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Abstract. In this contribution, the virtual element method (VEM) is adopted for performing
homogenization analyses of composites characterized by long fibre inclusions. The homoge-
nization problem is briefly reviewed. Then, the procedure for constructing a virtual element is
illustrated. In this context, a new virtual element is proposed for the micromechanical analysis
of long fibre composites. It is a plane element, which is able to perform 3D analyses, char-
acterized by three degree of freedom per node that represent the displacement components in
the three-dimensional space. Numerical examples are developed for assessing the ability of the
VEM in efficiently solving the homogenization problem. Elements characterized by different
number of edges are used in the numerical applications.
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1 INTRODUCTION

Composite materials are used in several fields of engineering applications. The development
of new and innovative composite materials together with the enhancement of material mod-
els and of computational tools promoted the implementation of effective numerical procedures
for the accomplishment of sophisticated and accurate stress analyses of composite structural
elements.

The issue of the multiscale analysis is very actual in structural mechanics. At the structural
level the finite element method is generally adopted. At the material scale a representative
volume element (RVE), containing all the peculiarity of the composite material, is studied in
order to recover the overall behavior of the composite. To this aim classical analytical homog-
enization procedures, such as Eshelby, self consistent and Mori Tanaka approach [14], can be
adopted. These techniques have also been extended to take into account the nonlinear behavior
of the constituents [9, 11]. On the other hand also numerical homogenization techniques can be
adopted. In particular, finite element micromechanical analyses could be developed to study the
RVE and to determine the overall behavior of the composite. In particular, some micromechan-
ical studies have been proposed in literature to study fibre reinforced composites adopting finite
element analyses and taking into account the nonlinear behavior of the composite [8, 12, 13].

Recently, the Virtual Element Method (VEM) has been proposed [1, 6]. It is a new and
promising numerical method for solving partial differential equations; it can be viewed as an
extension of Finite Element Methods to general polygonal and polyhedral elements. The VEM
is characterized by strong mathematical foundations; it is quite simple in implementation and
results efficient and accurate in several engineering problems and, in particular, in linear elas-
ticity problems [7, 2]. The VEM has also successfully been applied to solve structural problems
characterized by material non-linearity such as plasticity, viscoelasticity and shape memory
response [3].

In this paper, the VEM is adopted for performing homogenization analyses of composites
characterized by long fibre inclusions. After formulating the homogenization problem, the
VEM procedure is illustrated for the specific case of linear polynomial approximation of the
displacement fields on the virtual element boundary. A new virtual element is developed for
the 3D analyses of long fibre composites. In particular, it is a plane element with three degree
of freedoms per node that are the displacement components in the three-dimensional space.
Numerical examples are developed for assessing the ability of the VEM in efficiently solving
the homogenization problem, validation being provided by comparison with an overkilling finite
element solution.

2 HOMOGENIZATION OF LONG FIBRE COMPOSITES

A periodic composite obtained assembling an infinite number of repetitive parallelepiped
unit cells (UC) Ω with volume V is considered (cf. Figure 1). The unit cell is characterized by a
parallelepiped shape with dimensions equal to 2 a1, 2 a2 and 2 a3 parallel to the three coordinate
axes x1, x2, x3. The axis x3 is parallel to the direction of the fibre axis.

In particular, the repetitive unit cell is obtained considering any possible value of a3. The 3D
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Figure 1: Fibre-reinforced composite material with doubly periodic arrangement of fibres em-
bedded into the matrix.

displacement field for periodic media is expressed by the following representative form:

u1(x1, x2, x3) = E11 x1 +
1

2
Γ12 x2 +

1

2
Γ13 x3 + u?1(x1, x2, x3)

u2(x1, x2, x3) =
1

2
Γ12 x1 + E22 x2 +

1

2
Γ23 x3 + u?2(x1, x2, x3) (1)

u3(x1, x2, x3) =
1

2
Γ13 x1 +

1

2
Γ23 x2 + E33 x3 + u?3(x1, x2, x3) ,

where E = {E11, E22, E33, Γ12, Γ23, Γ13}T is the average strain of the UC, u? = {u?1, u?2, u?3}
T

is the perturbation displacement, resulting periodic, due to the heterogeneity of the UC while
x = {x1, x2, x3}T is the position vector of the typical point of Ω. From the formula (1), the
strain at the typical point of Ω is:

ε(x1, x2, x3) = E + ε?(x1, x2, x3) , (2)

where ε? represents the periodic part of the strain associated with the displacement u? and char-
acterized by null average on the UC. The thickness of the UC in the fibre direction can assume
any value thus, imposing the periodicity and continuity conditions along the x3-direction, it
results:

u?(x1, x2, a3) = u?(x1, x2,−a3)
x1 ∈ [−a1, a1]
x2 ∈ [−a2, a2]

∀a3 . (3)

Thus, from equation (3) the displacement field u?(x1, x2, x3) = u?(x1, x2) i.e. it only de-
pends on x1 and x2, . The inplane boundary conditions result:

u?(a1, x2) = u?(−a1, x2) x2 ∈ [−a2, a2]
u?(x1, a2) = u?(x1,−a2) x1 ∈ [−a1, a1]

. (4)

The periodic part of the strain is evaluated as ε? = ε (u?), resulting:

ε? = Lu? =



u?1,1
u?2,2
0

u?1,2 + u?2,1
u?3,2
u?3,1


with L =


·,1 0 0
0 ·,2 0
0 0 0
·,2 ·,1 0
0 0 ·,2
0 0 ·,1

 , (5)
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as all the derivatives with respect to x3 are zero, because the displacement components do not
depend on x3.

