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A B S T R A C T

The peptides orexin A (OXA) and orexin B (OXB) derived from the proteolytic cleavage of a common precursor
molecule, prepro-orexin, were originally described in the rat hypothalamus. Successively, they have been found
in many other brain regions as well as in peripheral organs of mammals and other less evolved animals. The
widespread localization of orexins accounts for the multiple activities that they exert in the body, including the
regulation of energy homeostasis, feeding, metabolism, sleep and arousal, stress, addiction, and cardiovascular
and endocrine functions. Both OXA and OXB peptides bind to two G-coupled receptors, orexin-1 (OX1R) and
orexin-2 (OX2R) receptor, though with different binding affinity. Altered expression/activity of orexins and their
receptors has been associated with a large number of human diseases. Though at present evidence highlighted a
role for orexins and cognate receptors in mammalian reproduction, their central and/or local effects on gonadal
functions remain poorly known. Here, we investigated the localization of OXB and OX2R in the rat epididymis.
Immunohistochemical staining of sections from caput, corpus and cauda segments of the organ showed intense
signals for both OXB and OX2R in the principal cells of the lining epithelium, while no staining was detected in
the other cell types. Negative results were obtained from immunohistochemical analysis of hypothalamic and
testicular tissues from OX2R knock-out mice (OX2R−/−) and OX1R/OX2R double knock-out (OX1R−/−;
OX2R−/−) mice, thus demonstrating the specificity of the rabbit polyclonal anti-OX2R antibody used in our
study. On contrary, the same antibody clearly showed the presence of OX2R in sections from hypothalamus and
testis of normal mice and rats which are well known to express the receptor. Thus, our results provide the first
definite evidence for the immunohistochemical localization of OXB and OX2R in the principal cells of rat epi-
didymis.

1. Introduction

Orexin A (OXA) and orexin B (OXB) are two peptides initially dis-
covered in the mammalian hypothalamus (Sakurai et al., 1998; de
Lecea et al., 1998) and subsequently found in other regions of the brain
and peripheral organs. Both peptides originate from the proteolytic
cleavage of a common precursor molecule, prepro-orexin, and bind to
two G-coupled receptors, namely orexin-1 (OX1R) and orexin-2 (OX2R)
receptor. While OX1R is highly selective for OXA, OX2R shows similar
binding affinity for both orexins (Sakurai et al., 1998). The orexins and
their receptors will be refereed hereunder as the orexinergic complex.

A huge amount of evidence demonstrated the involvement of or-
exinergic complex in the regulation of a variety of physiological pro-
cesses including energy homeostasis, feeding, sleep and arousal, neu-
roendocrine and autonomic responses, addiction, cognition, mood, and

many other (Silvani and Dampney, 2013; Chieffi et al., 2017;
Kukkonen, 2013; Ma et al., 2018; Mieda and Sakurai, 2009; Tafuri
et al., 2017; Zhou and Leri, 2016). Furthermore, the orexinergic com-
plex plays important roles in the regulation of the mammalian nervous
and digestive system, cardiovascular apparatus, pancreas, adrenal
glands, and reproductive tract (Celik et al., 2015; Heinonen et al., 2008;
Korczynski et al., 2006; Kukkonen, 2017; Rani et al., 2017; Voisin et al.,
2003). Disturbances in the release of the two peptides and/or altered
expression levels of their receptors contribute to the onset of many
human diseases including insomnia, narcolepsy with cataplexy, drug
addiction, major mood disorders, obesity, cardiovascular and neu-
roendrocrine disorders, cancers, and other (Rainero et al., 2011;
Alexandre et al., 2014; Burfeind et al., 2016; Ferini-Strambi, 2014;
James et al., 2017; Nixon et al., 2015; Song et al., 2015; Szczepanska-
Sadowska et al., 2010). Currently, orexin receptors are active targets in

https://doi.org/10.1016/j.acthis.2018.02.011
Received 17 January 2018; Received in revised form 22 February 2018; Accepted 23 February 2018

⁎ Corresponding author.
E-mail address: anna.costagliola@unina.it (A. Costagliola).

