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Abstract 37 

Most people tend to bisect horizontal lines slightly to the left of their true center 38 

(pseudoneglect), and start visual search from left-sided items. This physiological 39 

leftward spatial bias may depend on hemispheric asymmetries in the organization 40 

of attentional networks, but the precise mechanisms are unknown. Here we 41 

modeled relevant aspects of the ventral and dorsal attentional networks (VAN and 42 

DAN) of the human brain. First, we demonstrated pseudoneglect in visual search 43 

in 101 right-handed psychology students. Participants consistently tended to start 44 

the task from a left-sided item, thus showing pseudoneglect. Second, we trained 45 

populations of simulated neurorobots to perform a similar task, by using a genetic 46 

algorithm. The neurorobots’ behavior was controlled by artificial neural networks, 47 

which simulated the human VAN and DAN in the two brain hemispheres. 48 

Neurorobots differed in the connectional constraints that were applied to the 49 

anatomy and function of the attention networks. Results indicated that (1) 50 

neurorobots provided with a biologically plausible hemispheric asymmetry of the 51 

VAN-DAN connections, as well as with inter-hemispheric inhibition, displayed the 52 

best match with human data; however, (2) anatomical asymmetry per se was not 53 

sufficient to generate pseudoneglect; in addition, the VAN must have an excitatory 54 

influence on the ipsilateral DAN; (3) neurorobots provided with bilateral 55 

competence in the VAN but without inter-hemispheric inhibition failed to display 56 

pseudoneglect. These findings provide a proof of concept of the causal link 57 

between connectional asymmetries and pseudoneglect, and specify important 58 

biological constraints that result in physiological asymmetries of human behavior.  59 

 60 

 61 

 62 
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Significance statement 63 

Most of us start our exploration of the environment from the left side. Here we 64 

demonstrated this tendency in undergraduate students, and trained artificial agents 65 

(neurorobots) to perform a similar visual search task. The neurorobots’ behavior 66 

was controlled by artificial neural networks, inspired by the human fronto-parietal 67 

attentional system. In seven distinct populations of neurorobots, different 68 

constraints were applied on the network connections within and between the brain 69 

hemispheres. Only one of the artificial populations behaved in a similar way to the 70 

human participants. The connectional constraints applied to this population 71 

included known characteristics of the human fronto-parietal networks, but had also 72 

additional properties not previously described. Thus, our findings specify biological 73 

constraints that induce physiological asymmetries of human behavior.  74 

 75 

 76 

Keywords: Spatial exploration, Visual search, Attention, Brain connections, 77 

Spatial neglect  78 
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1. Introduction 79 

A thorough exploration of the space around us is essential to everyday life. 80 

However, spatial exploration is not perfectly symmetrical in humans. For example, 81 

when we explore a scene in order to cancel out visual targets, we tend to start the 82 

search from the left part of the scene (Azouvi et al., 2006; Bartolomeo, D'Erme, & 83 

Gainotti, 1994). This physiological leftward spatial bias is analogous to the slight 84 

physiological leftward shift typically observed in horizontal line bisection, termed 85 

pseudoneglect (Bowers & Heilman, 1980) because it goes in the opposite direction 86 

to the typical rightward bias showed by patients with left visual neglect after right 87 

hemisphere damage (Schenkenberg, Bradford, & Ajax, 1980; Urbanski & 88 

Bartolomeo, 2008). 89 

Evidence shows that visuospatial attention is a major determinant of 90 

pseudoneglect (McCourt, Garlinghouse, & Reuter-Lorenz, 2005; Toba, Cavanagh, 91 

& Bartolomeo, 2011), which might thus result from asymmetries in the hemispheric 92 

control of attention (McCourt & Jewell, 1999; Ossandón, Onat, & König, 2014). 93 

However, the specific neural structures and the mechanisms at the basis of 94 

pseudoneglect remain unknown. 95 

In the human brain, visuospatial attention is controlled by fronto-parietal 96 

networks, which demonstrate substantial asymmetries favoring the right 97 

hemisphere (Corbetta & Shulman, 2002; Heilman & Van Den Abell, 1980; 98 

Mesulam, 1999). Dysfunction of these networks after right hemisphere damage 99 

can induce signs of neglect for left-sided events (Bartolomeo, Thiebaut de 100 

Schotten, & Chica, 2012; Corbetta & Shulman, 2011). A bilateral dorsal attentional 101 

network (DAN), composed by the intraparietal sulcus / superior parietal lobule and 102 

the frontal eye field / dorsolateral prefrontal cortex, shows increased BOLD 103 

responses during the orienting period (Corbetta & Shulman, 2002). A right-104 

lateralized ventral attentional network (VAN) includes the temporoparietal junction 105 

and the ventrolateral prefrontal cortex. The VAN is important for detecting 106 
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unexpected but behaviorally relevant events, and induces the DANs to reorient 107 

attention towards these events. Anatomically, three branches of a long-range white 108 

matter pathway, the Superior Longitudinal Fasciculus (SLF), connect these 109 

networks. The SLF has a ventro-dorsal gradient of hemispheric asymmetry 110 

(Thiebaut de Schotten et al., 2011). The ventral branch (SLF III) connects the VAN 111 

and is anatomically larger in the right hemisphere than in the left hemisphere, 112 

whereas the dorsal branch (SLF I, connecting the DAN) is more symmetrical. The 113 

lateralization of the intermediate branch (SLF II) displays interindividual 114 

differences, and is strongly correlated to the individual amount of pseudoneglect in 115 

line bisection and to differences in the speed of detection between left-sided and 116 

right-sided targets. Specifically, larger SLF volumes in the right hemisphere 117 

correlate with larger leftward bias (Thiebaut de Schotten et al., 2011).  118 

A further potential source of performance asymmetry resides in the pattern 119 

of inter-hemispheric connections. Behavioral and electrophysiological evidence 120 

suggests that inter-hemispheric communication is not strictly symmetrical in 121 

humans, but it is faster from the right to the left hemisphere (Marzi, 2010). Also, 122 

the posterior callosal connections from the right parietal node of the DAN to its left 123 

hemisphere homologue seem to be predominantly inhibitory (Koch et al., 2011). 124 

