
 

Implications of new physics in the decays Bc → (J=ψ; ηc)τν

C. T. Tran,1,2,* M. A. Ivanov,2,† J. G. Körner,3,‡ and P. Santorelli4,5,§
1Institute of Research and Development, Duy Tan University, 550000 Da Nang, Vietnam

2Bogoliubov Laboratory of Theoretical Physics,
Joint Institute for Nuclear Research, 141980 Dubna, Russia

3PRISMA Cluster of Excellence, Institut für Physik,
Johannes Gutenberg-Universität, D-55099 Mainz, Germany
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We study the semileptonic decays of the Bc meson into final charmonium states within the standard
model and beyond. The relevant hadronic transition form factors are calculated in the framework of the
covariant confined quark model developed by us. We focus on the tau mode of these decays, which may
provide some hints of new physics effects. We extend the standard model by assuming a general effective
Hamiltonian describing the b → cτν transition, which consists of the full set of the four-fermion operators.
We then obtain experimental constraints on the Wilson coefficients corresponding to each operator and
provide predictions for the branching fractions and other polarization observables in different new physics
scenarios.
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I. INTRODUCTION

The Bc meson is the lowest bound state of two
heavy quarks of different flavors, lying below the BD̄
threshold. As a result, while the corresponding cc̄ and
bb̄ quarkonia decay strongly and electromagnetically,
the Bc meson decays weakly, making it possible to
study weak decays of doubly heavy mesons. The weak
decays of the Bc meson proceed via the c-quark decays
ð∼70%Þ, the b-quark decays ð∼20%Þ, and the weak
annihilation ð∼10%Þ. Due to its outstanding features,
the Bc meson and its decays have been studied exten-
sively (for a review, see e.g., Ref. [1] and references
therein).
Among many weak decays of the Bc meson, the semi-

leptonic decay Bc → J=ψlν has an important meaning. In
fact, the first observation of the Bc meson by the CDF
Collaboration was made in an analysis of this decay [2].

Recently, the LHCb Collaboration has reported their
measurement [3] of the ratio of branching fractions

RJ=ψ ≡ BðBc → J=ψτνÞ
BðBc → J=ψμνÞ ¼ 0.71� 0.17� 0.18; ð1Þ

which lies at about 2σ above the range of existing pre-
dictions in the StandardModel (SM). At the quark level, the
decay Bc → J=ψlν is described by the transition b → clν,
which is identical to that of the decays B̄0 → Dð�Þlν. It is
important to note that measurements of the decays B̄0 →
Dð�Þlν carried out by the BABAR [4], Belle [5–7], and
LHCb [8,9] Collaborations have also revealed a significant
deviation (∼4σ) of the ratios RDð�Þ from the SM predictions
[10–13]. The excess of RJ=ψ over the SM predictions not
only sheds more light on the unsolved RDð�Þ puzzle, but also
suggests the consideration of possible new physics (NP)
effects in the decays Bc → J=ψðηcÞτν.
Essential to the study of the Bc semileptonic decays is the

calculation of the invariant form factors describing
the corresponding hadronic transitions. In the literature, a
wide range of different approaches has been used to compute
the Bc → J=ψðηcÞ transition form factors, such as the
potential model approach [14], the Bethe-Salpeter equa-
tion [15,16], the relativistic constituent quark model on the
light front [17,18], three-point sum rules of QCD and
nonrelativistic QCD (NRQCD) [19–21], the relativistic
quark model based on the quasipotential approach [22],
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the nonrelativistic quark model [23], the Bauer-Stech-Wirbel
framework [24], the perturbative QCD (pQCD) [25,26], and
the covariant quark model developed by our group [27,28]. It
is worth revisiting these decays in the modern version of our
model with updated parameters and new features like the
embedded infrared confinement [29]. We also mention that
very recently, the HPQCD Collaboration has provided their
preliminary results for the form factors of the Bc → J=ψ and
Bc → ηc transitions using lattice QCD [30].
It should be noted that in our covariant confined quark

model (CCQM), all form factors are calculated in the full
kinematic range of momentum transfer squared q2, making
the predictions for physical observables more accurate. In
the pQCD approach and QCD sum rules, for example, the
form factors are evaluated only for small values of q2 (large
recoil), and then extrapolated to the large q2 region (small
recoil), in which they become less reliable. In general, the
knowledge of the Bc → J=ψðηcÞ form factors is much less
than that of the B̄0 → Dð�Þ ones. This is due to, first, the
lack of experimental data for the decays Bc → J=ψðηcÞlν,
and second, the appearance of two heavy quark flavors in
the initial (bc̄) and final (cc̄) states. The latter breaks the
heavy quark symmetry (HQS), leaving the residual heavy
quark spin symmetry (HQSS), which allows reducing the
number of form factors in the infinite heavy quark limit
[19,31,32]. However, the HQSS does not fix the normali-
zation of the form factors as the HQS does, for example, in
the case of B̄0 → Dð�Þ.
The possible NP effects in the semileptonic decays

