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Abstract. This work aims at highlighting critical issues that occurs in the modeling of mono-
symmetric non-prismatic thin walled beams. In particular, even considering the simplified as-
sumption of planar behavior, it is possible to demonstrate that the shear stress distribution
within non-prismatic beams is substantially different from the one that occurs in prismatic
beams. Furthermore, such a difference can not be neglected also in tapered beams with ex-
tremely smooth variation of the cross-section geometry. First, the work provides an accurate
literature review, continues with the synopsis of a recently proposed enhanced strategy for the
reconstruction of the stress distributions, and, finally, demonstrates its capabilities through a
simple numerical example.
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1 INTRODUCTION

Shear stress distributions within homogeneous planar tapered beams are substantially differ-
ent from the stress distribution within prismatic beam, as noticed since the beginning of past
century [1, 2, 3]. In particular, [2] provides the stress distribution (i.e., the analytical solution
of the equilibrium Partial Differential Equation (PDE)) for an infinite long wedge loaded in the
apex. The analytical solution is given in a Polar coordinate system and uses trigonometric func-
tions, nevertheless the authors specify that, for a taper angle α < 15deg and using a Cartesian
coordinate system, the distributions of axial and shear stresses could be approximated with a
linear and a quadratic function, respectively. If the distribution of axial stress turns out being
identical to the one that can be found using stress recovery formulas used for prismatic beams,
the shear stress distribution is substantially different. In fact, considering a load perpendicu-
lar to the wedge bisector (i.e., cross-sections are loaded with a shear force V and a bending
moment M = V x where x denotes the distance from the apex), the shear stress has maximal
value on the boundaries and vanishes on the bisector. As a consequence, the bisector fiber is
unloaded whereas the boundary fibers are loaded with both the maximal horizontal stress and
the maximal shear stress which magnitude, furthermore, is three times the average (in prismatic
beams, conversely, the central fiber is loaded with the maximal shear stress that is 1.5 times the
magnitude average) [4].

As a consequence, as noticed since the Sixty years of the past century, such a situation leads
the prismatic beam models to be no longer effective for non-prismatic beams also considering
small taper angles [5]. Furthermore, recent contributions have highlighted that the non trivial
shear stress distribution (i) depends on all internal forces [6, 7], (ii) deeply influences the consti-
tutive relation [8], and (iii) leads the beam stiffnesses substantially different than for prismatic
beams [9]. Conversely, national and international standards (e.g., [10, 11]) provide indications
for the evaluation of tapered beam buckling resistance, but do not provide any specific indi-
cation for the evaluation of the cross-section resistance, leading practitioners to suppose that
prismatic beam formulas can be used also for non-prismatic beams [12]. Accordingly, most of
the research focuses on enhanced aspects, like Finite Element (FE) modeling [13, 14], buckling
resistance [15, 16], post-buckling behavior [17, 18], and dynamics [19], but ignores the influ-
ence of stress distribution undermining the effectiveness of any enhanced modeling approach.

To the authors’ knowledge, the few attempts that aim at an enhanced recovery of cross-
section stress distribution are listed in the following.

• [20] that proposed ad-hoc formula for the estimation of maximum shear-stress in non-
prismatic beams. Unfortunately, in [21, 22] it is highlighted that the so far introduced
formula leads to contradictory results and is not able to predict the real resistance of
variable depth beams.

• [23] that proposed a simplified approach accounting for the contribution of flanges to the
shear stress resistance.

• [24] that proposed an enhanced approach, but neglected flanges contribution to the verti-
cal equilibrium.

• [8, 6] that proposed an accurate stress recovery procedure based on a suitable generaliza-
tion of the Jourawsky theory [25].

[26] evaluates the effectiveness of the so far introduced methods for tapered bi-symmetric thin
walled I beams, demonstrating that methods proposed in [20, 23, 24] could underestimate the
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maximal shear stress up to 70 % and the Mises stress (i.e., the cross-section resistance) up to 55
%. Conversely, the stress recovery proposed in [6] results much more accurate, leading to errors
exceptionally greater than 3 %. Finally, [6] also highlights that any variation of the geometry
leads the shear strain to depend on all internal forces.

This paper aims at evaluating the effectiveness of the stress recovery procedure proposed
in [6] for mono-symmetric thin walled beams behaving under the assumption of plane stress.
The paper is structured as follows: Section 2 resumes the stress representation proposed in [6],
Section 3 reports several numerical results for a T section with tapered flange and parabolic
shaped web, and Section 4 discusses final remarks.

2 STRESS RECOVERY PROCEDURE

This section illustrates the main steps of the stress recovery procedure. It consists in a gen-
eralization of the stress representation proposed in [6] for multilayer non prismatic beams.

We consider the homogeneous isotropic beam depicted in Fig. 1 that is symmetric with
respect to the plane z = 0 and behaves under the hypothesis of small displacements and plane
stress state. In particular, we assume that the beam depth b(x,y) is a piecewise function defined
within each layer Ωi. Finally, the material that constitutes the beam body is homogeneous,
isotropic, and obeys a linear-elastic constitutive relation.

z

y

x
Ω1

Ωn

Ω1

b (x; y)

h1 (x)

h2 (x)

hn+1 (x)

Figure 1: Beam geometry, coordinate system, dimensions and adopted notations.