Concerning the VAN, its right and left temporo-parietal caudal nodes are not 125 

strongly connected by callosal fibers (Catani & Thiebaut de Schotten, 2012), and 126 

thus work in relative isolation from one another. 127 

It is tempting to relate these biological constraints to the widespread 128 

leftward bias that occurs in human exploratory behavior. However, little is known 129 

about the specific dynamic interplay between the attentional networks resulting in 130 

pseudoneglect. On the one hand, methods used in humans have substantial 131 

limitations of spatiotemporal resolution and of inferential power, which severely 132 

limit their scope. On the other hand, it is difficult to draw firm conclusions from 133 

monkey neurophysiology, because of important differences between humans and 134 
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primates in the organization of attention networks (Patel et al., 2015). In the 135 

present study, we took a different approach to unravel these issues. First, we 136 

tested a group of human participants to establish the presence and characteristics 137 

of pseudoneglect in a visual search task (Experiment 1). In Experiment 2, we 138 

trained neurally controlled robots (neurorobots) to perform a task as similar as 139 

possible to the human one. We then articulated detailed implementations of 140 

several instances of attention network architecture, which directed the neurorobots’ 141 

performance, in order to identify the structural and functional network constraints 142 

crucial for simulating human performance.  143 

 144 

 145 
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2. Experiment 1: Pseudoneglect in human visual search 146 

2.1 Introduction 147 

Pseudoneglect has been mainly measured using tasks of perceptual estimation of 148 

the length of horizontal lines (Bowers & Heilman, 1980; Jewell & McCourt, 2000; 149 

Toba et al., 2011). Analogous leftward biases seem also to occur in visual search 150 

tasks, as a tendency to find first targets on the left side of the display (Azouvi et al., 151 

2006; Bartolomeo et al., 1994), but evidence in this domain is much less 152 

systematic. Thus, in the present context it was important to test our specific task in 153 

order to ensure the validity of the human-robotic comparison of performance.  154 

 155 

2.2. Methods 156 

2.2.1. Ethics Statement 157 

The procedure was approved by the local ethics committee. 158 

 159 

2.2.2. Participants 160 

A total of 101 right-handed psychology students (76 females; mean age ± SD, 161 

22.24 ± 4.40) gave their informed consent to perform a visual search experiment 162 

for course credit.  163 

 164 

2.2.3. Procedure 165 

Participants were instructed to cancel as fast as possible targets displayed on a 166 

touch-sensitive tablet (Mediacom Winpad 801 8-inches, 120 dpi, 1280x800 pixels, 167 

refresh frequency 60 Hz), by using a stylus pen. Participants were comfortably 168 

seated with a viewing distance of ~40 cm. Each session consisted of 30 trials. 169 

Each trial was initiated by the participant touching a green round button placed at 170 

the center of the screen. Subsequently, a set of 5 dark-red (HEX #800000) filled 171 

round targets, with a 40-pixel radius (0.76° visual angle), was presented. Targets 172 
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were randomly scattered on a display area of 512x512 pixels (9.7° x 9.7°), placed 173 

at the center of the screen. Upon participant’s touch, cancelled targets became 174 

bright red (HEX #FF0000). To assess lateral bias, we first defined the center of the 175 

display as 0, so that the values of the X coordinate went from -256 pixels (-4.85°) 176 

on the extreme left to +256 pixels (+4.85°) on the extreme right. Second, we 177 

measured the average position on the X axis of the first cancelled stimulus for 178 

each trial. 179 

 180 

2.3. Results 181 

As expected with this easy task, accuracy was at ceiling, with all participants 182 

correctly cancelling all the targets. Results showed a left-biased distribution of the 183 

first found target. The average X value was -80.23 pixels (-1.52°), which 184 

significantly differs from the central position at X = 0 (Wilcoxon-Mann-Whitney two-185 

tailed test, Z=-6.37, p<0.001).  186 

 187 

2.4. Discussion 188 

During a visual search task similar to that used for our simulations, normal 189 

participants exhibited a leftward bias (pseudoneglect), consisting of a tendency to 190 

start the visual search from a left-sided target. This result was observed in an 191 

experimental setting as close as possible to that used for neurorobots, and 192 

replicates and extends previous results obtained with different types of visual 193 

search tasks, such as the line cancellation test (Bartolomeo et al., 1994) and the 194 

bells test (Rousseaux et al., 2001). 195 

 196 
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3. Experiment 2: Visual Search in Neurorobots 197 

3.1. Introduction 198 

A neurorobot is a real or simulated robot whose behavior is controlled by an 199 

artificial neural network. For the present experiment, we developed distinct 200 

populations of simulated neurorobots controlled by artificial neural networks with 201 

different connectivity constraints. The neurorobots’ task was designed to be as 202 

close as possible to that performed by human participants in Experiment 1. 203 

 204 

3.2. Models 205 

Code Accessibility: The code is available as extended data and in GitHub 206 

repository (Gigliotta, 2017). 207 

The simulated robot (Fig. 1) has a single artificial eye and an actuator 208 

(simulated hand) able to perform the cancellation task. The robot’s eye can move 209 

and zoom, and can thus be described as a pan/tilt/zoom camera, because it can 210 

move along the horizontal and vertical axes and can zoom in a range between 1x 211 

to 12x. The use of a zoom was inspired by models of attention, which stipulate that 212 

attention can either be distributed over the whole field, but with low resolving 213 

power, or be continuously constricted to small portions of the visual field with a 214 

concomitant increase in processing power (Eriksen & Yeh, 1985).  215 

The artificial eye is equipped with a retina made up of a 7x7 grid of light 216 

receptors (see Fig. 1). Each receptor outputs an activation value computed by 217 

averaging the luminance of the perceived stimuli across the receptive field, with 218 

radius set to 80 pixels. Receptors are evenly distributed within the artificial retina, 219 

which has a square form with a side varying from 1120 pixels (no zoom) to 96 220 

pixels (maximum zoom). Thus, each stimulus can occupy a retinal surface ranging 221 

from 0.8% to 100% of the artificial retina. Horizontal and vertical movements of the 222 

eye are controlled by four simulated muscles (Massera, Ferrauto, Gigliotta, & Nolfi, 223 
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2014) (see Fig. 1), in analogy to the medial, lateral, inferior and superior recti of the 224 

human eye. 225 

3.2.1. Neural network 226 

We used a standard neural network model in which each node of the network has 227 

a sigmoid activation function φ(x)=1/(1+e-x) and an adjustable threshold ϑ. The 228 

output, , is computed for each node i by using the following equation:  229 

 