Bc → J=ψðηcÞτν have been discussed recently in several
papers [33–40]. As what has been done in the studies of
the RDð�Þ anomalies, one can choose between a specific-
model approach, such as charged Higgs models, leptoquark
models etc., or a model-independent approach based on a
general effective Hamiltonian describing the b → cτν
transition. In this paper we adopt the second approach
by proposing an SM-extended effective Hamiltonian con-
sisting of the full set of the four-fermion operators.
Constraints on the corresponding Wilson coefficients are
obtained from the experimental data for the ratios RJ=ψ and
RDð�Þ , as well as the LEP1 data, which requires BðBc →
τνÞ ≤ 10% [41]. Another useful constraint is provided by
using the lifetime of Bc as discussed in Ref. [42]. However,
in this paper we only use the constraint from the LEP1 data,
which is more stringent than the latter. We then analyze the
effects of these NP operators on several physical observ-
ables including the ratios of branching fractions RJ=ψðηcÞ,
the forward-backward asymmetries, the convexity param-
eter, and the polarization components of the τ in the final
state. We also provide our predictions for these physical
observables in the SM and in the presence of NP.
The paper is organized as follows. In Sec. II we introduce

the general b → clν effective Hamiltonian and parame-
trize the hadronic matrix elements in terms of the invariant
form factors. We then obtain the decay distributions in the

presence of NP operators using the helicity technique. In
Sec. III we present our result for the form factors in the
whole q2 range. A detailed comparison of the form factors
calculated in the CCQM with those in other approaches is
also provided. In Sec. IV we obtain constraints on the NP
Wilson coefficients from available experimental data.
Theoretical predictions for the physical observables in
the SM and beyond are presented in Sec. V. Finally, we
briefly conclude in Sec. VI.

II. EFFECTIVE HAMILTONIAN, HELICITY
AMPLITUDES, AND DECAY DISTRIBUTION

In the model-independent approach, NP effects are intro-
duced explicitly by proposing an effective Hamiltonian for
the weak decays that includes both SM and beyond-
SM contributions. In this study, the general effective
Hamiltonian for the quark-level transition b → clνðl ¼
e; μ; τÞ is given by (i ¼ L, R)

Heff ¼
4GFVcbffiffiffi

2
p

�
OVL

þ
X

X¼Si;Vi;TL

δτlXOX

�
; ð2Þ

where the four-fermion operators OX are defined as

OVi
¼ ðc̄γμPibÞðl̄γμPLνlÞ; ð3Þ

OSi ¼ ðc̄PibÞðl̄PLνlÞ; ð4Þ

OTL
¼ ðc̄σμνPLbÞðl̄σμνPLνlÞ: ð5Þ

Here, σμν ¼ i½γμ; γν�=2, PL;R ¼ ð1 ∓ γ5Þ=2 are the left and
right projection operators, and X’s are the complex Wilson
coefficients characterizing the NP contributions. The tensor
operator with right-handed quark current is identically
equal to zero and is therefore omitted. In the SM one
has VL;R ¼ SL;R ¼ TL ¼ 0. We have assumed that neutri-
nos are left-handed. Besides, the delta function in Eq. (2)
implies that NP effects are supposed to appear in the tau
mode only. The proposed Hamiltonian can be considered as
a natural way to go beyond the SM since it is generalized
from the well established SM Hamiltonian with the V − A
structure by adding more currents. One may also consider
right-handed neutrinos and may as well assume that NP
appears in all lepton generations. However, current exper-
imental data suggest that NP effects in the case of light
leptons (if any) are very small. A recent discussion of these
NP operators and their possible appearance in the light
lepton modes can be found in Ref. [43].
Starting with the effective Hamiltonian, one writes

down the matrix element of the semileptonic decays
Bc → J=ψðηcÞτν, which has the form

M¼MSMþ
ffiffiffi
2

p
GFVcb

X
X

X · hJ=ψðηcÞjc̄ΓXbjBci · τ̄ΓXντ;