Acta Histochemica 120 (2018) 292–297

0065-1281/ © 2018 Elsevier GmbH. All rights reserved.

T

http://www.sciencedirect.com/science/journal/00651281
https://www.elsevier.com/locate/acthis
https://doi.org/10.1016/j.acthis.2018.02.011
https://doi.org/10.1016/j.acthis.2018.02.011
mailto:anna.costagliola@unina.it
https://doi.org/10.1016/j.acthis.2018.02.011
http://crossmark.crossref.org/dialog/?doi=10.1016/j.acthis.2018.02.011&domain=pdf


a number of therapeutic areas (Andrews et al., 2016; Boss and Roch,
2017; Tanaka et al., 2016; Xu et al., 2013).

Although in recent years increasing attention has been drawn to
address the role of the orexinergic complex in the mammalian re-
productive axis (Celik et al., 2015; Nurmio et al., 2010; Silveyra et al.,
2010), the central and/or local effects of orexins on gonadal functions
remain to be assessed. Expression of OXA and OX2R in the placenta of
cat and dog (Dall’Aglio et al., 2012, 2014), OXA and OXB in the porcine
uterus (Nitkiewicz et al., 2012), OX1R and OX2R in the rat and porcine
ovaries (Nitkiewicz et al., 2010; Silveyra et al., 2007), and OXA and
OX1R in the vestibular glands of the cattle genital tract (Pavone et al.,
2009) has been demonstrated. These findings, coupled with functional
studies, indicated that orexins and their receptors affect female re-
productive functions through the modulation of ovarian steroidogen-
esis.

As far as it concerns the presence of the orexinergic complex in the
male, Karteris et al. (2004) detected OX1R and OX2R in human testis,
epididymis, penis, and seminal vesicle. In particular, receptor expres-
sion was found in Leydig cells, myoid cells of seminiferous tubules, and
Sertoli cells. Orexin receptors have been shown to be expressed in the
testes of rat (Jöhren et al., 2001), chicken (Ohkubo et al., 2003), sheep
(Zhang et al., 2005) and boar (Russo et al., 2014). The expression of
OXA and OX1R in the mouse testis at different stages of postnatal de-
velopment has been reported (Joshi and Singh, 2016, 2017). Recently,
we demonstrated OXA and OX1R immunohistochemical localization in
multiple organs of the mammalian male reproductive apparatus, often
combined with the expression of mRNAs coding for pre-proorexin and
OX1R, and the corresponding proteins. In particular, we provided evi-
dence for the presence of OXA and OX1R in the urethroprostatic com-
plex of the cattle (Russo et al., 2008), epididymis (Liguori et al., 2014;
Tafuri et al., 2009) and testis of rat (Assisi et al., 2012; Tafuri et al.,
2010) and alpaca (Liguori et al., 2012), and in human normal, hyper-
plastic and neoplastic prostates (Alexandre et al., 2014; Valiante et al.,
2013, 2015). Functional studies suggest a potential involvement of OXA
and OX1R in the control of the Leydig cell steroidogenesis as well as in
the development of the seminiferous epithelium (Assisi et al., 2012;
Barreiro et al., 2005; Tafuri et al., 2010).

By contrast, the expression and role of OXB and OX2R in the male
gonads have been poorly investigated. We recently demonstrated the
expression of OXB and OX2R in pachytene and secondary spermato-
cytes and in spermatids through all stages of the seminiferous epithe-
lium cycle of the rat and alpaca testis (Liguori et al., 2017a,b). OXB, in
contrast to OXA, was not found to promote steroidogenesis. In order to
get more insights into the localization of OXB and OX2R in the re-
productive apparatus, in this study we explored the presence of OXB
and OX2R in the rat epididymis by immunohistochemistry. To ensure
specificity of the anti-OX2R antibody used, we tested the antibody on
hypothalamic and testicular tissues from OX2R knock-out (OX2R−/−)
mice and OX1R/OX2R double knock-out (OX1R−/−/OX2R−/−) mice.

