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ABSTRACT

In this paper the problem of practical stabilization for a significant class of MIMO uncertain pseudo-linear and pseudo-
quadratic systems, with additional bounded nonlinearities and/or bounded disturbances, is considered. By using the
concept of majorant system, via Lyapunov approach, new fundamental theorems, from which derive explicit formulas
to design state feedback control laws, with a possible imperfect compensation of nonlinearities and disturbances, are
stated. These results guarantee a specified convergence velocity of the linearized system of the majorant system and a
desired steady-state output for generic uncertainties and/or generic bounded nonlinearities and/or bounded disturbances.
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1. Introduction

The problem of practical stability and stabilization for
linear and nonlinear systems subject to disturbances and
parametric uncertainties together with an efficient robust
control has been in the past [1-10] one of the most re-
search topic and nowadays remains actual and significant
[11-21].

Indeed there exist many controlled or not systems lin-
ear but with uncertain parameters, uncertain pseudo-lin-
ear and with bounded coefficients, uncertain pseudo-
quadratic and with bounded coefficients, having a boun-
ded additional term, for which not always there exists an
equilibrium state.

Regarding this, consider:

e the mechanical systems with not viscous friction and/
or with revolute joints (e.g. robots),

o the clectrical and/or electro-mechanical systems with
ferromagnetic devices,

e many chemical, ecological, meteorological, biological
and medical systems,

with possible disturbances and reference signals which

are non standard (not polynomial or cisoidal).

For the above significant systems, it is important to
design a control law such that, in a finite time interval,
the state evolution, for all the initial conditions belonging
to a specified compact set, is bounded and such that the
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evolution of the output (also the error signal) converges,
with assigned minimum velocity, to chosen maximum
values, that are bounded and not necessarily null.

In this paper a systematic method, in a more general
framework with respect to the ones proposed in literature
(see e.g. [1-5,8-10,13-18]), for the analysis and for the
practical stabilization of a significant class of MIMO
uncertain pseudo-linear and pseudo-quadratic systems,
with additional bounded nonlinearity and/or bounded
disturbances, is considered. In detail, by using the con-
cept of majorant system, via Lyapunov approach, new
fundamental theorems, from which derive explicit for-
mulas and efficient algorithms to design state feedback
control laws, with a possible imperfect compensation of
nonlinearities and disturbances, are stated. These results
guarantee a specified convergence velocity of the lin-
earized system of the majorant system and a desired
steady-state output for generic uncertainties and/or ge-
neric bounded nonlinearities and/or bounded distur-
bances (see also [19-21]). Finally two significant exam-
ples of application, well showing the utility and the effi-
ciency of the proposed results, are reported.

2. Problem Formulation and Preliminary
Results

Consider the following class of uncertain quadratic mul-
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tivariable systems

Yy =Fy" 1By 4 Fy
- . o _
y Fl,l] Fl,lv y
y(v—l) ﬁm |ELW _y(v—l)
+ : +Gu+d,
T ~ ~ —_
y Fm,ll Fm,lv y
L y(v—l) F~m,vl ﬁm,vv_ y(v_l) |
(1.1)
where: y(i) dy /dti i=0,1,---,v,ye R" is the out-

put, ue R 1s the control input,

d {t R VATEN y s p) € R™ models possible external sig-
nals and/or particular nonlinearities of the system, pe P,
with P a compact set of R“, is the vector of the uncertam
parameters (y, Ly p) e R™™ and

Fij (y, ,y(H), p)e R™™ are bounded matrices, con-

tinuous with respect to their arguments,
G(y,---,y("’l))e R™" is a matrix continuous with re-
spect to its arguments and with rank m.