ð6Þ
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where ΓX is the Dirac matrix corresponding to the operatorOX. The hadronic part in the matrix element is parametrized by a
set of invariant form factors depending on the momentum transfer squared q2 between the two hadrons as follows:

hηcðp2Þjc̄γμbjBcðp1Þi ¼ Fþðq2ÞPμ þ F−ðq2Þqμ;
hηcðp2Þjc̄bjBcðp1Þi ¼ ðm1 þm2ÞFSðq2Þ;

hηcðp2Þjc̄σμνð1 − γ5ÞbjBcðp1Þi ¼
iFTðq2Þ
m1 þm2

ðPμqν − Pνqμ þ iεμνPqÞ;

hJ=ψðp2Þjc̄γμð1 ∓ γ5ÞbjBcðp1Þi ¼
ϵ†2α

m1 þm2

½∓ gμαPqA0ðq2Þ � PμPαAþðq2Þ

� qμPαA−ðq2Þ þ iεμαPqVðq2Þ�;
hJ=ψðp2Þjc̄γ5bjBcðp1Þi ¼ ϵ†2αP

αGPðq2Þ;

hJ=ψðp2Þjc̄σμνð1 − γ5ÞbjBcðp1Þi ¼ −iϵ†2α

�
ðPμgνα − Pνgμα þ iεPμναÞGT

1 ðq2Þ

þ ðqμgνα − qνgμα þ iεqμναÞGT
2 ðq2Þ

þ ðPμqν − Pνqμ þ iεPqμνÞPα GT
0 ðq2Þ

ðm1 þm2Þ2
�
; ð7Þ

where P ¼ p1 þ p2, q ¼ p1 − p2, and ϵ2 is the polarization vector of the J=ψ meson which satisfies the condition
ϵ†2 · p2 ¼ 0. The particles are on their mass shells: p2

1 ¼ m2
1 ¼ m2

Bc
and p2

2 ¼ m2
2 ¼ m2

J=ψðηcÞ.
We define a polar angle θ as the angle between q ¼ p1 − p2 and the three-momentum of the charged lepton in the (lν̄l)

rest frame. The angular decay distribution then reads

dΓ
dq2d cos θ

¼ jp2j
ð2πÞ332m2

1

�
1 −

m2
l

q2

�X
pol

jMj2 ¼ G2
FjVcbj2jp2j
ð2πÞ364m2

1

�
1 −

m2
l

q2

�
HμνLμν; ð8Þ

where jp2j ¼ λ1=2ðm2
1; m

2
2; q

2Þ=2m1 is the momentum of the daughter meson in the Bc rest frame, and HμνLμν is the
contraction of hadron and lepton tensors. The covariant contractionHμνLμν can be converted to a sum of bilinear products of
hadronic and leptonic helicity amplitudes using the completeness relation for the polarization four-vectors of the process
[44]. This technique is known as the helicity technique, which has been described in great detail in our previous papers
[44–47]. In Ref. [47] we have shown how to acquire the decay distribution for the semileptonic decays B̄0 → Dð�Þτν in the
presence of NP operators and provided a full description of the helicity amplitudes, which can be applied to the case of the
decays Bc → J=ψðηcÞτν. Therefore, we find no reason to repeat the procedure in this paper. However, for completeness, we
present here the final result for the decay distributions. The angular distribution for the decay Bc → ηcτν is written as
follows:

dΓðBc → ηcτνÞ
dq2d cos θ

¼ G2
FjVcbj2jp2jq2
ð2πÞ316m2

1

�
1 −

m2
τ

q2

�
2

× fj1þ gV j2½jH0j2sin2θ þ 2δτjHt −H0 cos θj2�
þ jgSj2jHS

Pj2 þ 16jTLj2½2δτ þ ð1 − 2δτÞcos2θ�jHT j2
þ 2

ffiffiffiffiffiffiffi
2δτ

p
RegSHS

P½Ht −H0 cos θ� þ 8
ffiffiffiffiffiffiffi
2δτ

p
ReTL½H0 −Ht cos θ�HTg; ð9Þ

where gV ≡ VL þ VR, gS ≡ SL þ SR, gP ≡ SL − SR, and δτ ¼ m2
τ=2q2 is the helicity flip factor. The hadronic helicity

amplitudes H’s are written in terms of the invariant form factors defined in Eq. (7). Their explicit expressions are presented
in Ref. [47]. Note that we do not consider interference terms between different NP operators since we assume the dominance
of only one NP operator besides the SM contribution. The corresponding distribution for the decay Bc → J=ψτν is rather
cumbersome and therefore is not shown here. One can find it in Appendix C of Ref. [47].
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After integrating the angular distribution over cos θ one has

