mm and the mortar length varies from 0.8 mm to 15.5 mm. The vertical
force acts on the external surface, at the middle of the 14th brick, that is at the distance df =
140 mm from the axis of the arch.

Figure 5 shows the discretization adopted for the Two-Scale 1D numerical model. This uses
17 beam FEs, uniformly distributed along the two parts of the arch on the left and right hand
sides of the applied force. Table 2 contains the parameters for the material model, deduced from
the experimental measurements in [15] on the brick and mortar response and also adopted in
[1]. Given the slender geometry of the arch, to reduce the computational burden of the simula-
tions, an Euler-Bernoulli kinematic description of the cross-section is considered, obtained by
neglecting the effects of the macroscopic shear strain Γ in the proposed two-scale procedure.
Hence, the material parameters for the shear constitutive quantities are not provided. Note that
the interface between bricks and mortar joints exhibits a very low tensile resistance during the
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Figure 4: Specimen geometry of the circular arch (dimensions in mm).

experimental test. Hence, a small value of the tensile strength is assumed in the numerical char-
acterization of the mortar. The average value `m = 10 mm is assumed for the mortar length and
the self weight of the masonry equal to 17 kN/m3. Moreover, the action of the force is repro-
duced according to a standard displacement control procedure, that is by restraining the vertical
translation of the loaded node and applying an incremental negative displacement v along the
vertical direction.

10 FEs

F

7 FEs
d f = 140

v

x

y

Figure 5: Macromechanical Two-Scale beam model of the circular arch.

Figure 6 plots the nonlinear response of the arch in terms of nodal reaction F versus the
prescribed displacement v. The numerical results for the Two-Scale 1D model (red solid line)
are compared with the experimental data (blue line) and the results of the Micro 2D approach
in [1] (red dotted line). Moreover, the figure indicates the value of the failure load (650 N),
deduced by applying the kinematic theorem of the limit analysis. This represents the upper
bound of the arch ultimate strength.

The proposed two-scale procedure satisfactorily reproduces the experimental response of
the arch and completely agrees with both the experimental and the Micro 2D outcomes. The
formation of the hinges leading to the specimen failure is perfectly detected as well. Indeed,
four hinges form during the experimental test: two on intrados and two on extrados of the arch,
due to the decohesion between the mortar and the brick. These are located as indicated by the
red circles in Figure 7(a). In the same figure, the blu dots represent the locations of the hinges
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Brick Mortar

Eb = 16000 MPa
νb = 0.20

Em = 1500 MPa
νm = 0.20
σ0 = 1.0× 10−4 MPa
GcI = 3.0× 10−4 MPa
µ = 0.50

Table 2: Material parameters for the bricks and mortar of the circular arch.
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v [mm]

-200

0

200

400
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800

F
 [

N
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Numerical - Two-Scale 1D

Experimental

Limit analysis

Numerical - Micro 2D (Addessi et al.)

Figure 6: Circular arch: applied force F versus vertical displacement v of the loaded section.

determined by the numerical model. These correspond to the four cross-section with higher
values of the damage variable D. The shaded area indicates the average of the damage variable
D over each beam cross-section, defined as Dm = 1

A

∫
A
DdA. For v = 0.08 mm, this quantity

assumes the values 0.96, 1.00, 1.00 and 0.86 at the hinges, as indicated in the figure. Finally,
Figure 7(b) shows the deformed configurations of the arch for the same vertical displacement v
= 0.08 mm of the loaded cross-section obtained with the Two-Scale 1D model. This accurately
matches both the experimental data in [15] and the results of the Micro 2D model in [1] showing
a movement of the top of the arch on the left hand side of the force, due to the eccentricity of
the load and the formation of the nonlinear hinges.

5 CONCLUSIONS

• Masonry structural elements characterized by geometry and loading conditions typical of
beam like structures have been studied.

• A micro-macro two-scale procedure has been employed, using beam FE discretizations
at both the structural and UC scale.

• The masonry constituents response has been modeled by a damage-friction plasticity law
for the mortar and a linear elastic relationship for the bricks.

• The presented procedure, compared with two micromechanical 1D and 2D FE approaches,
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(a) Deformed configuration.

Undeformed

Deformed (scale = 300)

(b) Average damage Dm distribution.

Figure 7: Circular arch: (a) deformed configuration and (b) distribution of the average damage Dm and location
of the four plastic hinges (blue dots) for v= 0.8mm.

adopting the same constitutive laws for bricks and mortar, is proved to be efficient, fast
and accurate.

• The comparison with the experimental outcomes on a masonry wallette under out-of-
plane bending and on a vertical loaded circular arch has shown that the two-scale pro-
cedure is able to satisfactorily describe the structural response of the analyzed masonry
elements and to reproduce the degrading processes involving the mortar joints, as well.

REFERENCES

[1] D. Addessi, S. Marfia, E. Sacco, J. Toti, Modeling Approaches for Masonry Structures.
The Open Civil Engineering Journal, 8, 288–300, 2014.

[2] T.J. Massart, R.H.J. Peerlings, M.G.D. Geers, Structural damage analysis of masonry
walls using computational homogenization. International Journal of Damage Mechanics,
16, 199–226, 2007.

[3] M.L. De Bellis, D. Addessi, A Cosserat based multi-scale model for masonry structures.
International Journal for Multiscale Computational Engineering, 9, 543–563, 2011.

[4] B.C.N. Mercatoris, T.J. Massart, A coupled two-scale computational scheme for the failure
of periodic quasi-brittle thin planar shells and its application to masonry. International
Journal for Numerical Methods in Engineering, 85, 1177–1206, 2011.

[5] A. Cecchi, K. Sab, A homogenized Love-Kirchhoff model for out-of-plane loaded random
2D lattices: Application to ”quasi-periodic” brickwork panels. International Journal of
Solids and Structures, 46, 2907–2919, 2009.
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