Where: 230 

 

wij is the synaptic weight connecting unit j with unit i. The pattern of connections 231 

between nodes has been chosen according to biological evidence on dorsal and 232 

ventral attentional networks in human brains (see below, section 3.5).  233 

Fig. 2A depicts the general template network. The 7x7 retina, consisting of 234 

49 artificial neurons, constituted the input layer. The output layer controlled the 235 

zoom with two artificial neurons, the extraocular muscles with four neurons, and a 236 

decision unit for target detection, which triggered the touch response when 237 

exceeding a criterion threshold of 0.7. The hidden layer contained the attention 238 

networks and a hidden network devoted to control vertical eye movements (4 239 

neurons, not depicted in Fig. 1). We modeled the DAN and the VAN by building a 240 

neural model organized across two hemispheres, with visual information from each 241 

visual field projecting to the contralateral hemisphere. Each DAN had 5 artificial 242 

neurons; each VAN had 4 artificial neurons. These parameters were based on pilot 243 

work, and reflect a tradeoff between network complexity and the time needed to 244 

run simulations. With these parameters, each simulation required about a week to 245 

be completed on our hardware. The VAN-DAN connections in the right hemisphere 246 

outnumbered those in the left hemisphere, in order to simulate analogous results 247 

for the human SLF II (Thiebaut de Schotten et al., 2011). 248 
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The inter-hemispheric connections were also modeled by following 249 

anatomical and functional results obtained in the human brain, and outlined in the 250 

Introduction. Thus, (1) they connected only the DANs, but not the VANs, which 251 

thus worked in relative isolation from one another (see Fig. 9.4D in Catani & 252 

Thiebaut de Schotten, 2012) and (2) they were inhibitory, such that each DAN 253 

inhibited the contralateral one (Koch et al., 2011): each DAN induced 254 

contralaterally-directed eye movements and inhibited ipsilaterally-directed eye 255 

movements. The DANs controlled zooming and cancellation behaviors. All the 256 

hidden units within the DANs also had reentrant connections, which integrate the 257 

previous input with the current one, thus simulating a sort of simplified visual 258 

memory, in analogy to similar mechanisms occurring in the primate brain (Salazar, 259 

Dotson, Bressler, & Gray, 2012). Thus, reentrant connections resulted in some 260 

persistence of the previous inputs across steps within a given trial.  261 

Given the importance of eye position in visually-guided target reaching 262 

(Lewis, Gaymard, & Tamargo, 1998), we provided eye position information to 263 

neurorobots through an efference copy of the motor output. In particular, motor 264 

outputs controlling the four ocular muscles were connected one to one with the 265 

four input neurons, with a fixed weight of 1 (i.e., perfect copy from input to output). 266 

 267 

3.2.2. Cancellation task 268 

Similar to the human experiment (see section 2), neurorobots performed a 30-trial 269 

cancellation task. The human and robotic tasks were designed with the explicit 270 

constraint of being as similar as possible. Targets were presented on a virtual 271 

display measuring 512 x 512 pixels. At the start of each trial, the gaze of the 272 

artificial eye was initialized at the center of the display, with no zoom. Again, 273 

similarly to the human experiment, each trial consisted of a set of 5 round targets, 274 

with a luminance value of 0.5 (in conventional units ranging from 0 to 1.0) and a 275 
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radius of 40 pixels, randomly scattered in the virtual display. Upon cancellation, 276 

targets increased their luminance to the maximum value of 1.0. 277 

 278 

3.2.3. The Adaptive/Learning process 279 

For the present work, neurorobots were trained by means of a Genetic Algorithm, 280 

a form of evolutionary computation that implements a Darwinian process of 281 

adaptation that can model cognitive development and trial-and-error learning, 282 

especially when only distal rewards are available (Di Ferdinando, Parisi, & 283 

Bartolomeo, 2007; Stefano Nolfi & Floreano, 2000). Genetic algorithms are a 284 

useful alternative to supervised learning in settings such as the present one, 285 

because we employed a fitness function based on the number of cancelled targets, 286 

and not a set of input-output pairings which could be used to minimize the error by 287 

a supervised learning mechanism such as back-propagation. A typical experiment 288 

starts with the generation of a random set of individual neurorobots (each defined 289 

by a specific set of parameters of a neurocontroller). Each individual is then 290 

evaluated according to a fitness function representing the desired performance on 291 

a requested task. Due to genetic operators such as mutation and crossover, the 292 

best individuals will populate the next generation. The process iterates until a 293 

specific performance or a fixed number of generations is reached. In the present 294 

work, each genetic string encodes the value of synaptic connections wij and 295 

neuron thresholds in the range (-5, 5). Initially, for each evolutionary experiment a 296 

set of 100 random individuals (i.e., competing sets of parameters for the neural 297 

network of the neurorobot) were generated and evaluated for their ability to find 298 

targets. Targets had to be found as fast as possible on each of 30 cancellation 299 

trials, lasting 700 time steps each. At the end of the evaluation phase, individuals 300 

were ranked according to their performance, and the best 20 were used to 301 

populate the next generation after having undergone a mutation process. Each 302 
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parameter was encoded by an 8-bit string, thus mutations were implemented by 303 

bits switching with probability p=0.01. The number of generations was set to 3,000.  304 

Three behavioral components contributed to the overall fitness, F: an 305 

exploration component, a component proportional to the number of target correctly 306 

cancelled, and a reward for responses promptness. 307 

The exploration component, which was introduced to avoid the bootstrap 308 

problem (Stefano Nolfi & Floreano, 2000), rewarded the ability of the neurorobot to 309 

explore its visual field. In particular, the area that can be explored through eye 310 

movements was split in 100 cells. Exploration fitness (EF) was then computed for 311 

each trial by dividing the number of visited cells by 100. A second fitness 312 

component (TF) was represented for each trial by the number of correctly 313 

cancelled targets divided by 5 (i.e., the total number of presented targets). Finally, 314 

a reward for promptness (PF) was given when all the five targets were cancelled. 315 