2. Materials and methods

2.1. Antibodies and reagents

Mouse anti-OXB (MAB734) monoclonal antibodies were purchased
from R&D System (Abingdon, UK) and their synthetic peptides from
Tocris Bioscience (Bristol, UK); rabbit polyclonal anti-OX2R antibody
(ab3094), and its blocking peptide (AG794) from Millipore (Bellerica,
MA, USA); biotinylated goat anti-mouse (BA-9200) and goat anti-rabbit
(BA-1000) secondary antibodies, and peroxidase conjugated avi-
din–biotin complex (PK-6105) from Vector Laboratories (Burlingame,
CA, USA).

2.2. Animals

Eight healthy adult Wistar male rats (Charles River, Calco, LC, Italy)

were bred in the vivarium of the Department of Veterinary Medicine
and Animal Productions of the University of Naples Federico II. The
animals were kept with free access to food and tap water, under con-
stant conditions of light and temperature (22 °C). The experimental
procedures were approved by the Ethical Committee for Animal
Experimentation of our Universities, and were conducted in accordance
with the EU Directive 2010/63/EU for animal experiments. The an-
esthetized animals were sacrificed and epididymes were collected and
divided in three segments (caput, corpus and cauda); each segment was
transversely cut in small pieces. Specimens were fixed in Bouin’s fluid
for 24–48 h, and then processed for immunohistochemistry as described
below. Anesthetized OX2R−/− and OX1R−/−/OX2R−/− mice were
transcardiacally perfused with 4% paraformaldehyde, and their hy-
pothalami and testes were fixed in the same fluid for 24 h after col-
lection. Such materials were cryoprotected in 40% sucrose and suc-
cessively embedded in OCT to obtain 10 μm cryocut sections.

2.3. Immunohistochemistry

The fixed samples from caput, corpus and cauda segments of epi-
didymis were dehydrated in ascending alcohols, embedded in
Paraplast, and microtomically cut in 6 μm thick sections. The avidin-
biotin immunohistochemical procedure was performed as previously
described (De Luca et al., 2014; Pelagalli et al., 2016). Briefly, sections
were covered with normal goat serum, and then incubated with the
primary antibodies 1:200 dilution, for overnight at 6 °C. Reactions were
detected with a goat anti-mouse or goat anti-rabbit secondary antibody.
Successively, sections were incubated with peroxidase conjugated
avidin-biotin complex (ABC) for 30min and 3-3′ diaminobenzidine
(DAB) was used as final staining. Some sections were counterstained
with hematoxylin in order to better localize the immunoreactive
structures and the epididymal cytotypes. The preparations were ob-
served by a Nikon Eclipse E 600 light microscope, and photographed by
a Coolpix 8400 digital camera.

Sections of hypothalamus and testis from OX2R−/− and OX1R−/

−/OX2R−/− mice (Irukayama-Tomobe et al., 2017) in the C57BL6/J
background were used as negative controls for immunohistochemistry
with anti-OX2R antibody. We used paraplast sections from wild-type
mouse hypothalamus and rat testis, both tissues well known to express
OX2R (Irukayama-Tomobe et al., 2017; Liguori et al., 2017a), as posi-
tive controls.