Now suppose that there exist the nominal values F
Fi. d of £, F,. d such that F=F-F,
Fei =Fai — F, i are functions multilinear with respect to
pe g and with respect to bounded function

g(y,---,y(v’l))e Y, where
p={p:pe[p.p Jj2Pcr

and Y —{g :ge [g’ g+]} c R" are hyper-rectangles,

and such that “d d- d”<§ where O 1is a constant.
Pose:

n=v-m
y
y(l) A .
x=| °, |eR.F'=[F, F, F e R™,
(v-1)
y (12)
Fi,ll Fj,lv Fj,ll F],lv
Fr=| COLFr=] o
Fj,vl Fj,vv FLVI Fj,vv
Fij] an,j:l’z’.--’m
and denote with [F,;, F,, - F,, e R™,
i=1,2,---,n, the matrices whose M rows are respec-

tively the i-th rows of the m matrices FJ-".
Then, by controlling the system (1.1) with the follow-
ing state feedback control law with a partial compensa-
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tion
X"F/
u=-G"|[K, K, - K]x+Fx+|  [x+d]|,
X'F.
G'=G"(GG") ",

(1.3)

it is easy to verify that the closed-loop system turns out
to be

0 | 0 0
0 0 I 0
X= : X

0 0 0 I

_Fv - Kv Fv—l - Kv—r Fv—z - Kv—z Fr - Kr_
o 0 0 0 | 0
0 0 0 0 0

+Zn: X| : : : o x4+ |d

= 0 0 0 - 0 0
_Fz,il Fz,iz F2,i3 FZ,iV | I

= Ax+Zn:(>gA2’i)x+ Bd

y=[I 0 0]x=Cx.
(1.4)

To develop a practical stabilization method for the
system (1.4), in a more systematic and general framework,
which allows to calculate in a simple manner a control
law that guarantees a specified convergence velocity, the
following notations, definitions and preliminary results
are provided.

X":"X"I = ‘XTX:
Sor ={x:[M <1}.Co, ={x:[X =}, (1.5)
C,\P,r QCP,N

X =~x"Px,

where Pe R™ is a symmetric and positive definite
(p.d.) matrix and ép’r is a compact set.
Definition 1. Give the system (1.4) and a p.d. sym-
metric matrix Pe R™. A first- order positive system
=f(p,0), v=n(p),where p(t _||x ||
such that (t) 2||y | is said to be majorant
system of the system (1.4).
Theorem 1. Consider the quadratic system

p:a1p+a2p2 +ﬂ§=0{2p2 TP+,

(1.6)
<0, a,,20, p(0)=p, 20, §20.

If §<af /4oL, itis (see Figure 1)
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Figure 1. Graphical representation of the system (1.6).

tILIEp(t)Spl’va <p2’ (17)

where p,,p,,p, < p,, are the roots of the algebraic
equation a,p” +a,p+0a, =0. Moreover for §=0 the
practical convergence time ts, = p(tsy,)=5%p, is
given by (see Figure 2)

In 20—,/ Py

1“9 s
/ e 1_po/pzo

by, = 77,0 = (1.8)

P = _al/aZ >

in which 7, is the time constant of the linearized of the
system (1.6) and p,, is the upper bound of the conver-
gence interval of p(t) for =0, i.e. of the system
(1.6) in free evolution.

Proof. The proof of (1.7) easily follows from Figure 1.
Instead (1.8) easily derives by noting that the solution of
(1.6) for d=0 is

PO _pu_ 1
po pO l_l_(pzo_ljet/q
Po

(1.9)

In Figure 2 the evolution of y as a function of
P/ P, is reported. By analyzing Figure 2, note that for
Do/ Py 027 itis ye[3,3.3], i.e t,, =37.

Theorem 2. The solution of the Equation (1.6) with

—4doyo, >0 s

_ _ PPy
p= PPt PP T ()
1-f Po =P
where p,,p,,p, <p,, are the roots of the equation
ap’ +ap+a,=0.
Proof. From (1.6) it derives
dp _ 1 (1 ~ 1J@
p2+ip+i Pr=P\P=P P—P (1.11)
a a,

=a,dt,
from which (1.10) easily follows.

Lemma 1. If Pe R™ is a symmetric and p.d. matrix,

Q(x)e R™ is a symmetric matrix, continuous with
respect to xe R", and g(Xx)e R" is continuous with
respectto X, then Vp2>0 itis:
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Figure 2. Factor y as a function of the normalized initial
condition.