PF was inversely proportional to the number of time steps nt, used to cancel all the 316 

stimuli:  317 

PF=nt/700  318 

The overall fitness was calculated as  319 

F=EF+TF+PF.  320 

After training, neurorobots’ performance in the cancellation task was 321 

evaluated on 30 new trials, in order to measure their accuracy in finding the targets 322 

and the position of the first cancelled target, as estimated by the average value of 323 

the X coordinate of the first cancelled stimulus across trials. 324 

 325 

3.2.4. Valence of VAN-DAN connections and of inter-DAN connections 326 

A set of 5 populations of neurorobots, each composed of 40 individuals, featured 327 

neurocontrollers with different connectional constraints. Neurocontrollers A, B and 328 

C (Fig. 2) had left-right asymmetric connections between VAN and DAN (i.e., the 329 

simulated SLF II), with a greater number of connections in the right hemisphere 330 
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(120) than in the left hemisphere (108). The ratio of this asymmetry difference 331 

(0.05) corresponds to the average asymmetry ratio of SLF II in 20 human subjects, 332 

as described by Thiebaut de Schotten et al. (2011) (see their supplementary Table 333 

1). In neurocontroller A (Fig. 2A) there were no constraints in terms of type of 334 

connections (inhibitory or excitatory) along the ventral and dorsal attentional 335 

networks. In neurocontroller B a further constraint was added: VAN to DAN 336 

pathways were set to be excitatory during the training process (see Fig. 2B). 337 

Finally, in neurocontroller C also the connections projecting from the retina to the 338 

VAN were set to be excitatory (see Fig. 2C). To better evaluate the effect on 339 

performance of SLF II asymmetry, we trained two additional control populations 340 

based on neurocontroller C: C0 with completely symmetrical VAN-DAN 341 

connections (laterality ratio = 0); C1 with VAN-DAN connections only present in the 342 

right hemisphere, and absent VAN-DAN connections in the left hemisphere 343 

(complete right lateralization of SLF II).  344 

Earlier models of spatial attention (Heilman & Van Den Abell, 1980; 345 

Mesulam, 1981) postulated a bilateral competence of the right hemisphere for both 346 

hemispaces, without explicit consideration of inter-hemispheric interactions. To 347 

simulate these models, we trained two additional populations of neurorobots 348 

(neurocontrollers D and E in Fig. 2; 40 individuals for each population). In these 349 

neurocontrollers, the right hemisphere received visual information from both the 350 

right and the left visual hemifields, while the left hemisphere received information 351 

only from the right, contralateral visual hemifield. Moreover, there were no 352 

inhibitory connections between the right DAN and its left homolog. The rest of the 353 

architecture was the same as for all the other neurocontrollers. The only difference 354 

between neurocontroller D and neurocontroller E was the valence of the 355 

connections running from the visual fields to VAN and DAN.  In neurocontroller D, 356 

the valence of the visuo-attentional connections was not constrained, and could 357 

thus assume either a positive or a negative valence. In neurocontroller E, visuo-358 
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attentional connections were constrained to be excitatory, similar to neurocontroller  359 

C. 360 

Two additional control simulations were designed to assess the importance 361 

of the inhibitory valence of inter-DAN connections. In these simulations, we used 362 

neurorobots identical to model C, except that the inter-DAN connections were (1) 363 

let free to evolve as excitatory or inhibitory (neurocontroller F), or (2) constrained to 364 

be facilitatory (neurocontroller G). 365 

 366 

3.3. Results 367 

3.3.1. Behavioral Results 368 

Figure 3 shows the ability of the five populations of neurobots to correctly solve the 369 

task. The mean percentages of correct cancellations are reported for each 370 

population. Figure 4 reports the performance of the three populations equipped 371 

with neurocontrollers A-E on correct cancellations. Each boxplot contains data 372 

collected for 40 neurorobots tested on 30 cancellation trials. 373 

There were significant differences in the amount of correct cancellations 374 

across the populations A-E [Kruskal-Wallis test, χ2
(4, n = 200) = 38.96, p = 7.10e-08]. 375 

Neurocontrollers with inter-hemispheric inhibition (A-C) performed better than 376 

neurocontrollers without inter-hemispheric inhibition (D-E; Post-hoc pairwise 377 

comparisons using Dunn's-test, all ps < 0.05).   378 

 Importantly, the spatial position of the first canceled target (X coordinate 379 

value for each trial, Fig. 4) did differ across the populations A-E, χ2
(4, n = 200) = 380 

34.198, p =4.65e-07. The position of the first canceled target was not different from 381 

0 (central position) in neurorobots equipped with neurocontroller A  (Wilcoxon-382 

Mann-Whitney, p=0.1, two-tailed) and neurocontroller D (p=0.5). Neurorobots E, 383 

with bilateral competence in the right hemisphere and excitatory visual-attentional 384 

connections, showed a rightward bias, opposite to human pseudoneglect 385 

(Md=58.81, z=-2.8802, p=0.004). Neurorobots B and C tended instead to start their 386 
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exploration from a left-sided target (neurocontroller B, Md = -33.27, z = -2.057, p = 387 

0.02; neurocontroller C, Md = 63.29, z = -5.35, p < .001), thus showing a leftward 388 

bias reminiscent of human pseudoneglect. The control populations with complete 389 

SLF II symmetry (C0), or extreme rightward SLF II asymmetry (C1) showed the 390 

predicted patterns of performance: no pseudoneglect for C0 (Md=20.435, z=-391 

0.823, p=0.411), and large pseudoneglect for C1 (Md=-96.526, z=-7.406, 392 

p=1.299e-13) (Fig. 5). 393 

 The additional control populations F (unconstrained inter-DAN connections) 394 

and G (excitatory inter-DAN connections) achieved an overall worse performance 395 

as compared with neurorobots C [Kruskal-Wallis test, χ2
(2, n = 119) = 49.67, p = 396 

1.635e-11]. However, neurorobots F (median correct cancellations, 83.33%; 1st 397 

quartile, 79.33%; 3rd quartile, 88.00%) performed better than neurorobots G 398 

(median correct cancellations, 75.33%; 1st quartile, 70.33%; 3rd quartile, 79.67%; 399 

Dunn's test, all ps < 0.05). There were also differences between populations C, F 400 

and G in the initial spatial bias [Kruskal-Wallis test, χ2
(2, n = 119) = 9.24, p = 0.0099]. 401 

