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ABSTRACT 

In this paper the problem of practical stabilization for a significant class of MIMO uncertain pseudo-linear and pseudo- 
quadratic systems, with additional bounded nonlinearities and/or bounded disturbances, is considered. By using the 
concept of majorant system, via Lyapunov approach, new fundamental theorems, from which derive explicit formulas 
to design state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, are 
stated. These results guarantee a specified convergence velocity of the linearized system of the majorant system and a 
desired steady-state output for generic uncertainties and/or generic bounded nonlinearities and/or bounded disturbances. 
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1. Introduction 

The problem of practical stability and stabilization for 
linear and nonlinear systems subject to disturbances and 
parametric uncertainties together with an efficient robust 
control has been in the past [1-10] one of the most re- 
search topic and nowadays remains actual and significant 
[11-21]. 

Indeed there exist many controlled or not systems lin-
ear but with uncertain parameters, uncertain pseudo-lin- 
ear and with bounded coefficients, uncertain pseudo- 
quadratic and with bounded coefficients, having a boun- 
ded additional term, for which not always there exists an 
equilibrium state.  

Regarding this, consider:  
• the mechanical systems with not viscous friction and/ 

or with revolute joints (e.g. robots),  
• the electrical and/or electro-mechanical systems with 

ferromagnetic devices, 
• many chemical, ecological, meteorological, biological 

and medical systems, 
with possible disturbances and reference signals which 
are non standard (not polynomial or cisoidal). 

For the above significant systems, it is important to 
design a control law such that, in a finite time interval, 
the state evolution, for all the initial conditions belonging 
to a specified compact set, is bounded and such that the 

evolution of the output (also the error signal) converges, 
with assigned minimum velocity, to chosen maximum 
values, that are bounded and not necessarily null. 

In this paper a systematic method, in a more general 
framework with respect to the ones proposed in literature 
(see e.g. [1-5,8-10,13-18]), for the analysis and for the 
practical stabilization of a significant class of MIMO 
uncertain pseudo-linear and pseudo-quadratic systems, 
with additional bounded nonlinearity and/or bounded 
disturbances, is considered. In detail, by using the con- 
cept of majorant system, via Lyapunov approach, new 
fundamental theorems, from which derive explicit for- 
mulas and efficient algorithms to design state feedback 
control laws, with a possible imperfect compensation of 
nonlinearities and disturbances, are stated. These results 
guarantee a specified convergence velocity of the lin- 
earized system of the majorant system and a desired 
steady-state output for generic uncertainties and/or ge- 
neric bounded nonlinearities and/or bounded distur- 
bances (see also [19-21]). Finally two significant exam- 
ples of application, well showing the utility and the effi- 
ciency of the proposed results, are reported. 

2. Problem Formulation and Preliminary 
Results 

Consider the following class of uncertain quadratic mul- 
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,k̂ ijF ,  of id̂ F , ,k ijF ,  such that i i id ˆF F= − F , 

,k ij k ij, ,
ˆ

k ijF F

( , , y

F

∈ ϒ

= −

( )1ν −

 are functions multilinear with respect to 
 and with respect to bounded function  

 where  
p ∈℘
g y ) ,

{ }: ,p Pp p p Rμ− +  ⊇ ⊂ ℘ = ∈  

and { }: ,g g g g Rη− + ϒ = ∈ ⊂   are hyper-rectangles,  

and such that ˆd d d δ= − ≤

,  

nR

ν

, where  is a constant. δ
Pose:  

( )

( )

1

1 1

1

,11 ,1 ,11 ,1

, 1 ,, 1 ,

,

ˆ ˆ ˆ ˆ, ,

ˆ ˆ

ˆ ,

ˆ ˆ

ˆ , , 1,2, , ,

n m

j j j j

j j

j jj j

n n
j j

n m

y

y
x R F F F F

y

F F F F

F F

F FF F

F F R j m

ν ν

ν

ν

ν ννν νν

ν

×
−

−

×

= ⋅

 
 
   ′= ∈ = ∈   
 
  
   
   ′′ ′′= =   
      

′′ ′′∈ =




 
     





(1.2) 

and denote with 2, 1 2, 2 2,
m n

i i iF F F Rν
× ∈ 

.