dΓðBc → J=ψðηcÞτνÞ
dq2

¼ G2
FjVcbj2jp2jq2
ð2πÞ312m2

1

�
1 −

m2
τ

q2

�
2

·HJ=ψðηcÞ
tot ; where ð10Þ

Hηc
tot ¼ j1þ gV j2½jH0j2 þ δτðjH0j2 þ 3jHtj2Þ� þ

3

2
jgSj2jHS

Pj2

þ 3
ffiffiffiffiffiffiffi
2δτ

p
RegSHS

PHt þ 8jTLj2ð1þ 4δτÞjHT j2 þ 12
ffiffiffiffiffiffiffi
2δτ

p
ReTLH0HT; ð11Þ

HJ=ψ
tot ¼ ðj1þ VLj2 þ jVRj2Þ

� X
n¼0;�

jHnj2 þ δτ

� X
n¼0;�

jHnj2 þ 3jHtj2
��

þ 3

2
jgPj2jHS

V j2

− 2ReVR½ð1þ δτÞðjH0j2 þ 2HþH−Þ þ 3δτjHtj2� − 3
ffiffiffiffiffiffiffi
2δτ

p
RegPHS

VHt

þ 8jTLj2ð1þ 4δτÞ
X
n¼0;�

jHn
T j2 − 12

ffiffiffiffiffiffiffi
2δτ

p
ReTL

X
n¼0;�

HnHn
T: ð12Þ

In this paper, we also impose the constraint from the leptonic decay channel of Bc on the Wilson coefficients. Therefore
we present here the leptonic branching in the presence of NP operators. In the SM, the purely leptonic decays Bc → lν
proceed via the annihilation of the quark pair into an off shellW boson. Assuming the effective Hamiltonian Eq. (2), the tau
mode of these decays receives NP contributions from all operators exceptOTL

. The branching fraction of the leptonic decay
in the presence of NP is given by [48]

BðBc → τνÞ ¼ G2
F

8π
jVcbj2τBc

mBc
m2

τ

�
1 −

m2
τ

m2
Bc

�
2

f2Bc
×

����1 − gA þmBc

mτ

fPBc

fBc

gP

����
2

; ð13Þ

where gA ≡ VR − VL, gP ≡ SR − SL, τBc
is the Bc lifetime,

fBc
is the leptonic decay constant of Bc, and fPBc

is a new
constant corresponding to the new quark current structure.
One has

h0jq̄γμγ5bjBcðpÞi ¼ −fBc
pμ; h0jq̄γ5bjBcðpÞi ¼ mBc

fPBc
:

ð14Þ

In the CCQM, we obtain the following values for these
constants (all in MeV):

fBc
¼ 489.3; fPBc

¼ 645.4: ð15Þ

III. FORM FACTORS IN THE COVARIANT
CONFINED QUARK MODEL

The CCQM is an effective quantum field approach to
hadron physics, which is based on a relativistic invariant
Lagrangian describing the interaction of a hadron with its
constituent quarks (see e.g., Refs. [49–55]). The hadron is
described by a field HðxÞ, which satisfies the correspond-
ing equation of motion, while the quark part is introduced
by an interpolating quark current JHðxÞ with the hadron
quantum numbers. In the case of mesons, the Lagrangian is
written as

LintðxÞ ¼ gHHðxÞJHðxÞ ¼ gHHðxÞ
Z

dx1

×
Z

dx2FHðx; x1; x2Þq̄2ðx2ÞΓHq1ðx1Þ; ð16Þ

where gH is the quark-meson coupling, ΓH is the Dirac
matrix ensuring the quantum numbers of the meson, and
the so-called vertex function FH effectively describes the
quark distribution inside the meson. From the requirement
for the translational invariance of FH, we adopt the
following form FHðx; x1; x2Þ ¼ δðx − w1x1 − w2x2Þ×
ΦHððx1 − x2Þ2Þ, where wi ¼ mqi=ðmq1 þmq2Þ, and mqi
are the constituent quark masses. The Fourier transform
of the function ΦH in momentum space is required to fall
off in the Euclidean region in order to provide for the
ultraviolet convergence of the loop integrals. For the sake
of simplicity we use the Gaussian form Φ̃Hð−k2Þ ¼
expðk2=Λ2

HÞ, where the parameterΛH effectively character-
izes the meson size.
The coupling gH is determined by using the so-called

compositeness condition [56], which imposes that the wave
function renormalization constant of the hadron is equal to
zero ZH ¼ 0. For mesons, the condition has the form
ZH ¼ 1 − Π0

Hðm2
HÞ ¼ 0, where Π0

Hðm2
HÞ is the derivative

of the hadron mass operator, which corresponds to the self-
energy diagram in Fig. 1 and has the following form:
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ΠPðp2Þ ¼ 3g2P

Z
dk

ð2πÞ4i Φ̃
2
Pð−k2Þ

× tr½S1ðkþ w1pÞγ5S2ðk − w2pÞγ5�;

ΠVðp2Þ ¼ g2V

�
gμν −

pμpν

p2

�Z
dk

ð2πÞ4i Φ̃
2
Vð−k2Þ

× tr½S1ðkþ w1pÞγμS2ðk − w2pÞγν�; ð17Þ

for pseudoscalar and vector mesons, respectively. Here,
S1;2 are quark propagators, for which we use the Fock-
Schwinger representation

SiðkÞ ¼ ðmqi þ =kÞ
Z

∞

0

dαi exp½−αiðm2
qi − k2Þ�: ð18Þ

It should be noted that all loop integrations are carried out
in Euclidean space.
Similarly to the hadron mass operator, matrix elements

of hadronic transitions are represented by quark-loop
diagrams, which are described as convolutions of the
corresponding quark propagators and vertex functions.
Using various techniques described in our previous papers,
any hadronic matrix element Π can be finally written in the
form Π ¼ R