Interestingly, in population F inter-DAN connections had a strong tendency to 402 

evolve towards inhibition; at the end of the evolutionary process, only 2 of 40 403 

individuals (5%) had evolved excitatory connections. Perhaps as a consequence, 404 

neurorobots F tended to start their exploration from the left side (median X value 405 

for the 1st canceled target, −77.94 pixels; 1st quartile, −119.76; 3rd quartile, 406 

−39.20), similar to neurorobots C. In contrast, neurorobots G, with excitatory inter-407 

DAN connections, did not show any consistent lateral bias (median X value for the 408 

1st target, −2.92 pixels; 1st quartile, −84.53; 3rd quartile, 61.95; Wilcoxon-Mann-409 

Whitney, p = 0.45, two-tailed). These results strongly suggest that in our setting 410 

inhibitory inter-DAN connections (1) conferred an evolutionary advantage in terms 411 

of cancellation accuracy and (2) were important to the development of 412 

pseudoneglect behavior. 413 

 414 
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 415 

3.3.2. Neural results 416 

 417 

To better understand the neural dynamics leading to the exploratory bias, we 418 

examined the average activations of the DANs across all the individuals for each 419 

population, equipped with neurocontrollers C (biologically-inspired asymmetry) and 420 

C0 (symmetrical attention networks). We then computed a laterality index of DAN 421 

average activations between the two hemispheres: (Mean Right DAN activation - 422 

Mean Left DAN activation)/(Mean Right DAN activation + Mean Left DAN 423 

activation), with a possible range from -1 (prevalent left DAN activity) to +1 424 

(prevalent right DAN activity). Figure 7 reports the course of the laterality index 425 

across time steps. As expected, left and right DAN activations were balanced with 426 

neurocontroller C0. On the other hand, in neurocontroller C activations were 427 

unbalanced toward the right hemisphere DAN. A crucial aspect for pseudoneglect 428 

concerns the initial time steps in which the exploratory bias occurs. A higher 429 

imbalance toward the right hemisphere DAN is present at the outset of the 430 

cancellation task for neurorobots C, as a consequence of asymmetries in their 431 

network architecture, while it is obviously absent for neurorobots C0, with 432 

symmetrical networks. The initial imbalance favoring the right hemisphere DAN is 433 

the likely basis of the spatial bias towards the initial cancellation of a left-sided item 434 

in neurorobots C.  435 

Figure 8 shows the average activation of the hidden DAN neurons in the 436 

left and in the right hemisphere during the first 30 time steps of the cancellation 437 

task, for agents equipped with the biologically inspired neurocontroller C, and for 438 

those equipped with the symmetrical neurocontroller C0. The initial activation is 439 

symmetrical for the C0 agents, but it is higher in the right hemisphere than in the 440 

left hemisphere for the C agents. Thus, an asymmetry of VAN connections results 441 

in a corresponding activation asymmetry in the anatomically symmetrical DANs. 442 
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The DAN asymmetry in the initial phases of the task is the simulated neural 443 

correlate of behavioral pseudoneglect. After the initial phase, the left-right 444 

differences are absorbed by the increased activity of the hidden units; when left 445 

and right activities reach saturation, the behavioral asymmetry decreases (see Fig. 446 

7, where asymmetry of performance decreases around time step 150 for 447 

neurocontroller C).  448 

 449 

3.3.3. Comparison between human and robotic performance 450 

Human participants and robotic populations as a whole did not show the same 451 

distribution of the position of the first cancelled targets (Kruskal-Wallis test, χ2(5, n 452 

= 301) = 67.88, p < .001) (see Fig. 6). Post-hoc tests (Dunn's test with Bonferroni 453 

correction) demonstrated a difference in distribution between humans and 454 

neurocontrollers A (p <0.001), B (p=0.0394), C0 (p < 0.001), C1 (p = 0.0153). 455 

However, the position distribution derived from human performance and 456 

neurocontroller C’s performance showed a similar degree of leftward asymmetry 457 

(Fig. 9; Dunn's test, p = 1.0; Levene test of homogeneity, p = 0.39). Thus, all 458 

robotics agents performed differently from humans, with the notable exception of 459 

the neurorobot population C, whose performance provided a good approximation 460 

to human performance. 461 

 We then compared the performance over time of human participants and 462 

model C neurorobots not only for the first canceled target (Fig. 9), but also across 463 

all the remaining targets. We performed a Bayesian repeated measures ANOVA 464 

(JASP software, version 0.8.2), with agents (human, neurorobots C) as between-465 

group factor, and the spatial position (X coordinate) of the sequence of all the five 466 

canceled targets as within-group factors. The Inclusion Bayes Factor, which 467 

compares ANOVA models that contain a given effect to equivalent models stripped 468 

of the effect, showed decisive evidence (BFInclusion= 2.137e +42) for the 469 

cancellation order main effect. Thus, the order of cancellation of all the five targets 470 
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depended on their spatial position (Fig. 10). Importantly, this effect was statistically 471 

equivalent for the human and the neurorobot C populations. In particular, there 472 

was substantial evidence against the existence of a group main effect (BFInclusion 473 

= 0.144), and strong evidence against the existence of a group X cancellation-474 

order interaction (BFInclusion = 0.046). These results show that the neurorobots 475 

from population C and human subjects behave similarly over time when canceling 476 

all the five targets. 477 

 478 

4. Discussion 479 

In this study, we established specific connectivity constraints leading to a lateral 480 

spatial bias (pseudoneglect) in artificial organisms trained to perform a visual 481 

search task by using genetic algorithms. A form of pseudoneglect that was 482 

qualitatively and quantitatively similar to that shown by normal participants did 483 

emerge in artificial neurorobots, but only in those harboring hemispheric 484 

asymmetries of connectivity that simulated those typically occurring in the human 485 

brain. As a further condition, a general excitatory influence of VAN on the 486 

ipsilateral DAN was necessary for pseudoneglect to occur in neurorobots. This 487 

novel result suggests that hemispheric asymmetry alone is not sufficient to 488 

generate a leftward bias, and thus further specifies the likely connectional 489 

constraints of pseudoneglect.  490 

We first consider our results in the light of neurophysiological studies of 491 

pseudoneglect, and then in relation to existing modeling studies of the human 492 

attentional system. A particular instance of pseudoneglect occurs with the 493 

landmark task: When judging lines pre-bisected to the left of their true center, 494 

normal participants consider the left segment as being longer than the right one 495 