Héln X Q( X> mln //i’mm (Q x) P l)p
<Cp,p (1.12)
> min A4, (Q x) P~ ])P
XECpp
max X" g(x) < max \/g(x)’ P"'g(x)p
xeCp xCp (1 13)
< max \/g(x)' P"'g(x)p.
xCp ,

Moreover, if Q(X) is linear with respect to X it is
min X' Q( )X> mln ﬂmm (Q(X) P )p3

xeCp ,
> mln ﬂmm (Q(X) P_l)p3.

xeC;

(1.14)

More in general, if Q(X) is pseudo-linear with respect

ZQ

to x with bounded coefficients, i.e. if Q(x

where Q (X) are bounded, then
min X (ZQ (x) j
ZQ.(z)xPljps (1.15)

> min A [ZQI (Z))QP"J,O3
xeCp.2eR" i

Proof. Note that, if f(x)e R is a continuous func-
tion with respect to xe R" and X, c© X, are compact

subsets of R", it 1is mmf( )>m1nf( )s
xe X, xe X5

max f (X) <max f (x). Moreover, since P is p.d., there
xe Xy xe X,

exists a symmetric nonsingular matrix S such that
P =S. Hence, by posing z=9y, it s
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LT

xrerélpri, X Q(x)x

> i T

- yecpl,?,lxgcp,p y Q(X) y

min_ 2'S"'Q(x)S 'z

2Cy ,.xCp )

min 4. (S'Q(x)S")z'z

2Cy ,.xeCp ,

min 4, (SS7'Q(x)S's™) p’
xCp

min A_._ (Q(X) P! )p2

xeCp
min (Q(X) P—l)pZ,

(1.16)

vV

min /1
xeC

and so (1.12) holds. Similarly

max X' g(x)

%Cp

< max
¥eCp . %eCp

y'9(x)
Z'S'g(x)

< max [4s 909

—maqug( ) Pg(x)p

xCp ,

< max \/g(x)' P"'g(x)p,

xeCp ,

= max
2Cy ,.%Cp ,

(1.17)

and hence (1.13). The inequalities (1.14) easily follow
from the fact that, if Q(X) is linear with respect to X,

QX =Q(x)
alogously follow.

Remark 1. Clearly, if Q(x) and g(x) are inde-
pendent of X, (1.12) and (1.13) are valid with the equal

sign. If Q(x) depends on X, min X'Q(x)x is quite
P.p

p . The inequalities (1.15) an-

x€Cp xeCp |

difficult to compute because X Q | has in gen-

eral different points of relative maximum, of relative
minimum and of “inflection”; moreover, the second and
the third member of (1.12) (of (1.14) or of (1.15)) allow
an easier computation of a lower bound on

X Q |

shown later on. A similar talking is valid if g(x) de-
pendson X.

Lemma 2. Consider a p.d. matrix Pe R™ and a ma-
trix Ce R™" with rank m. If ||X|| < p then the smal-
lest o such that ||V|| <o || where v=Cx, isequal
to a=,/4,, (CP'CT).

max

proportional to p° (p3), as it will be
P.p

Proof. Since Pis p.d., by posing z=Sx,where S isa
symmetric nonsingular matrix such that P =S’, then, in
an equivalent way, the smallest ¢ such that
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||V||<0(|| U <op is also the smallest & such that the
matrix o1 —S'CT'CS™' is positive semidefinite, i.e. all
its eigenvalues are non-negative. As

A(’1-s’'c'cs!)=a’ - 2(ST'CTCS ),

itis a=,/4,.,
if F is a real mxn matrix with rank m, the matrix
F'F has n—m null eigenvalues and m positive ei-

genvalues equal to the ones of FF', it follows that
0= |2 (CS'S'C") = \[4,, (CP'C") and, hence,

the proof.

Lemma 3. Let Pe R™ be a symmetric p.d. matrix
with its inverse P =P~ having unitary elements on the
main diagonal. Then the hyper-rectangle of R" exter-
nally tangent to the hyper-ellipse E = {xe R":x"Px= 1}
is the hyper-quadrilateral (quadrangle if n=2, cube if
n=3) having as origin the centre and with unitary
half-side.

Proof. 1t is easy to prove that the point of contact of
the hyper-line orthogonal to the versor €,i=1,2,---,n,
of R" and tangent to the hyper-ellipse E is

p =PTi—q=i-thcolumn of B.
& Re

From this the proof easily follows.

The following significant and useful theorem is stated.