,  
, the matrices whose m  rows are respec- 

tively the i-th rows of the m matrices 
1, 2, ,i =  n

jF ′′
  Then, by controlling the system (1.1) with the follow- 

ing state feedback control law with a partial compensa- 

tion 

[ ]

( )

T
1

†
1 1

T

1† T T

ˆ

ˆˆ ,

ˆ

,

m

x F

u G K K K x F x x d

x F

G G GG

ν ν −

−

  ′′
  ′= − + + +  
  ′′  

=

 
   

(1.3) 

it is easy to verify that the closed-loop system turns out 
to be 
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To develop a practical stabilization method for the 
system (1.4), in a more systematic and general framework, 
which allows to calculate in a simple manner a control 
law that guarantees a specified convergence velocity, the 
following notations, definitions and preliminary results 
are provided. 
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where  is a symmetric and positive definite 
 matrix and 

n nP R ×∈
)( . .p d ,

ˆ
P rC  is a compact set. 

Definition 1. Give the system (1.4) and a  sym- 
metric matrix . A first-order positive system 
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Theorem 1. Consider the quadratic system 
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If 2
1 24δ α α β< , it is (see Figure 1) 
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Figure 1. Graphical representation of the system (1.6). 
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Figure 2. Factor γ as a function of the normalized initial 
condition. 
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+

= +

= + = + + ˆi

 (1.20) 

From (1.20) the proof easily follows.  

3.

result, concerning the analysis of sta- 
 

m of the system (1.4) is  

 Main Result 

Now the first main 
bility, can be stated.

Theorem 4. Give a symmetric p.d. matrix n nP R ×∈ . 
Then a majorant syste

2
1 2 , ,v cρ α ρ α ρ βδ ρ= + + =        )    (1.21

in which: 

( )

( )

( )
( )

( )

1

1
min 1

1
,

T
1 1 1

1
min 2

1
2

, ,

T
2 2 2

T
max

1 T
max

min ,
2

min ,
2

,

,

p g

P p g

p V g V

n

i i
i

x V p V g V

i i i

Q P

Q A P PA

Q x P

Q A P PA

B PB

c CP C

d

λ
α

λ
α

β λ

λ

δ

−

∈ ∈

−

=

∈ ∈ ∈

−

= −

= − +

 
 
 = −

= − +

=

=

≥



  (1.22) 

where pV  and gV  
and 

are the sets of vertices of the hyper- 
rectangle  of the hyper-rectangle ℘ ϒ  respec- 
tively, and 

1P
V  i the set of vertices of the hyper-rec- 

tangle of n  externally tangent to the hy r-ellipse 
s 

R pe
{ }T: 1nx R x P∈ = . 

Proof. By choosing as “Lyapunov function” the quad- 
x

ratic form 
2T 2

P
V x xPx ρ= = = , for x belonging to a 

generic hyper-circumference { }T 2
, :PC x x Pxρ ρ= = , it 

is 

2
,

T T T
1 2

, , 1

max 2
P

n

i i
x C p t R i

.x Q x x Q x x x PBd
ρ

ρρ
∈ ∈℘ ∈ =

 ≤ − − +  
  
  

(1.23) 

The proof easily follows from (1.23), Lemmas 1,
Theorem 3.  

 control law, follows from Theorem 4.  

 2 and 

The second main result, concerning the synthesis of 
the stabilizing

Theorem 5.  
Let ( ) 1 1

1 1ap a a aν ν ν ν
ν νλ β β λ β λ λ− −

−= + + + +  be 
th orth 
filter of 

e characteristic polynomial of the low-pass Butterw
order ν with cutoff frequency n aω = . 

If in (1.3) it is posed 

[ ]1K Kν ν

ν ν

− 1

1
1 1 ,a I a I aIν νβ β β−

−

K

 =  
 


   (1.24) 

in which I is the identity matrix of order m, th
rant system of the system (1.4) with respect to the norm 

en a majo- 

P
x , with 1a aP T PT= , where 

( )

{ }

{ }

1
V

−∗=1

1 2 1

1 1 1
1 2

1

2

,

1 1
,

0 0

0 0
diag ,

0 0

i
j

n i
a

P V

I I I

I I I
V I

I I I

a I

a I
T a I

I

ν

ν ν ν
ν

ν

ν

λ λ λ
λ

ν ν
λ λ λ

−

− − −

−

−
−

 
 