(Milner, Brechmann, & Pagliarini, 1992). Spatial attention has been shown to be a 496 

major determinant of this phenomenon (Toba et al., 2011). Szczepanski et al. 497 

(2013; 2010) tested normal participants’ spatial bias on convert attention tasks and 498 
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on the landmark task by using a multimodal approach, combining psychophysics, 499 

fMRI and TMS. They tested only frontal and parietal ROIs in the DAN, and did not 500 

explore the VAN. Their subjects’ sample showed a mixed spatial bias: some 501 

subjects had a leftward bias (pseudoneglect), but most subjects showed a 502 

rightward bias (Szczepanski & Kastner, 2013). On average, the bias was 503 

rightward, unlike most of the literature results. The lateralization of the bias 504 

correlated with the lateralization index of the fMRI activation in the ensemble of the 505 

DAN ROIs during a covert spatial attention task. Specifically, subjects that had 506 

more left hemisphere activation also had a contralateral, i.e. rightward, bias in the 507 

landmark task; conversely, subjects with more right hemisphere activation tended 508 

to have a leftward behavioral bias. TMS-induced interference on the left- or right-509 

hemisphere parietal nodes during the landmark task caused an ipsilateral shift of 510 

the bias: right parietal TMS caused a rightward shift compared to the initial bias, 511 

and left parietal stimulation caused a leftward shift. Stimulating both right and left 512 

parietal ROIs did not cause a shift. Szczepanski and Kastner (2013) suggested 513 

that there is an inter-hemispheric competition between the DAN nodes, and the 514 

lateralization of the sum of the weights in the DAN activation shifts the attentional 515 

focus contralaterally. The possibility of long-range suppression, which might 516 

involve the DANs in both hemispheres, was shown in the monkey LIP: firing rate 517 

was suppressed when a saccade target was as far as 50° from the neuron 518 

receptive field (Falkner, Goldberg, & Krishna, 2013). 519 

Thus, these results are broadly consistent with the functioning of the 520 

present neurorobot population C. In agreement with Szczepanski and Kastner’s 521 

(2013) conclusions, the DAN in the current model is conceptualized as a whole, 522 

and not as separated nodes. Additionally, Szczepanski and Kastner’s data showed 523 

that there is large variability between participants in the direction and degree of 524 

lateralization of DAN activation, that on average did not significantly differ between 525 

the hemispheres. Here we aimed to explore the typical functional architecture in 526 
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the human population. Therefore, we chose to model the DAN as laterally 527 

symmetrical and the VAN as right-lateralized. However, there are several 528 

differences between the current models and the Szczepanski et al’s studies. First, 529 

they used a landmark task while here we used a search task. Second, the overall 530 

behavioral pattern here was of a leftward classical pseudoneglect bias and not the 531 

rightward bias found by Szczepanski et al. This might result from substantial 532 

differences in the studied samples or in the tasks used. Third, and more 533 

importantly, the VAN, which has a major contribution in the current model, was not 534 

tested in their studies.  535 

The architecture of neurorobot C is partly inspired by the results of Koch et 536 

al (2011), which might oversimplify the nature of interhemispheric interactions. 537 

Several fMRI studies of human attention areas found evidence of bilateral 538 

activation of attention areas, with a contralateral bias (see, e.g., Patel et al., 2015). 539 

In neurorobots D and E, we introduced bilateral competence in the right 540 

hemisphere networks (Heilman & Van Den Abell, 1980; Mesulam, 1981). However, 541 

performance this model showed no consistent spatial bias. This suggests that right 542 

hemisphere bilateral competence by itself might not be crucial to the emergence of 543 

pseudoneglect. Moreover, in our setting the inhibitory valence of inter-DAN 544 

connections was important for the development of an initial leftwards spatial bias, 545 

as well as to reach optimal levels of performance, as stressed by additional control 546 

simulations in which inter-DAN connections were either set free to evolve as 547 

inhibitory or excitatory (neurorobots F), or constrained to assume only excitatory 548 

valence (neurorobots G). On the other hand, evidence from neglect patients 549 

(Bartolomeo & Chokron, 1999) challenges models of attention exclusively based 550 

on inter-hemispheric rivalry (Kinsbourne, 1970, 1977, 1993). In addition, bilateral 551 

competence in attentional areas might be important in long-term compensation of 552 

neglect (Bartolomeo & Thiebaut de Schotten, 2016; Lunven et al., 2015). Our 553 

results stressing the importance of both right-hemisphere bilateral competence and 554 
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inter-hemispheric competition for pseudoneglect may thus pave the way for an 555 

integrated interpretation of different lines of research on normal or dysfunctional 556 

human attention networks. 557 

In their recent review, Borji and Itti (2013) provided a taxonomy of nearly 65 558 

computational models of visual attention. Many of these models focused on 559 

reproducing eye movements [e.g., the saliency-based models reported in Borji and 560 

Itti (2013)], following a bottom up approach. Typically, these models extract a set 561 

of features, represented as maps, from an incoming image. Then, feature maps 562 

are combined in a saliency map where a winner-take-all mechanism will designate 563 

the spatial region to be attended. Saliency-based attention models in general do 564 

not account for exploration biases, with the exception of a recent model (Ali Borji & 565 

Tanner, 2016), where an object center bias (the tendency to focus on the center of 566 

objects) is reproduced by adding an ad-hoc bias map to the saliency map. While 567 

important for building predictive models, this result seems little relevant to lateral 568 

biases such as pseudoneglect. Other models (Deco & Rolls, 2004; Deco & Zihl, 569 

2004) simulate attention as emerging from the competition of several brain areas 570 

subjected to bottom-up and top-down biases. These models do not drive eye 571 

movements; the scan path is simulated as a sequence of activations of the 572 

simulated posterior parietal cortex. Lanyon and Denham (2004, 2010) added to 573 

these models simulated eye movements and an adjustable attention window 574 

scaled according to stimuli density. Despite being successful at reproducing scan 575 

paths in healthy individuals and neglect patients, these models do not address the 576 

issue of pseudoneglect. Other models of attention did not consider pseudoneglect 577 

because of their training procedure or design constraints (Di Ferdinando et al., 578 