Theorem 3. Let

A= Z Alizf“vil

i oire{0.1}

N (S’ICTCS’1 ) By taking into account that,

(1.18)

P | nxn
n'n?,--,m €R

be a matrix multilinearly depending on the parameters

[r, =, nl]T=neH={ne R':n’SnSn*}

and let Pe R™ be a symmetric p.d. matrix. Then the
minimum (maximum) of ﬂmn(QP )(ﬂmaX(QPl)j, where
nell

Q= —(ATP+ PA), is attained in one of the 2' vertices
of II.

Proof. Note that for_a constant w;,]#i, it is
Q=Q,+m,Q,m e [n, LT ] Moreover, by taking into

account that A (QP’I): min _X"QX, it turns out to

min

xe{x:xTPx:l}
be that
min A4 ((Q0 +mQ )P )
o] (1.19)
= min X' (Q+mQ)x

nie[ni',nﬂ,xe{xszPx:l}
Therefore, said 7;,,X the points of minimum of

f(m,x)=x"(Q +nin)XXE{X:XTPX:1} ,itis
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) I[nll’lq ‘min ((QO +niQ1 ) P_l)

= min_(X'QX+mX'QX)

miE| m,m

(1.20)
= .Emin+ (6 +m¢)= min{éo +7 6,6, +ni+él}.

From (1.20) the proof easily follows.

3. Main Result

Now the first main result, concerning the analysis of sta-
bility, can be stated.

Theorem 4. Give a symmetric p.d. matrix Pe R™.
Then a majorant system of the system (1.4) is

p=ap+o,p’ +pSV=Ccp, (1.21)
in which:
. ﬂ’min (Q] Pil)

o,=— mn ———,

peVp,0eVy 2
Q=—(AP+PA)

/)i’min (ZQZI)Q P_lj

o,=—  min = ,

eV , peVp,geVy 2
Q, =—(AP+PA,) (122)

B =1 (B'PB),
c=.,/4

max

o2d.

(cpc’)

where V and V, are the sets of vertices of the hyper-
rectangle % and of the hyper-rectangle Y respec-
tively, and V; is the set of vertices of the hyper-rec-
tangle of R" externally tangent to the hyper-ellipse

xe R :xTPx:l} .

Proof. By choosing as “Lyapunov function” the quad-
ratic form V =x" PX=||X|||23 = p*, for X belonging to a
generic hyper-circumference C; , ={X: x"Px = pz}, it
is
2pp = xecpgl,%zp,tel?

(—XTQ]X— x" (Zn:szg j x+2xTPBd).
(1.23)

The proof easily follows from (1.23), Lemmas 1, 2 and
Theorem 3.

The second main result, concerning the synthesis of
the stabilizing control law, follows from Theorem 4.

Theorem 5.

Let p,(4)=Ba"+8_a 'A++pal""+1" be
the characteristic polynomial of the low-pass Butterworth
filter of order v with cutoff frequency @, =a.

Copyright © 2013 SciRes.

Ifin (1.3) it is posed
[Kv Kv—l Kl]
= [ Ba'l B al Bal J

in which | is the identity matrix of order m, then a majo-
rant system of the system (1.4) with respect to the norm

(1.24)

||X 0> With P=T,RT,, where
-l
R=(W’)
| I cee
I I I ,
v L] A A g — {21}, (1.25)
N : - : N
21\/—1' ﬂzv_ll Z‘;f—ll
al 0o -0
2L .
L e
0 0 I
. i (v+2k-1)
being A, =e? , k=12,---,v, the k-th root of

p,(4) for a=1,is

. 1
P ==Y p+ 1P +BOV= S7p (120
in which:
. ﬂmin (Qlaplil) T
Via = mmin —=—=—.Q, ==(AR+RA,).
0 | 0 0 ]
0 0 | 0
A=l 0 0 e
F, F._ F._ F
_V_ﬂvl ayfi_ v—lI avfi_ v—2| El_ﬂll
(1.27)
n
ﬂ’min (Z Q2ai z| Pllj
_ . i=1
V20 = pevp,rgrel\l/g,z,:tl 2 i
Qa =—(AaR+RAL). (1.28)
0 0 0
| :
Azaj = P 0 0 0 |
(V—l—ﬂoor[l—)
a F2,i1 Fz,iz Fz,iv
av—l av—2 1