 = =
 
 
 

 
 
 = =
 
 
  




   





   


(1.25) 

being 
( )π

2 1
2e

i k

k

ν
νλ

+ −
= , 1,2, ,k ν=  , the k-th root of 

 for , is ( )ap λ 1a =

2
1 2 1

1
, ,a aa v

aνρ γ ρ γ ρ βδ ρ−+ =      (1.26) 

in which: 

= − +

( ) ( )
1

min 1 1 T
1 ma 1 1 1 1 1

,

1

1 2 1
1 2 11 2

, ,  
2

in

0 0 0

0 0 0

0 0 0

p g

a

a a a
p V g V

a

v v v

Q P
Q A P P A

I

I

A
I

F F F F
I I I I

aa a aν ν νν ν ν

λ
γ

β β β β

−

∈ ∈

− −
− −− −

= − +=

 
 
 
 

=  
 
 

− − − − 





    




(1.27) 


( )

1
min 2 1

1
2

, , 1

T
2 2 1 1 2

2 1
1 floor

2, 1 2, 2 2,

1 2

min ,
2

,  

0 0 0

1
,0 0 0

1

p g i

n

ai i
i

a
p V g V z

ai ai ai

ai i

m
i i i

Q z P

Q A P P A

A

F F Fa

a a

ν
ν

ν ν

λ
γ

−

=

∈ ∈ =±

 −  − −  
  

− −

 
 
 = −

= − +

 
 
 

=  
 
 
  




   





  (1.28) 

( )1 , 1.414, 2.236,3.696,6.236, ,

2,3, 4,5, .

P n n

n

β = =

=




  (1.29) 
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Proof. By making the change of variable , it is 
easy to prove that the system (1.4) becomes 

az T x=

( )1 2
1, ,

1 0 0 .

a ai i
i n

ay C z I a zν

=

− = =  




 1.30) 

,z aA z A z z Bd= + +
      (

Moreover, note that the Butterworth ei
have unitary magnitudes; hence all the 
elements of the matrix are unitary. From 
co

, th

genvalues kλ  
main diagonal 

1
1VV P∗ −=  this 

nsideration, from (1.30), from Lemmas 2, 3 and Theo- 
rem 4, the proof easily follows. 

Theorem 6. For a e parameters 1a→ ∞ γ  and 

2aγ  of the majorant system (1.26) turn out to be  

( )( )1 1̂lim co max Real
2

0.7071,0.5000,0.3827,0.3090, ,

a i
a i

1
s π

2,3,4,5,

νγ γ λ
ν→∞

= = = −

=   

ν = 
(1.31) 

−

( )

( )

1
min 2 1

1 1

2 2
, , 1

T
2 2 1 1 2 2

2,

,

ˆlim min ,
2

0 0 0

.
0 0 0

0 0

p g i

m n

i i
i m

a
p V g V za

i i i i

i

Q z P

Q A P P A A

F

ν

ν

ν

λ
γ γ

=
−

= − +

∈ ∈ =±→∞
−

 
  
 = =

 
 
 = − + =
 
 
  




   




   

(1.32) 

Proof. It is easy to verify that for  the matrix 
is the limit of the eigenvectors m  the matrix 

a → ∞
atrix ofV  

1aA
 

(see (1.27)); hence it is that 1
1A V V −= Λ∞ ,  

T 1
1 1A A V V∗ ∗− ∗ ∗
∞ ∞= = Λ , where  

{ } { }{ }1 1diag diag , , , ,diag , ,ν νλ λ λ λ=    . Therefore Λ

( )
( )
( )
( )

1
min 1 1

T 1
min 1 1

1 1 1
min 1

1 1
min max ,

Q P

A PA P

V V V V A VV

V V V V

λ

λ

λ

λ λ

−

−
∞ ∞

∗− ∗ ∗ ∗− − ∗
∞

∗− ∗ ∗ ∗− ∗ ∗

= − −

= − Λ −

= − Λ − Λ = − Λ + Λ( )

 (1.33) 

hence (1.31). 
Moreover it is easy to verify that  

( )

( )2

2,

1, 2, , 1 ;

lim , 1 1, , .
0 0 0

0 0

ai
a

i

i m2lim 0,ai
a

A

0 0 0

A i m m

F ν

ν

ν ν
→∞

= −

 
 = = − +
 
 
  



   





→∞
=

 
   

(1.34) 

From (1.28) and (1.34) the expression (1.32) easily 
follows. 