2007; Monaghan & Shillcock, 2004; Mozer, 2002; Pouget & Sejnowski, 2001). Di 579 

Ferdinando et al. (2005) explored line bisection and target cancellation 580 

performance in four biologically inspired neural networks. The networks’ patterns 581 

of connectivity varied along different degrees of asymmetry, inspired by specific 582 
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theories. Pseudoneglect occurred in line bisection but not in visual search. In these 583 

models, motor outputs were only used for target selection; there was no active 584 

exploration of the environment, whereas when our neurorobots explored their 585 

environment the corresponding input information changed as a function of eye 586 

movements. Nonetheless, the present study shares with Di Ferdinando et al. 587 

(2005) and other work from the Zorzi group (Casarotti, Lisi, Umiltà, & Zorzi, 2012) 588 

the stress on accounts of attentional phenomena relying on sensory-motor 589 

transformations, as stated by the premotor theory of attention (Rizzolatti, Riggio, 590 

Dascola, & Umilta, 1987). Specifically, our results support the hypothesis that the 591 

way in which the movements of the actuators are controlled affects the 592 

performance on a cancellation task (Gigliotta, Bartolomeo, & Miglino, 2015).   593 

Thus, contrary to most available models of attention, our artificial robots are 594 

trained to correctly cancel target stimuli, and are free to self-organize in order to 595 

find a proper solution, within the sole limits of the imposed connectivity constraints. 596 

These constraints were inspired by available data concerning the anatomical and 597 

functional organization of the attentional networks in the human brain. To the best 598 

of our knowledge, this is the first attempt to simulate pseudoneglect as a 599 

consequence of activity in the dorsal and ventral attention networks in the two 600 

hemispheres of the human brain. While this article was under review, two 601 

theoretical papers were published that also took into account the dorsal/ventral 602 

architecture of the attentional networks (Parr & Friston, 2017; Seidel Malkinson & 603 

Bartolomeo, 2017), but neither endeavored to simulate pseudoneglect. Another 604 

original feature of the present models is the embodiment factor, consisting of the 605 

explicit modeling of eye movements (see also Bartolomeo, Pagliarini, & Parisi, 606 

2002; Di Ferdinando et al., 2007; Gigliotta et al., 2015; Lanyon & Denham, 2004; 607 

Miglino, Ponticorvo, & Bartolomeo, 2009). In particular, the present models 608 

extended the models devised by Di Ferdinando et al. (2007), by increasing the 609 

complexity of the organisms’ retina, the biological plausibility of the motor system 610 
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and that of the neural controllers. Conti et al. (2016) also adopted an embodied 611 

perspective, based on a humanoid robot platform. In their study, an iCub robot was 612 

trained to remove objects from a table, a task reminiscent of a cancellation task. 613 

Intra-hemispheric disconnections were able to produce neglect-like behavior. 614 

However, the embodiment of the model was limited by the facts that selection of a 615 

visual target was carried out independently of the motor behavior, and that robot’s 616 

eyes were kept fixed during the cancellation task. Moreover, although hemisphere 617 

asymmetry was modeled by increasing the number of right hemisphere processing 618 

units, no bias in normal performance is reported.  619 

Moreover, contrary to most published work, our model attempted to 620 

simulate the relationships between the visual pathways and the attentional 621 

networks by respecting important biological constraints. Visual pathways project 622 

mainly to the hemisphere contralateral to each visual field. However, theoretical 623 

models of visual attention posit that the left hemisphere mainly deals with the 624 

contralateral hemispace, whereas the right hemisphere has a more bilateral 625 

competence (Heilman & Van Den Abell, 1980; Mesulam, 1981). In previous 626 

computational models this asymmetry has not always been simulated in a 627 

biologically plausible way. In some cases, both simulated hemispheres received 628 

visual information from the whole visual field, with attention asymmetries being 629 

represented in inner layers (Di Ferdinando et al., 2007; Monaghan & Shillcock, 630 

2004). In the Conti et al.’s model (Conti et al., 2016), the right hemisphere received 631 

information from both visual hemifields, whereas the left hemisphere processes 632 

only the contralateral visual hemifield. Our models D and E had similar 633 

architecture, but were unable to mimic human performance. Moreover, there is no 634 

anatomical evidence of such asymmetries in the visual pathways, and information 635 

exchange in the occipital visual areas is mainly limited to the vertical meridian 636 

(Berlucchi, 2014).  In our model, these important biological constraints of visual 637 

information processing were respected, because each artificial hemisphere 638 
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received visual information from the contralateral hemifield; inter-hemispheric 639 

connections were only present at a later stage of processing, between the artificial 640 

DANs.  641 

It might be argued that in our model C a leftward bias was simply 642 

transferred or amplified from the input to the output layers. If so, however, we 643 

would have expected to observe a constant leftward bias, akin to right-sided 644 

neglect. What we found, instead, was just an initial leftward bias, at the onset of 645 

the exploration task, analogous to human physiological pseudoneglect. In order to 646 

observe this initial bias, the VAN-DAN connections had to have an excitatory 647 

valence. This occurrence does not result from existing empirical data and is thus a 648 

novel prediction of the model. Also, neurorobot populations D and E, which also 649 

had more right hemisphere than left hemisphere resources, and should then entail 650 

a similar input-to-output amplification, did not show pseudoneglect, presumably 651 

because of the lack of inter-hemispheric inhibition. 652 

The level of detail of the models is not a trivial matter, because it has to 653 

provide meaningful novel information while remaining tractable. A potential 654 

limitation of our study is the use of simplified versions of the fronto-parietal cortical 655 

networks, without taking into consideration the substructures of the DAN and VAN, 656 

which are both broad and partly heterogeneous networks (Colby & Goldberg, 657 

1999), nor subcortical structures such as striatum, thalamus and superior colliculus 658 

(Krauzlis, Bogadhi, Herman, & Bollimunta, 2017). For example, the connectional 659 

anatomy of VAN components such as the temporoparietal junction (e.g., with the 660 

ventral cortical visual stream) and of the ventrolateral prefrontal cortex (e.g., with 661 

limbic structures) is likely to be crucial to the functioning of the VAN. Yet, our 662 

simplified model, with a VAN receiving visual input and sending excitatory 663 

connections to the ipsilateral DAN, was able to mimic human performance to an 664 

impressive level of accuracy. 665 
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More generally, our modeling is consistent with evidence from healthy 666 

subjects and neglect patients, stressing the importance of entire fronto-parietal 667 

networks, or of their dysfunction, in behavioral patterns such as pseudoneglect 668 