The local stress field is defined as:

σ(x1, x2) = C(x1, x2)ε(x1, x2) , (6)

where C is the elastic matrix that assumes a different value in the fibre and in the matrix.
The average stress in the UC is evaluated as:

Σ =
1

V

∫
Ω

σ dV . (7)

3 VIRTUAL ELEMENT METHOD

The virtual element VE formulation is briefly presented in this section. First, a polygonal
discretization of the unit cell Ω is performed, considering non overlapping polygons ΩE char-
acterized by a number m of straight edges e. The space of the approximated displacement field
is defined element-wise by introducing local degrees of freedom, as in standard FE method,
but differently from FE, the definition of the local displacement approximation is not fully ex-
plicit [7, 2]. Different accuracy can be introduced in the method, depending on the degree k
of the approximating functions for the displacement field. Next, the i−th component of the
approximated displacement field is denoted as uhi .

To construct a virtual element for the problem described in the previous section, the proce-
dure schematically described below can be performed.

1. The number m of edges defining the VE is set.

2. The displacements are approximated assuming an explicit representation of their compo-
nents only on the boundary of each virtual element ΩE . Let the displacement approxima-
tion be denoted by u? h, with h related to the mesh size, whose corresponding displace-
ment on the boundary ∂ΩE of the VE is ũ? h; it is assumed that the typical component of
the displacement on the VE boundary is approximated by a polynomial of degree k, i.e.
ũ? hi ∈ Pk(e), so that it can be written:

ũ? h = N U? , (8)

with N a matrix containing the approximation functions and U? the vector collecting the
nodal degree of freedom.
In particular, herein it is set k = 1, so that ũ? hi ∈ P1(e) i.e. the displacement components
are linear functions along the polygonal edges.

3. The equilibrium equation, written in the approximated variational form for the single VE,
is expressed as:

0 =

∫
ΩE

[ε(δu? h)]T C [ε(u? h) + E] dA . (9)

4. As the approximated displacement field u? hi is not defined inside the element, but only
on the boundary ∂ΩE , the gradient cannot be computed and, consequently, an explicit
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expression of strain is not available. Thus, a projector operator Π is introduced to eval-
uate the strain associated to the displacement field. It is defined on the basis of the two
fundamental requirements:

Π(u? hi ) ∈ Pk−1(ΩE) = P0(ΩE)

0 =

∫
ΩE

(εP )T
[
Π(u? h)− ε(u? h)

]
dA ∀εP ∈ P0(ΩE) ,

(10)

so that the strain components are approximated by a constant function in each VE.

5. Integrating by parts, equation (10)2 becomes:∫
ΩE

(εP )T Π(u? h) dA =

∫
ΩE

(εP )T ε(u? h) dA =∫
ΩE

(εP )T L u? h dA =

∫
∂ΩE

(εP )T NE ũ? h dA−
∫

ΩE

(LT εP )T u? h dA =∫
∂ΩE

(εP )T NE ũ? h dA ∀εP ∈ P0(ΩE) ,

(11)

where the term L εP = 0 as εP ∈ P0(ΩE) and NE is the matrix containing the compo-
nents of the outward normal to the element boundary:

NE =


n1 0 0
0 n2 0
0 0 0
n2 n1 0
0 0 n2

0 0 n1

 . (12)

6. As the integral in the last right hand side of equation (11) is performed only on the bound-
ary of the element, the approximation (8) can be accounted for, obtaining:∫

ΩE

(εP )T Π(u? h) dA =

∫
∂ΩE

(εP )T NE N dA U? ∀εP ∈ P0(ΩE) . (13)

7. Accounting that for k = 1 the strain εP results constant in ΩE , and setting Π(u? h) =
Πm U?, equation (13) leads to:

(εP )T Πm U?AE = (εP )T
∫
∂ΩE

NE N dA U? ∀εP ∈ P0(ΩE) (14)

that gives:

Πm =
1

AE

∫
∂ΩE

NE N dA , (15)

where AE is the area of ΩE .

8. Once the projection operator Πm is evaluated, the equilibrium equation (9) takes the form:

0 = (Kc + KS) U? + B , (16)
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where

Kc = (Πm)T C ΠmAE (17)
B = (Πm)T EAE (18)

and KS is a stiffness matrix coming from a suitable stabilization term, needed to preserve
the coercivity of the system.