B =R (n.n)=1414,2.236,3.696,6.236,-, (1.29)
N=2,3,4,5,".
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Proof. By making the change of variable z=T,X, itis

easy to prove that the system (1.4) becomes

z=aA,z+ > (A.z)z+Bd,

=L (1.30)
y=C,z=[1/a""0--0]z

Moreover, note that the Butterworth eigenvalues A4,
have unitary magnitudes; hence all the main diagonal
elements of the matrix VV* =P are unitary. From this
consideration, from (1.30), from Lemmas 2, 3 and Theo-
rem 4, the proof easily follows.

Theorem 6. For a— oo, the parameters %, and
V>, of the majorant system (1.26) turn out to be

. . v-1
limy, =7 = cos——— = —miax(Real(ﬂ1 )

=0.7071,0.5000,0.3827,0.3090,---, (1.31)
v=2,3,4,5,"-

vim=n I

/1min (Z) QZiZiR_
. ~ . i=m(v—1)+1

l":lzza BC pevpgel%/gz:ﬂ 2 ’

00 0
B T B R
Qi=-(AR+RA).A = o
00 F,

(1.32)

Proof. 1t is easy to verify that for a — o the matrix
V s the limit of the eigenvectors matrix of the matrix
A, (see (1.27)); hence it is that A_ =VAV™,

Al =A =V"'AV", where

A= diag{diag{/L,---,/11},-~-,diag{/lv,~--,/1v}}. Therefore
)”min (Ql Pl_] )
= A (-AL—PA_P")

(1.33)
-1 (_V*—IA:rv* —VHVflAmW*)

= Ain (VTAV VAV =2 (AT +A),

hence (1.31).
Moreover it is easy to verify that

lim A, =0,i=12,---,m(v-1);

a—oo

0O --- 0 0
;g?oAzajz(') (') (') Jj=m(y-1)+1--,mv
0 0 F,

(1.34)

From (1.28) and (1.34) the expression (1.32) easily
follows.

Copyright © 2013 SciRes.

Remark 2.1f m=1 itis easy to prove that

>

limy,, =7, =7 maX|F2’W
a—so0

7 = A ((Re8] +e 8RR /2)
=1.207,1.618,2.348,3.618,---,v =2,3,4,5,---.

(1.35)

From Theorems 5 and 6 the following result derives.

Theorem 7. Consider the system (1.4) with
K.K,,---,K, provided from (1.24). If the design pa-
rameter a is big enough, from a practical point of view,
the time constant 7; of the linearized of the majorant
system (1.26) is inverse proportional to a and it coincides
with the maximum time constant of the linearized of the
system (1.4). More in detail, if a is large enough it turns
out to be

. max(real(eig(pia))) a
%, =1.414,2.000,2.613,3.236, -,V = 2,3,4,5,-;

4

(1.36)

moreover, if a is sufficiently large, for t large enough it is

[yl s
g= ﬁ =2.000,4.472,9.657,20.180,---,v =2,3,4,5,---,
1 (1.37)
or, more in general, it is
VO] si=0t -1 (138)

al/
Proof. (1.36) easily follows from (1.26), (1.31) and by
noting that

0 | 0 0
0 0 I 0
limA, = : . (1.39)
o 0 0 0 |
__:Bvl _:Bv—ll _:Bv—zl _ﬁll B

The inequality (1.37) follows from (1.7), from the fact

that if a is sufficiently large then p, = ié‘, from the
la
second of (1.26) and from (1.29) and (1.31).
(1.38) analogously follows by taking into account that
yW=y=[0 I 0]%--y" =[0 0 - 1]x
(1.40)

4. Examples

The following examples show the utility and the effi-
ciency of the results stated in the previous sections.
Example 1. Consider the pseudo-linear uncertain
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system

y=-py-(1+psiny)y-py+u+d,
where p, =p, =1%=%20% and
|d (t: Y,¥. ¥, 0, P, )| <J.By posing
g =siny,p=p=1,0=0d=0 and by applying
Theorem 5, the majorant system of the system (1.41)
controlled with the control law
u=(1-a')y+(1+siny-2a’)y+(1-2a)y turns out to
be