3. Results and discussion

Multiple studies demonstrated that orexins may affect mammalian
reproductive functions either centrally or locally. However, the specific
tissue localization and the exact mechanism of action of orexins in the
epididymal/gonadal complex has not been fully explored. In order to
extend our current knowledge on this issue, here we investigated the
localization of OXB and OX2R in the rat epididymis by im-
munohistochemistry. The analysis of the tissue samples showed the
presence of OXB immunoreactivity (IR) in the epithelium of all seg-
ments (caput, corpus, and cauda) of the epididymis (Fig. 1). The caput
of epididymis is characterized by a proximal and a distal portion. In the
proximal caput, single or scattered epithelial principal cells were in-
tensely stained (Fig. 1a). The positive material filled the entire profile of
the cells from the basal to the apical portion. OXB-IR was also found in
the distal caput (Fig. 1b), corpus (Fig. 1c) and cauda (Fig. 1d) of the
epididymis. In these segments, the positive material appeared as con-
densed granules, localized in the supra-nuclear portion of the principal
cell cytoplasm. The amount of staining in these segments was much
higher than that observed in the proximal caput, and sometimes posi-
tive cells were seen to encircle almost entirely the transverse profile of
the epididymal tubule, rarely intermingled by negative elements.
Throughout the organ the distribution of the positive material was
zonal. Negative controls were performed substituting the anti-OXB
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Fig. 1. OXB-IR in the rat epididymis. a: OXB-IR was found in
principal cells in few tubules (insert) of the proximal caput. The
immunoreactive material filled the entire profile of the cell cy-
toplasm. b–d (inserts): in the distal caput (b, insert), corpus (c,
insert) and cauda (d, insert) of the epididymis rows of positive
cells were seen to encircle almost completely the transverse pro-
file of the organ. Avidin-biotin immunohistochemical method.
Bars: 20 μm.

Fig. 2. OX2R-IR in the rat epididymis. a: in the proximal caput,
the immunoreactive material was granular in shape and contained
in the luminal and infranuclear portions of the principal cells
(insert). b–d: also in the distal caput (b, insert), corpus (c, insert)
and cauda (d, insert) of the epididymis the immunoreactive ma-
terial was found in the principal cytotype alone. In these cells such
material showed always a supranuclear localization. Only few
negative cells are intermingled among the positive ones. Avidin-
biotin immunohistochemical method. Bars: 20 μm.
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antibody with phosphate buffered saline or with the same antiserum
pre-absorbed with an excess (100 μg/ml) of the synthetic peptide. Both
controls gave negative results (data not shown). In order to test whether
the anti-OXB antibody cross reacted with OXA, we pre-absorbed the
anti-OXB antibody with the heterologous peptide (OXA), before
staining. The results showed no effect on the observed staining (data
not shown). In previous studies in the rat and alpaca testes (Liguori
et al., 2017a,b), we stained alternately 3 μm consecutive sections of the
gonad with the anti-OXA and anti-OXB antibodies here used, and we
found that OXA-IR never co-existed with OXB-IR. These results account
for a lacking of cross-reactivity of the anti-OXB antibody here used with

the improper antigen OXA.
The profile of OX2R-IR was similar to that described for OXB in the

proximal (Fig. 2a) and distal caput (Fig. 2b), corpus (Fig. 2c) and cauda
(Fig. 2d) of the epididymis. In the proximal caput, the immuno-reactive
material was widely distributed in the cytoplasm of the principal cells
(Fig. 2a), and the positive cells appeared more intensely stained than
those that contained OXB. The positive material was clustered in the
supra-nuclear portion of the cytoplasm in the immunoreactive cells
observed along the remaining segments of the epididymis (Fig. 2b–d).
Negative controls were performed substituting the anti-OX2R antibody
with phosphate buffered saline or with the same antiserum pre-

Fig. 3. Testing of OX2R antibody specificity in positive and negative controls. a–d: negative controls from the hypothalamus (a,b) and testis (c.d) of OX2R−/− and OX1R−/−/OX2R−/−