∞
0 dnαFðα1;…; αnÞ, where F is the resulting

integrand corresponding to a given diagram. It is more
convenient to turn the set of Fock-Schwinger parameters into
a simplex by adding the integral 1 ¼ R∞

0 dtδðt −P
2
i¼1 αiÞ

as follows:

Π ¼
Z

∞

0

dttn−1
Z

1

0

dnαδ

�
1 −

Xn
i¼1

αi

�
Fðtα1;…; tαnÞ:

ð19Þ

The integral in Eq. (19) begins to diverge when t → ∞, if the
kinematic variables allow the appearance of branching point

corresponding to the creation of free quarks. However, these
possible threshold singularities disappear if one cuts off the
integral at the upper limit,

Πc ¼
Z

1=λ2

0

dttn−1
Z

1

0

dnαδ

�
1 −

Xn
i¼1

αi

�
Fðtα1;…; tαnÞ:

ð20Þ

The parameter λ effectively guarantees the confinement of
quarks inside a hadron and is called the infrared cutoff
parameter.
Finally, we briefly discuss some error estimates within

our model. The CCQM consists of several free parameters:
the constituent quark masses mq, the hadron size param-
eters ΛH, and the universal infrared cutoff parameter λ.
These parameters are determined by minimizing the func-

tional χ2 ¼ P
i
ðyexpti −ytheori Þ2

σ2i
where σi is the experimental

uncertainty. If σ is too small then we take its value of 10%.
Besides, we have observed that the errors of the fitted
parameters are of the order of 10%. Thus, the theoretical
error of the CCQM is estimated to be of the order of 10%.
The Bc → J=ψðηcÞ hadronic transitions are calculated

from their one-loop quark diagrams. For a more detailed
description of the calculation techniques we refer to
Ref. [47] where we computed the similar form factors
for the B̄0 → Dð�Þ transitions. In the framework of the
CCQM, the interested form factors are represented by
threefold integrals which are calculated by using FORTRAN

codes in the full kinematical momentum transfer region
0 ≤ q2 ≤ q2max ¼ ðmBc

−mJ=ψðηcÞÞ2. The numerical results
for the form factors are well approximated by a double-pole
parametrization

Fðq2Þ ¼ Fð0Þ
1 − asþ bs2

; s ¼ q2

m2
Bc

: ð21Þ

The parameters of the Bc → J=ψðηcÞ form factors are listed
in Table I. Their q2 dependence in the full momentum
transfer range 0 ≤ q2 ≤ q2max ¼ ðmBc

−mJ=ψðηcÞÞ2 is shown
in Fig. 2.
Firstly, we focus on those form factors that are needed

to describe the Bc → J=ψðηcÞ transitions within the SM
(without any NP operators), namely, F�, A0;�, and V. It is

FIG. 1. Self-energy diagram for a meson.

TABLE I. Parameters of the dipole approximation in Eq. (21) for Bc → J=ψðηcÞ form factors. Zero-recoil (or q2max) values of the form
factors are also listed.

Bc → J=ψ Bc → ηc

A0 Aþ A− V GP GT
0 GT

1 GT
2

Fþ F− FS FT

Fð0Þ 1.65 0.55 −0.87 0.78 −0.61 −0.21 0.56 −0.27 0.75 −0.40 0.69 0.93
a 1.19 1.68 1.85 1.82 1.84 2.16 1.86 1.91 1.31 1.25 0.68 1.30
b 0.17 0.70 0.91 0.86 0.91 1.33 0.93 1.00 0.33 0.25 −0.12 0.31
Fðq2maxÞ 2.34 0.89 −1.49 1.33 −1.03 −0.39 0.96 −0.47 1.12 −0.59 0.86 1.40
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worth noting that all these form factors have a pronounced
ðq2Þ−2 contribution (the ratio b=a lies between 0.14 and
0.50) in comparison with the case B̄0 → Dð�Þ, where all
form factors (except for A0) have a very small ratio
b=a ∼ 0.05–0.08, and therefore show a monopolelike
behavior [46].
The Bc → J=ψðηcÞ form factors have been widely

calculated in the literature. For a better overview of
existed results we perform a comparison between various
approaches. For easy comparison, we relate all form factors
to the well-known Bauer-Stech-Wirbel form factors [57],
namely, Fþ;0 for Bc → ηc, and A0;1;2 and V for Bc → J=ψ.
Note that in Ref. [57] the notation F1 was used instead

of Fþ. In Figs. 3 and 4 we compare our form factors
with those obtained in other approaches, namely, pertur-
bative QCD [25], QCD sum rules (QCDSR) [21], the
Ebert-Faustov-Galkin relativistic quark model [22], the
Hernandez-Nieves-Verde-Velasco (HNV) nonrelativistic
quark model [23], and the covariant light-front quark model
(CLFQM) [18]. It is interesting to note that our form factors
are very close to those computed in the CLFQM [18].
Using the heavy quark spin symmetry, the authors of