We start by introducing the cross-section area A∗ : L → R and the first moment of area
S∗ : L→ R defined as

A∗ (x) =
∫ hn+1(x)

h1(x)
b(x,y)dy; S∗ (x) =

∫ hn+1(x)

h1(x)
b(x,y)ydy (1)

Consequently, the beam centerline c : L→ R reads

c(x) =
S∗ (x)
A∗ (x)

(2)

Finally, we define the cross-section inertia I∗ : L→ R

I∗ (x) =
∫ hn+1(x)

h1(x)
b(x,y)(y− c(x))2 dy (3)

Assuming that the cross-section behaves as a rigid body and introducing the horizontal-stress
distribution functions dH

σ and dM
σ defined as

dH
σ (x,y) =

1
A∗ (x)

; dM
σ (x,y) =

1
I∗ (x)

(c(x)− y) (4)
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the horizontal stress distribution within the cross-section reads

σx (x,y) = dH
σ (x,y)H (x)+dM

σ (x,y)M (x) (5)

dx

h′idx

h′1dx

dy

(a)

(b)

(c)

σx|h1 τ |h1

τ

τ + τ ,y dyσx

σx +σx,xdx

τ−

τ+σ+
x σ−

x

Figure 2: Equilibrium of a slice of beam of length dx: (a) equilibrium evaluated at the lower boundary, (b)
equilibrium evaluated within a layer cross-section, and (c) equilibrium evaluated at an interlayer surface.

Focusing on the triangle depicted in blue in Fig. 2 (a), the horizontal equilibrium of this part
of the domain can be expressed as

τ|h1
dx− σx|h1

h′1dx = 0 ⇒ τ|h1
= h′1 σx|h1

(6)

By inserting Equation (5) into Equation (6) we obtain the following expression

τ (x,y)|h1
= h′1 (x) dH

σ (x,y)
∣∣
h1

H (x)+h′1 (x) dM
σ (x,y)

∣∣
h1

M (x) (7)

Considering the rectangle depicted in green in Fig. 2 (b), the horizontal equilibrium can be
expressed as

−τdx+(τ + τ,y dy)dx−σxdy+(σx +σx,xdx)dy = 0 (8)

Few simplifications and integration with respect to both the y and z variables lead to

b(x,y)τ (x,y) =−
∫

b(x,y)σx,x (x,y)dy (9)

Inserting the horizontal stresses definition (5) into Equation (9) yields the following expression

τ (x,y) =− 1
b(x,y)

(∫
b(x,y)dH

σ ,x (x,y)H (x)dy+
∫

b(x,y)dM
σ ,x (x,y)M (x)dy

+
∫

b(x,y)dM
σ (x,y)V (x)dy+C

) (10)

where the constant C results from the boundary and inter-layer equilibrium.
Finally, considering the i interlayer surface depicted in Fig. 2 (c) the horizontal equilibrium

between the two different layers can be read as

−(bτ)− dx+(bτ)+ dx− (bσx)
+ h′idx+(bσx)

− h′idx = 0 ⇒ JbτK = h′iJbKσx (11)
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By inserting the horizontal stresses definition (5) into Equation (11) the following expression is
obtained

Jb(x,y)τ (x,y)K = h′i (x)Jb(x,y)KdH
σ (x,y)H (x)+h′i (x)Jb(x,y)KdM

σ (x,y)M (x) (12)

Aiming at providing an expression of shear stress distribution similar to the one introduced
for horizontal stress (5), we collect all the terms of Equations (7), (10), and (12) that depend
on H (x), M (x), and V (x), respectively. After some numerical calculation, the shear stress
distribution can be defined as follows

τ (x,y) = dH
τ (x,y)H (x)+dM

τ (x,y)M (x)+dV
τ (y)V (x) (13)

3 NUMERICAL EXAMPLE

Let us consider the non-prismatic beam schematically represented in Figure 3. In greater

A

M

H

H

e

O

z

x

y

Figure 3: Thin-walled T shaped beam with tapered flange and web.

detail, l = 5000mm and the vectors defining the cross-section geometry are

hhh(x) =
[
500−0.2x+0.00002x2, 500, 510

]
[mm]

bbb(x) =[10, 500−0.098x] [mm]
(14)

Two opposite horizontal forces H = 10N are applied in the centroids of final cross-sections and
a counterclockwise bending moment M = H ∗e = 10∗250 = 2500Nmm is applied in the initial
cross-section. As a consequence, the axial distribution of internal forces is

H (x) = 10 [N] ; M (x) = 10(c(x)−255) [Nmm] (15)

Finally, we consider the stress recovery for the cross-section A located at x = 1000mm and
highlighted in Figure 3.