Remark 2. If it is easy to prove that  1m =  

( )( )T 1
2 max 1 1 1 2n nP e e P Pγ λ −= +

2 2 2 2,ˆlim max ,  a
a

F ννγ γ γ
→∞

= =

T

1.207,1.618,2.348,3.618, , 2,3, 4,5, .

n ne e

ν= = 

 (1.35) 

From Theorems 5 and 6 the following result de
Theorem 7. Consider the system (1.4) with  

rives. 

1 2, , ,K K Kν  
ram
the tim
system (1.26) 

provided from (1.24). If the design pa- 
, 
t 

eter a is big enough, from a practical point of view
majorane constant lτ  of the linearized of the 

is inverse proportional to a and it coincides 
with the maximum time constant of the linearized of the 
system (1.4). More in detail, if a is large enough it turns 
out to be 

( )( )( )
1

1 1

ˆ1 1
,

max real eig
l

l
a a

a aA

ττ
γ

= ≅ − ≅
(1.36) 

1ˆ 1.414,2.000,2.613,3.236, , 2,3, 4,5, ;lτ ν= = 

moreover, if a is sufficiently large, for t large enough it is 

( )

1

,

2.000, 4.472,9.657, 20.180, , 2,3, 4,5, ,
ˆ

g
y t

a

g

ν δ

β ν
γ

≤

≅ = = 

(1.37) 

or, more in general, it is 

( ) ( ) , 0,1, , 1i

i

g
y t i

aν δ ν−≤ =  − .      

lows from (1.26), (1.31) and by 
noting that  

1

0

(1.38) 

Proof. (1.36) easily fol

1

1 2

0 0

0 0 0
a

a

I

0 0 0

lim

I

A

I

I I Iν ν νβ β β β

→∞

− − I

 
 
 
 =
 
 
 − − − − 



    




. (1.39) 

The inequality (1.37) follows from (1.7), from th  

that if a is sufficiently large then 

e fact 

1
1

,
aa

βρ δ
γ

≅  from the  

se
king into acc

.x   

 

4. Examples 

The following examples show the utility and th
in the previous sections.  

Consider the pseudo-linear uncertain  

cond of (1.26) and from (1.29) and (1.31). 
(1.38) analogously follows by ta ount that 

( ) [ ] ( ) [ ]1 0 0 , , 0 0y y I x y Iν= = =   
(1.40)

e effi- 
ciency of the results stated 

Example 1. 
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system  

( )1 sin1 1 2y p y p y y p y u d= − − + − + +   ,    (1.41) 

where 1p 2 1% 20%p= = ±
( )

 and  

1 2, , , , ,y y y p p δ≤  . By 

1 1 2

d t posing 
=  and by

of the system (1.41) 
controlled with the cont

1
ˆˆ ˆ ˆsin , 1, 0, 0g y p p g d= = = =

m 5, the majorant s
 applying 

Theore ystem 
rol law  

2a y−   turns out to 
be 

( ) ( ) ( )3 21 1 sin 2 1u a y y a y= − + + − +

1 2

1
2.236 , .aa v

a
ρ γ ρ δ ρ= − + =   

Figure 3 the value of 

      (1.42) 

In 1aγ  for [ ]1,  20a ∈
at f

 is re- 
ported. It is significant to e th not or 6a ≥  it is 

1 0.9517aγ ≥ , i.e. 1 0.5aγ =  unless 
is

5%, in
0.4867;

 accord with 
Theorem 7. For 10a =  it  1aγ =  hence 

2.054 10 0.2054l sτ = = . Moreover, being 2 0aγ = , it is 

1 4.849 aρ =  and 2ρ = ∞ . Therefore, at “steady state”, 
: ,d d δ∀ ≤  it is:  

3 3 24.849 4.y ≤ ≅10 472 , 4.849a y aδ δ δ≤  and 

4.849y aδ≤ . 