mice. e,f: positive controls from wild-type mouse hypothalamus (e) and rat testis (f). Positive neurons (arrows) and, immunoreactive pachytene spermatocytes (arrowheads) and
elongated spermatids (double arrow), are clearly visible in the respective tissues. Avidin-biotin immunohistochemical method. Bars: 20 μm.
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absorbed with an excess (100 μg/ml) of its blocking peptide. Both
controls gave negative results (data not shown). However, due to the
debate on the poor selectivity of commercial antibodies against OX2R
or even the ability to detect their targets (Chen et al., 2013), we also
tested the commercially available rabbit polyclonal anti-OX2R anti-
body, used in our immunohistochemical analysis, on hypothalamic and
testicular tissues from OX2R−/− and OX1R−/−/OX2R−/− mice. Tis-
sues from hypothalamus of wild-type mouse and rat testis were used as
positive controls. No staining was observed in the tissues from both
types of knockout mice (Fig. 3a–d), while immune-reactive material
was detected in mouse hypothalamus and rat testis (Fig. 3e,f). In par-
ticular, OX2R-IR was found in neurons of the wild type mouse hy-
pothalamus (Fig. 3e) and in the cytoplasm of pachytene spermatocytes
and elongated (mature) spermatids of the rat testis (Fig. 3f). The results
obtained demonstrated the specificity of the anti-OX2R antibody used
in this work.

Our study highlighted the localization of both OXB and OX2R in the
principal cells of the epididymis epithelium, while no staining was
observed in the other cell types such as basal, apical and clear cells. Our
previous study demonstrated that also OXA and OX1R are localized in
the principal cells of rat (Tafuri et al., 2009) and South American ca-
melid alpaca (Liguori et al., 2014) epididymis. The simultaneous pre-
sence of both OXA and OXB peptides in the epididymis well correlates
with the expression of prepro-orexin mRNA transcripts and the pre-
cursor protein molecule previously detected in this tissue (Tafuri et al.,
2009; Liguori et al., 2014). Indeed, OXA and OXB may be locally syn-
thesized in the epididymis by the proteolytic cleavage of prepro-orexin.

The supranuclear localization of OXA and OXB in the principal cells
suggests that they may act as paracrine signaling molecules which can
be rapidly spread to targets even far away. However, the precise mo-
lecular mechanism of action of the orexinergic complex in the epidi-
dymis functions remains to be addressed. At present, it is worth to note
that orexins share neuro-endocrine origin, modality of action, cyto-
plasmic localization in epididymal principal cells, and binding to G type
receptors similar to the peptides secretin (Chow et al., 2004) and pi-
tuitary adenilate cyclase-activating peptide (PACAP) (Leung et al.,
1998; Zhou et al., 1997) which play major roles in controlling elec-
trolyte transport in the epididymal lining epithelium, thus regulating
hydration of the luminal fluid. However, while PACAP acting on the
apical side of the epididymis epithelium stimulates chloride but not
bicarbonate secretion, secretin acting on both apical and basolateral
sides promotes chloride and bicarbonate secretion (Chow et al., 2004).
Furthermore, the stimulation by PACAP but not secretin requires local
prostaglandin synthesis. Interestingly, both secretin and PACAP exhibit
a regional difference in their expression along the epididymal duct, thus
suggesting that they may act in a paracrine or autocrine fashion in the
regulation of epididymal fluid secretion (Leung et al., 1998)., As a
consequence of the above mentioned similarities between orexins and
the two peptides secretin and PACAP, at the moment we can only
speculate that OXA and OXB might be involved in the absorptive and
secretory activity of the epididymis, thus regulating epididymal and
sperm functions along the epididymal duct.

4. Conclusions

The results of this study provide the first evidence of the im-
munohistochemical localization of OXB and OX2R receptor in the
principal cells of rat epididymis. In the same organ, we had previously
demonstrated the expression of prepro-orexin and OX1R mRNA tran-
scripts and the respective proteins as well as OXA im-
munohistochemical localization. Functional investigations are required
to establish the precise roles of the two peptides and their cognate re-
ceptors in the physiology of epididymis. A better understanding of
whether and how OXB and OXA and their receptors may concur to
regulate the environmental conditions that allow the epididymal tubule
to fertilize the immature male gamete is a mandatory need to address

the involvement of orexinergic complex in the mammalian reproduc-
tion.
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