Ref. [19] have obtained several relations between the form
factors of the Bc → J=ψðηcÞ transitions. In particular, the
relation between the form factors Fþ and F− can be used to
prove the linear behavior of the ratio F0ðq2Þ=Fþðq2Þ,
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FIG. 2. Form factors of the transitions Bc → ηc (upper panels) and Bc → J=ψ (lower panels).
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F0ðq2Þ ¼ Fþðq2Þ þ
q2

Pq
F−ðq2Þ;

F0ðq2Þ
Fþðq2Þ

¼ 1 − αq2;

ð22Þ

where the slope α only depends on the masses of the
involved quarks and hadrons. We find α ¼ 0.020 GeV−2

from the numerical values in Ref. [19]. Similarly, we
obtain α ¼ 0.018 GeV−2 from results of Refs. [21,25], α ¼
0.021 GeV−2 from Ref. [18]. However, Refs. [22] and [23]
yield much smaller values, which are α ¼ 0.005 GeV−2

and α ¼ 0.007 GeV−2, respectively. In our model, the ratio
F0ðq2Þ=Fþðq2Þ exhibits an almost linear behavior in the
whole q2 range as demonstrated in Fig. 5, from which we
obtain α ¼ 0.017 GeV−2. The value of the slope α plays an
important role in studying the shape of the form factors,
which can be determined more accurately by future lattice
calculations.
It is also worth mentioning the very recent lattice

results for the Bc → J=ψ form factors provided by the
HPQCD Collaboration [30]. In this study, they found
A1ð0Þ ¼ 0.49, A1ðq2maxÞ ¼ 0.79, and Vð0Þ ¼ 0.77, which

are very close to our values A1ð0Þ¼ 0.56, A1ðq2maxÞ ¼ 0.79,
and Vð0Þ ¼ 0.78.
Almost all the recent studies on possible NP in the

decays Bc → ðJ=ψ ; ηcÞτν employ the form factors F0;þ,
A0;1;2, and V calculated in pQCD approach [25]. The
remaining form factors corresponding to the NP operators
are obtained by using the quark-level equations of motion
(EOMs). In this paper we provide the full set of form
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factors in the SM as well as in the presence of NP operators
without relying on the EOMs. However, this does not mean
that our form factors do not satisfy the EOMs. A brief
discussion of the EOMs in our model can be found in
Ref. [47]. Our form factors therefore can be used to
analyze NP effects in the decays Bc → ðJ=ψ ; ηcÞτν in a
self-consistent manner and independently from other
studies.

IV. EXPERIMENTAL CONSTRAINTS

Constraints on the Wilson coefficients appearing in the
effective Hamiltonian Eq. (2) are obtained by using experi-
mental data for the ratios of branching fractions RD ¼
0.407� 0.046, RD� ¼ 0.304� 0.015 [13], and RJ=ψ ¼
0.71� 0.25 [3], as well as the requirement BðBc → τνÞ ≤
10% from the LEP1 data [41]. It should be mentioned that
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FIG. 6. Constraints on the Wilson coefficients SR and SL from the measurements of RJ=ψ , RD, and RD� within 2σ, and from the
branching fraction BðBc → τνÞ (dashed curve).
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within the SM our calculation yields RD ¼ 0.267,
RD� ¼ 0.238, and RJ=ψ ¼ 0.24. We take into account a
theoretical error of 10% for our ratios. Besides, we assume
the dominance of only one NP operator besides the SM
contribution, which means that only one NP Wilson
coefficient is considered at a time.
In Fig. 6 we show the constraints on the scalar Wilson

coefficients SL;R within 2σ. It is seen that the recent
experimental value of RJ=ψ does not give any additional
constraint on SL;R to what have been obtained by using
RDð�Þ . In particular, SR is excluded within 2σ using only
RDð�Þ . However, in the case of SL, the constraint from
BðBc → τνÞ plays the main role in ruling out SL. In general,
the branching of the tauonic Bc decay imposes a severe
constraint on the scalar NP scenarios. Many models of NP
involving new particles, such as charged Higgses or
leptoquarks, also suffer from the same constraint, and
therefore need additional modifications to accommodate
the current experimental data (see e.g., Refs. [58–60]).
In the upper panels of Fig. 7 we present the constraints

on the vector VL;R and tensor TL Wilson coefficients. There
is no available space for these coefficients within 1σ.
Moreover, they are excluded mainly due to the additional
constraint from RJ=ψ , rather than from BðBc → τνÞ. This
holds exactly in the case of TL since the operator OTL

has
no effect on BðBc → τνÞ. In the lower panels of Fig. 7 we
show the allowed regions for VL;R and TL within 2σ. In
each allowed region at 2σ we find a best-fit value for each
NP coupling. The best-fit couplings read VL ¼ −1.05þ
i1.15, VR ¼ 0.04þ i0.60, TL ¼ 0.38 − i0.06, and are
marked with an asterisk.