(Szczepanski & Kastner, 2013), or visual neglect (Bartolomeo et al., 2012; 669 

Corbetta & Shulman, 2011), respectively. Also, integrated fronto-parietal activity, 670 

with subtle, task-dependent differences in network dynamics, occurs during 671 

attention orienting in monkeys (Buschman & Miller, 2007). Concerning visual 672 

neglect, evidence suggests that a major determinant of this condition is indeed a 673 

dysfunction of the right hemisphere VAN (Corbetta & Shulman, 2011; Urbanski et 674 

al., 2011), or of its connections with the ipsilateral DAN (Thiebaut de Schotten et 675 

al., 2005).  676 

Finally, we note that the present population-based model can be potentially 677 

used to explore in a natural manner the universal properties (the basic brain 678 

architecture) and individual differences in network efficiency, two aspects recently 679 

underlined by Michael Posner (2014) as appropriate features for future models of 680 

attention.  681 

In conclusion, we have demonstrated the emergence of pseudoneglect 682 

behavior in artificially evolving neurorobots searching for visual objects, under 683 

specific connectional constraints. These neurorobots provide a plausible model for 684 

the dynamic interactions between fronto-parietal attention networks in the human 685 

brain. 686 

 687 

  688 
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Figure Legends 868 
 869 
Figure 1. Schema of the neurorobot equipped with an artificial eye, provided with a 870 

7x7 light receptor retina, and controlled by two pairs of simulated extraocular 871 

muscles. 872 

 873 
Figure 2. Panels A, B and C depict different implementations of the attentional 874 

networks with inter-hemispheric inhibition (Koch et al., 2011) and DAN/VAN 875 

architecture (Corbetta & Shulman, 2002). Panels D and E represent two 876 

implementations of right-hemisphere networks with bilateral competence (Heilman 877 

& Van Den Abell, 1980; Mesulam, 1981) and no inter-hemispheric inhibition. 878 

Arrows indicate connections that can be either excitatory or inhibitory; red 879 

connections with triangular arrowheads denote excitatory connections; blue round 880 

arrowheads represent inhibitory connections. LH, left hemisphere; RH, right 881 

hemisphere; Canc., cancellation units; LDAN and RDAN, dorsal attention networks 882 

in the left and in the right hemisphere, respectively; LVAN and RVAN, ventral 883 

attention networks in the left and in the right hemisphere; LVF and RVF, left and 884 

right visual field. Right and left VANs have the same number of neurons, but 885 

different patterns of connection strength.  886 

 887 

Figure 3.  Mean percentage of correct cancellations computed across 30 trials for 888 

each population of 40 neurorobots provided with neurocontrollers A-E. The middle 889 

bar of the boxplot indicates the median of the tested population. The top and the 890 

bottom of the box indicate respectively the first (q1) and the third (q3) quartiles. 891 

Whisker length extends until the last data point that is not considered as an outlier, 892 

I.e. a point that is greater than q3 + 1.5 × (q3 – q1) or less than q1 – 1.5 × (q3 – 893 

q1). There were no outliers in the current dataset.  894 

 895 
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Figure 4.  Average x values of the first cancelled target, computed across 30 trials 896 

for each population of 40 neurorobots provided with neurocontrollers A, B, C, D 897 

and E.  898 

 899 

Figure 5. Average x values of the first cancelled targets, for all the neurorobots 900 

provided with neurocontrollers C, C0, and C1. Average x values of neurorobots C0 901 

is not significantly different from 0, while average x values of neurocontrollers C 902 

and C1 significantly differ from 0. 903 

Figure 6. Average position on the X axis of the first cancelled targets for human 904 

participants (H) and artificial neurorobots equipped with neural networks A, B, C, 905 

C0, C1, D and E. 906 

 907 

Figure 6. Average position on the X axis of the first cancelled targets for human 908 

participants (H) and artificial neurorobots equipped with neural networks A, B, C, 909 

C0, C1, D and E. 910 

 911 

Figure 7. Laterality indexes of DAN activation computed for individuals equipped 912 

with neurocontroller C and C0. A value of 0 means that activation in left and right 913 

hemisphere DANs is balanced; positive values denote prevalence of right 914 

hemisphere DAN, negative values indicate prevalence of left hemisphere DAN. 915 

 916 
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Figure 8. Average activation of hidden neurons in right hemisphere DAN (RDAN) 917 

and in left hemisphere DAN (LDAN), for the first 30 steps of individuals equipped 918 

with neurocontrollers C and C0. The activity scale goes from 0 (black) to 1 (white). 919 

Note the early, large left-right asymmetry in neurobiologically inspired C agents 920 

(arrows), which subsequently decreases. The symmetrical C0 agents do not show 921 

any asymmetry of performance. 922 

 923 

Figure 9. Relative frequencies of the distribution of the position of the first 924 

cancelled target for 101 human participants (see Experiment 1) and for the 925 

populations of neurorobots C (equipped with the biologically inspired 926 

neurocontroller), C0 (presenting symmetrical DAN) and C1 (with VAN-DAN 927 

connections only present in the right hemisphere). 928 

 929 

Fig. 10. Coordinates of canceled targets as a function of the temporal sequence of 930 

cancellation in human participants and in neurorobot population C. Error bars represent 931 

credible interval of 95% 932 

  933 
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Extended Data 1. Neurobots and cancellation task have been implemented on the 934 

basis of Evorobot*, an open source tool for running evolutionary experiments 935 

(http://laral.istc.cnr.it/evorobotstar/) (S. Nolfi & Gigliotta, 2010). The present code, 936 

written in C++, includes header (.h) and source (.cpp) files of the modified version 937 

of Evorobot*. In particular, the motor control is defined in file epuck_sm.cpp 938 

(function move_robot retinaMotorControlType 20); neurorobots and task are 939 

initialized in file epuck.cpp (functions: initialize_robot_cancellationTask3(); 940 

initialize_world_cancellationTask; update_sensors; update_motors). The fitness 941 

function is defined in fuction ffitness_cancellationTask3. 942 

 943 






