Example 2. Consider the system of Figure 4 d  
by the equation 

escribed

( )
( ) ( ) ( )

( )

1 5

1

1 1

0 21000 1000
y y

p p p p

   
= +   − − −   


3 3 5

2 1
1

2 1 4 1 2 4 1 2

2
4 1 2

1

2

0 0

01
21000

0 01
01000

  1 0   1 01
,

1 1 1 11000

p p
y

p sg y
y y

p sg y p sg y y p sg y y

y y
p sg y y

d
u

d

−

− 
+  − + − + 

 
+  − + 

    
+ +     − −     




 

    

 
 

(1.43) 

in which 1 1 1 2 2 25 , 1, 5 ,d dδ δ δ δ= − + ≤ = − + ≤
bance actions due to several causes include
the road, 1 3 5% 20%p p= = ± , 

1  are 
the distur d the 
slope of [ ]2 4, 0p p ∈ 2 , 

5 1% 20p = ±
( )

%  and  
( ) ( )sg 2 π tan 1000 sgn .aσ σ σ= ≅  

By posing 1 3ˆ ˆp p=
nd by a

5= , 
 a ppl

2 4ˆ ˆ 0p p= = , 
ying Theorem

5ˆ 1p =
 5 the m

,  
ajorant  

 
1 2

ˆ ˆ 5d d= = −
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Figure 3. γ1a as a function of a. 

system of (1.43), controlled by using the control law 

( )

2 1

2 2

2

51 0   1 0 5

2 51 1 1 1 5

1 0
1000 2 ,

1 1

y y
u

y y

a y ay

− +   
= + 

  
  + −   
   

 
− + 

 





 

  
      (1.44) 

turns out to be 
2

1 0.0079 1.414 ,aγ ρ ρ δ

1  1 0 1δ

2

max =2.236, .
1 1

a

v
a

ρ

δ
δ

= − + +

  ρ 
= =  −   


.45) 

In Figure 5 the value of

    (1

 1aγ [ ]1,20  is re- a ∈
13.5a ≥  it 

 for 
ported. It is significant to no at for turns 
out to be 

te th

1 0.6366aγ ≥ , i.e. 1a 0.7071γ =
a =

 unless 10
 it is 1a

%, in 
For accord with Theorem 7. 10 0.6111γ = ; 

hence 0.18l 87sτ = . Moreover it is 1 0.5177ρ = , 2ρ =  
773.0. Therefore, at “steady state”, 1δ∀ , 2 1: 1δ δ ≤ , 

2 1δ ≤ , it is:  

20.05177 2 2.236 ,y a≤ ≅ ×   

0.5177 2 .2362 .y a≤ ≅

Figure 6 shows the values of ( )
×  

y t  ( ) and of y t , 
obtained fo 1 2 1= , 3p 4  5 1p = , ( )1 tδ  
and ( )2 tδ  square waves of amplitude 1 uency 

[ ]0.2 0.2 0
T

0 0 0 0.2 0.2 . 
re lights that the proposed stabilization 

ho on ve, as it c

r 

1.
Th

met d is little c servati an be easily verified by 
simulating the stabilized system for severa di- 
tions and numerous values of the parameter

5.

r the roble  of analysis d practical  

5p = , 

high

p

0

5= , 

T
, x =

1p = ,
and freq

[ ]2 Hz, 0x
is figu

=

l initial con
s. 

 Conclusions 

In this pape  p m an  
 

 

Figure 4. Vehicles to be kept still at a distance ds. 
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Figure 5. γ1a as a function of a. 
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Figure 6. Possible time histories of ( )y t  and of ( )y t . 

 
stabilization of a significant class of MIMO nonlinea
systems subject to parametric uncertainties, including
linear and quadratic ones with an additional bounded 
nonlinearities and/or disturbances, has been approached
By using the concept of majorant system and via Ly-
apunov approach, new useful results, explicit form
and efficient algorithms for designing state feedbac
c rfect tion 

onlinearities and disturbances, have been stated. Th

of Optimization

r 
 

. 
 

ulas 
k 

ontrol laws, with a possible impe compensa of 
n ese 
results have been proved that guarantee a specified con- 
vergence velocity of the linearized of the majorant sys- 
tem and a desired steady-state output for generic uncer- 
tainties and/or nonlinearities and/or bounded distur- 
bances. 

The utility and the efficiency of the these results have 
been shown with two illustrative example. 

The presented results can be used to establish further 
new useful theorems for the tracking of trajectories for 
relevant MIMO systems, like e.g. the robots. 

In this direction the research of the author is going on. 
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