V. THEORETICAL PREDICTIONS

In this section we use the 2σ allowed regions for VL;R
and TL obtained in the previous section to analyze their
effects on several physical observables. Firstly, in Fig. 8
we show the q2 dependence of the ratios RJ=ψ and Rηc in
different NP scenarios. It is obvious that all the NP
operators OVL

, OVR
, and OTL

increase the ratios. How-
ever, it is interesting to note that OTL

can change the shape
of RJ=ψðq2Þ and may imply a peak in the distribution. This
unique behavior can help identify the tensor origin of NP
by studying the q2 distribution of the decay Bc → J=ψτν.
The average values of the ratios RJ=ψ and Rηc over the

whole q2 region are given in Table II. The row labeled by
SM contains our predictions within the SM using our form
factors. The predicted ranges for the ratios in the presence
of NP are given in correspondence with the 2σ allowed
regions of the NP couplings shown in Fig. 7. Here, the most
visible effect comes from the operator OVR

, which can
increase the average ratio hRηci by a factor of 2.
Next, we consider the polarization observables in these

decays. For this purpose we write the differential ðq2; cos θÞ
distribution as

dΓðBc → J=ψðηcÞτνÞ
dq2dcosθ

¼G2
FjVcbj2jp2jq2
ð2πÞ316m2

1

�
1−

mτ

q2

�
2

·WðθÞ;

ð23Þ
where WðθÞ is the polar angular distribution, which is
described by a tilted parabola. For convenience we define a
normalized polar angular distribution W̃ðθÞ as follows:
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W̃ðθÞ ¼ WðθÞ
Htot

¼ aþ b cos θ þ ccos2θ
2ðaþ c=3Þ : ð24Þ

The normalized angular decay distribution W̃ðθÞ obviously
integrates to 1 after cos θ integration. The linear coefficient
b=2ðaþ c=3Þ can be projected out by defining a forward-
backward asymmetry given by

AFBðq2Þ ¼
dΓðFÞ − dΓðBÞ
dΓðFÞ þ dΓðBÞ ¼

½R 1
0 −

R
0
−1�d cos θdΓ=d cos θ

½R 1
0 þ

R
0
−1�d cos θdΓ=d cos θ

¼ b
2ðaþ c=3Þ : ð25Þ

The quadratic coefficient c=2ðaþ c=3Þ is obtained by
taking the second derivative of W̃ðθÞ. We therefore define
a convexity parameter by writing

Cτ
Fðq2Þ ¼

d2W̃ðθÞ
dðcos θÞ2 ¼

c
aþ c=3

: ð26Þ

In the upper panels of Fig. 9 we present the q2

dependence of the forward-backward asymmetry AFB. In

the case of the Bc → J=ψ transition, the operatorOVR
tends

to decrease AFB and shift the zero-crossing point to greater
values than the SM one, while the tensor operator OTL

can
enhanceAFB at high q2. In the case Bc → ηc,OVR

does not
affect AFB, while OTL

tends to decrease AFB, especially at
high q2.
In the lower panels of Fig. 9 we show the convexity

parameter Cτ
Fðq2Þ. It is seen that the operator OVR

has a
very small effect on Cτ

F, and only in the case of Bc → J=ψ .
In contrast to this, Cτ

F is extremely sensitive to the tensor
operator OTL

. In particular, OTL
can change Cτ

FðJ=ψÞ by a
factor of 4 at q2 ≈ 7.5 GeV2. Besides, OTL

enhances the
absolute value of Cτ

FðJ=ψÞ, but reduces that of Cτ
FðηcÞ.

Similar to what has been discussed in Refs. [61–63], one
can use the polarization of the τ in the semileptonic decays
Bc → J=ψðηcÞτν to probe for NP. The longitudinal (L),
transverse (T), and normal (N) polarization components of
the τ are defined as

Piðq2Þ ¼
dΓðsμi Þ=dq2 − dΓð−sμi Þ=dq2
dΓðsμi Þ=dq2 þ dΓð−sμi Þ=dq2

; i ¼ L;N; T;

ð27Þ

where sμi are the polarization four-vectors of the τ in the
W− rest frame. One has

sμL ¼
�jp⃗τj
mτ

;
Eτ

mτ

p⃗τ

jp⃗τj
�
; sμN ¼

�
0;

p⃗τ × p⃗2

jp⃗τ × p⃗2j
�
;

sμT ¼
�
0;

p⃗τ × p⃗2

jp⃗τ × p⃗2j
×

p⃗τ

jp⃗τj
�
: ð28Þ

TABLE II. The q2 average of the ratios in the SM and in the
presence of NP.