9. To determine the stabilization term, it is assumed that each component of the approxi-
mated form of the displacement field can be represented as linear function of the in-plane
coordinates (x1, x2), so that u? hi ∈ (P1(E))3 with:

(P1(E))3 =


1 0 0 x1 0 0 x2 0 0
0 1 0 0 x1 0 0 x2 0
0 0 1 0 0 x1 0 0 x2

 . (19)

4 NUMERICAL APPLICATIONS

The present section is devoted to validation and accuracy assessment of the proposed VEM
technology. As it is commonly accepted the majority of modern advanced composite materials
with fibre reinforcement are based on components characterized by complex material constitu-
tive behavior and possibly general fibre arrangements into the unit cell [5, 4]. In this regard,
an efficient, reliable numerical tool for computing overall properties of such composites is of
great importance from technical point of view, since analytical or semi-analytical methods are
practically not available for the more complex material setups [10], as for instance randomly
distributed fibres.

With reference to a family of composites characterized by square unit cells and different
volume fractions, the previously introduced method is applied to compute the effective material
moduli. Material parameters for the fibre and for the matrix are Ef = 4.1 105N/mm2, νf =
0.19, Em = 0.75 105N/mm2, νm = 0.33, respectively. Volume fractions values taken into
consideration are vf = 0.2, 0.4, 0.6. The numerical campaign is conducted comparing the
results obtained adopting three types of VEM simple meshes over the unit cell domain; in
particular, triangles, polygons, and quadrilaterals, as illustrated in Fig. 2 are considered. A
reference solution is here computed with an overkilling mesh of triangular linear finite elements,
which noticeably coincide with the linear triangular VEM counterpart, i.e. m = 3, k = 1.

Tri Poly Quad
Mesh 1 293 144 201
Mesh 2 925 576 689
Mesh 3 3417 2304 2529
Mesh 4 13109 9216 9665

Overkilling 149249 - -

Table 1: Meshing discretizations in terms of number of vertices for examined case vf = 0.4.

Error measures are reported in the following in terms of:

• Eij: relative error on the ij − th average stress component Σ̄ij due to the average strain
component Eij
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• EC̄ : Euclidean error norm on effective moduli C̄

• EΣ̄Mises
: Euclidean error norm on Mises average stress Σ̄Mises associated to Σ̄ due to the

average strain component E11

Figure 3 reports the above error measures for the three compared methods, adopting an
overkilling solution obtained with VEM triangles of order 1, in the intermediate case vf = 0.40,
while details on mesh discretization are given in Table 1. Noticeably, the three methods compare
favorably with similar error levels while amongst the tested element types triangles seems to
perform best on the overall. This confirm the interesting reliability properties of the proposed
methodology in particular when triangular meshing is required, i.e. when complex geometries
are investigated, as it is the case of a unit cell close to the packaging limit, for instance. Figures
4-5 report the same error level comparison for the other two unit cell configurations, i.e. vf =
0.20, and vf = 0.60, confirming the reliability of the proposed methodology which may serve
as a powerful versatile technique to compute the overall material response of the composite.

Figure 6 reports error measures Eij on relevant ij = 11, 33, 44, 66 effective stress compo-
nents when the elastic shear moduli contrast factor η = Gf/Gm varies from 10−3 to 103. The
reference overkilling solution is still computed with first order VEM triangles. The computed
solutions seem relatively insensitive to the above material heterogeneity parameter ξ, confirm-
ing the robustness of the proposed VEM methodology.

(a) (b) (c)

Figure 2: Sample unit cell meshes for examined case vf = 0.4. (a) triangles; (b) polygons; (c)
quadrilaterals.

5 CONCLUSIONS

• A virtual element method of order k = 1 has been presented for the homogenization
of fibre-reinforced composite materials with doubly periodic square lattices and circular
fibre inclusions;

• The methodology has been tested and validated on a number of unit cell setups for trian-
gular, quadrilateral and Voronoi tessellations mesh types;

• The strength of the proposed approach relies in the ability to accurately deal with complex
geometries, flexibility in mesh generation and local adaptive refinement, and polynomial
degree elevation;

• Future investigations of this study include treatment of complex material constitutive be-
havior, general representative unit cells and the case of complex inclusion shapes.
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• Preliminary results on the extension to k = 2 VEM approximation spaces for the problem
treated in the present work indicate a superior behavior, in terms of accuracy and effi-
ciency, with respect to quadratic standard Lagrangian isoparametric 2D finite elements.
Such results will be the object of further communication.
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Figure 3: Accuracy assessment for various error measures. Square unit cell, vf = 0.40. Com-
pared methods: VEM with triangles, polygons, quadrilaterals; reference overkilling solution
computed with FEM linear triangles.
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Figure 4: Accuracy assessment for various error measures. Square unit cell, vf = 0.20. Com-
pared methods: VEM with triangles, polygons, quadrilaterals.
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Figure 5: Accuracy assessment for various error measures. Square unit cell, vf = 0.60. Com-
pared methods: VEM with triangles, polygons, quadrilaterals.
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Figure 6: Sensitivity of the solution with respect to the contrast parameter η. Square unit cell,
vf = 0.40. Compared methods: VEM with polygons, quadrilaterals.
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