To obtain a reference solution we used a 3D FE overkill model developed using the com-
mercial software ABAQUS [27], where we adopted a sweep mesh of wedge elements for both
flange and web. Specifically, we set the wedge thickness to 1.25mm and the characteristic di-
mension of wedge basis to 5mm. Globally, 1041164 elements constituted the 3D FE model.
Furthermore, we exploited the symmetry of the problem geometry with respect to the plane
z = 0 modeling only the half of the beam body and assuming that displacements along z direc-
tion vanish for z = 0. Suitable displacement constraints have been imposed in order to avoid
rigid body motion. Finally, we assumed that, at the beam ends, axial forces are uniformly
distributed over the whole cross-section and the bending moment results from a linear stress
distribution over the flange depth. In order to perform a fair comparison, in post-processing we
compute the mean value of all the quantities of interest with respect to the z variable.

Figure 4 depicts the distribution of horizontal stresses σx in the cross-sections x = 1000. It

305



Giuseppe Balduzzi, Elio Sacco, Ferdinando Auricchio, and Josef Füssl
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Figure 4: Axial-stress cross-section distributions

is possible to appreciate small differences between the results of the proposed formula and the
reference solution. In greater detail, later-mentioned non-linearities which can be considered
by the FE approach lead the proposed formula to overestimate the maximal stress on the lower
boundary of the web up to 6%.

The source of the error is the fact that the proposed stress recovery strategy is based on a
model that is not able to take into account higher order effects, like warping that, conversely,
have a detectable influence for the considered example and are effectively caught by the 3D
FE. Finally, a further error source could be the presence of boundary effect that, once more, are
neglected by the model behind the proposed recovery strategy but are tackled by the 3D FE.

Figure 5 depicts the distribution of shear stresses τ in the cross-sections x= 1000. In general,
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y
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Figure 5: Shear-stress cross-section distributions

the proposed recovery strategy provides a good estimation of the shear stress distribution. Only
near the bottom of the web it is possible to detect more significant errors, up to 10%. Once
more, the reason of the discrepancy of the proposed recovery strategy results and the 3D FE are
mainly the presence of significant higher order effects. Conversely, since the vertical internal
force V (x) vanishes, the prismatic-beam formula estimates vanishing shear stresses, clearly
contradicting the reference solution.

4 FINAL REMARKS

Novel strategy for the recovery of stress distribution within non-prismatic mono-symmetric
thin-walled planar beams has been proposed and validated trough a simple numerical example,
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demonstrating that any variation of the cross section geometry induces significant effects on the
distribution of shear stresses. In particular, the comparison with highly refined 3D FE solutions
reveals that the proposed strategy is generally accurate, with errors usually smaller than 10%
whereas the prismatic-beam formula for the shear stress estimation turns out to be unreliable
since it does not allow to handle non-negligible shear stresses induced by the variation of cross-
section geometry.

Since the proposed approach is based on a first-order beam model, the proposed formulas
provide coarse estimations when boundary or higher order effects like warping occur. As a
consequence, more refined models (e.g., 3D or shell FE, higher-order beams) are required for
these situations, as recommended also for prismatic beams.

Further development of this work will include the generalization of the proposed procedure
to spatial non-prismatic beams and the development of higher order beam models.
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[11] Design of composite steel and concrete structures Part 1-1: general rules and rules for
buildings, 2004.

[12] L.R. S. Marques. Tapered steel members: flexural and lateral torsional buckling. PhD
thesis, ISISE, Departamento de Engenharia Civil Universidade de Coimbra, 2012.

[13] G. Li and J. Li. A tapered Timoshenko-Euler beam element for analysis of steel portal
frames. Journal of Constructional Steel Research, 58:1531–1544, 2002.

[14] H. Valipour and M. Bradford. A new shape function for tapered three-dimensional beams
with flexible connections. Journal of Constructional Steel Research, 70:43–50, 2012.

[15] A. Andrade and D. Camotim. Lateraltorsional buckling of singly symmetric tapered
beams: Theory and applications. Journal of engineering mechanics, 131(6):586–597,
2005.

[16] A. Andrade, D. Camotim, and P. B. Dinis. Lateral-torsional buckling of singly symmetric
web-tapered thin-walled i-beams: 1D model vs. shell FEA. Computers and Structures, 85
(17):1343–1359, 2007.

[17] S.W. Liu, R. Bai, and S.L. Chan. Second-order analysis of non-prismatic steel members
by tapered beam–column elements. In Structures, volume 6, pages 108–118. Elsevier,
2016.

[18] C. G. Chiorean and I. V. Marchis. A second-order flexibility-based model for steel frames
of tapered members. Journal of Constructional Steel Research, 132:43–71, 2017.

[19] S.S. Rao and R.S. Gupta. Finite element vibration analysis of rotating Timoshenko beams.
Journal of Sound and Vibration, 242(1):103 – 124, 2001.

[20] F. Bleich. Stahlhochbauten, chapter 16, pages 80–85. Verlag von Julius Springer, 1932.

[21] A. Paglietti and G. Carta. La favola del taglio efficace nella teoria delle travi di altezza
variabile. In AIMETA, 2007.

[22] A. Paglietti and G. Carta. Remarks on the current theory of shear strength of variable
depth beams. The open civil engineering journal, 3:28–33, 2009.

[23] O. W. Blodgett. Design of welded structures, chapter 4.4, pages 1–8. the James F. Lincon
arc welding foundation, 1966.
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