hRηci hRJ=ψ i
SM 0.26 0.24
VL (0.28, 0.39) (0.26, 0.37)
VR (0.28, 0.51) (0.26, 0.37)
TL (0.28, 0.38) (0.24, 0.36)
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FIG. 9. Forward-backward asymmetry AFBðq2Þ (upper panels) and convexity parameter Cτ
Fðq2Þ (lower panels) for Bc → ηcτν and

Bc → J=ψτν. Notations are the same as in Fig. 8. In the case of Bc → ηcτν, OVR
does not affect these observables.
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Here, p⃗τ and p⃗2 are the three-momenta of the τ and
the final meson (J=ψ or ηc), respectively, in the W− rest
frame. A detailed analysis of the tau polarization with
the help of its subsequent decays can be found in
Refs. [63–65].
The q2 dependence of the tau polarizations are presented

in Fig. 10. For easy comparison, the plots for each decay
are scaled identically. Several observations can be made
here. First, the operator OVR

affects only the tau transverse

polarization in Bc → J=ψτν. Second, in both decays, all
polarization components are very sensitive to the tensor
operator OTL

. In the presence of OTL
, the longitudinal and

transverse polarization of the tau in Bc → J=ψτν can
change their signs. And finally, the normal polarization,
which is equal to zero in the SM, can become quite large
when OTL

is present. The predictions for the mean
polarization observables are summarized in Table III with
the same notations as for Table II.
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FIG. 10. Longitudinal (left), transverse (center), and normal (right) polarization of the τ in the decays Bc → ηcτν and Bc → J=ψτν.
Notations are the same as in Fig. 8. In the case of Bc → ηcτν, OVR

does not affect these observables.

TABLE III. q2 averages of the forward-backward asymmetry, the convexity parameter, the polarization components, and the total
polarization.

Bc → ηc

hAFBi hCτ
Fi hPLi hPTi hPNi hjP⃗ji

SM −0.36 −0.43 0.36 0.83 0 0.92
TL ð−0.45;−0.37Þ ð−0.38;−0.19Þ (0.16, 0.32) (0.78, 0.82) ð−0.17; 0.17Þ (0.81, 0.90)

Bc → J=ψ

hAFBi hCτ
Fi hPLi hPTi hPNi hjP⃗ji

SM 0.03 −0.05 −0.51 0.43 0 0.70
VR ð−0.09; 0.01Þ ð−0.05;−0.04Þ −0.51 (0.30, 0.41) 0 (0.62, 0.69)
TL ð−0.10; 0.01Þ ð−0.31;−0.10Þ ð−0.35; 0.25Þ ð−0.61; 0.21Þ ð−0.17; 0.17Þ (0.23, 0.70)
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VI. SUMMARY AND CONCLUSIONS

In the wake of recent measurements of the Bc weak
decays performed by the LHCb Collaboration, we have
studied possible NP effects in the semileptonic decays
Bc → J=ψτν and Bc → ηcτν based on an effective
Hamiltonian consisting of vector, scalar, and tensor four-
fermion operators. The form factors parametrizing the
corresponding hadronic transitions Bc → J=ψ and Bc →
ηc have been calculated in the framework of the CCQM
in the full kinematical region of momentum transfer. We
have also provided a detailed comparison of our form
factors with those of other authors and predicted the slope
for the ratio of form factors F0ðq2Þ=Fþðq2Þ.
Using the experimental data for the ratios RDð�Þ and RJ=ψ

from the BABAR, Belle, and LHCb Collaborations, as well
as the LEP1 result for the branching BðBc → τνÞ, we have
obtained the constraints on the Wilson coefficients char-
acterizing the NP contributions. It has turned out that at the
level of 2σ, the scalar coefficients SL;R are excluded, while
the vector (VL;R) and tensor (TL) ones are still available.
However, all coefficients are ruled out at 1σ. It is worth
mentioning that the constraints have been obtained under

the assumption of one-operator dominance, where the
interferences between different operators have been
omitted.
Finally, within the 2σ allowed regions of the correspond-

ing Wilson coefficients, we have analyzed the effects of
the NP operators OVL

, OVR
, and OTL

on various physical
observables, namely, the ratios RJ=ψðq2Þ and Rηcðq2Þ,
the forward-backward asymmetry AFBðq2Þ, the convexity
parameter Cτ

Fðq2Þ, and the polarizations of the τ in the final
state. Some of the effects may help distinguish between NP
operators. We have also provided predictions for the q2

average of the mentioned observables, which will be useful
for other theoretical studies and future experiments.
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