(1.41)

p= —a}qap+2.236§,v=%p. (1.42)

In Figure 3 the value of p, for ae|[l, 20] is re-
ported. It is significant to note that for a=>6 it is
%a =20.9517, i.e. 7,=0.5 unless 5%, in accord with
Theorem 7. For a=10 it is %, =0.4867; hence
7, =2.054/10 = 0.2054s. Moreover, being 7,, =0, it is
p, =4.849/a and p, =oo. Therefore, at “steady state”,
vd :|d|£ J, itis:

|y|<4.8495/10° = 4.4725/a’ ||y| < 4.8495/a’ and
|V] < 4.8496/a.

Example 2. Consider the system of Figure 4 described
by the equation

s L[-p 0] 1[0 p
y=—rl yr——f = |y
1000 p—p, —p,)° 1000[0 —2p,

.l -p,s9(¥,) 0 }
+— . . . . . yly
1000| p,9(¥,)— P,SI( ¥, +Y2) —2P.Sa (Vi +Ys)
[0 0 } .
1000{ 0 —p,sy (¥, +¥,) Y

1 [10 10]d,
+— u+ R
1000| -1 1 -11]d,
(1.43)

in which d, =—5+5|,|5,|S1, d, =—5+§2,|§2|S1 are
the disturbance actions due to several causes included the
slope of the road, p, =p, =5%+20%, p,,p,€[0 2],
p; =1%%20% and

sg(0)=2/natan(10000) =sgn (o).

Byposing p=p,=5, p,=p,=0, p=1,

d, =d, =-5 and by applying Theorem 5 the majorant

Figure 3. y1, asafunction of a.

Copyright © 2013 SciRes.

system of (1.43), controlled by using the control law

1 0|l-y,+5y, 10||5
1 1]|2y,+5Yy, -1 1|5

(1.44)
—1000B ﬂ(azyh/iay),
turns out to be
p=-ay,p+0.0079p° +1.4146,
1 (1.45)

J = max =2.236, v=—p.
a

10} 4
-11]|6,
In Figure 5 the value of p, for ae[1,20] is re-
ported. It is significant to note that for a>13.5 it turns
outtobe ¥, =0.6366,i.e 3,=0.7071 unless 10%, in
accord with Theorem 7. For a=10 itis y,=0.6111;
hence 7, =0.1887s. Moreover it is p, =0.5177, p, =
773.0. Therefore, at “steady state”, V&, &,:|§|<I,
|6, <1, itis:

Iy <0.05177 = 2x2.236/a’,
|| <0.5177 = 2x2.236/a.

Figure 6 shows the values of |y(t)|| and of "y(t)",
obtained for p, =5, p,=1, p;=5 p, =1, p;=1, §(t)
and 6, (t) square waves of amplitude 1 and freqruency
1.2Hz, % =[020200], x=[000202].

This figure highlights that the proposed stabilization
method is little conservative, as it can be easily verified by
simulating the stabilized system for several initial condi-
tions and numerous values of the parameters.

5. Conclusions

In this paper the problem of analysis and practical

i
o
el
)
i
=
i
o
i
o
N
S

Figure5. yy, asafunction of a.
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— vl
lidy/dt]]

T S B
| |
| |
,,,,, = = = = e — —
S : / T\\ : // ™
~. e/ .
L L
12 14 16 18 2

Figure 6. Possibletime historiesof |y(¢)| and of |5(¢)

stabilization of a significant class of MIMO nonlinear
systems subject to parametric uncertainties, including
linear and quadratic ones with an additional bounded
nonlinearities and/or disturbances, has been approached.
By using the concept of majorant system and via Ly-
apunov approach, new useful results, explicit formulas
and efficient algorithms for designing state feedback
control laws, with a possible imperfect compensation of
nonlinearities and disturbances, have been stated. These
results have been proved that guarantee a specified con-
vergence velocity of the linearized of the majorant sys-
tem and a desired steady-state output for generic uncer-
tainties and/or nonlinearities and/or bounded distur-
bances.

The utility and the efficiency of the these results have
been shown with two illustrative example.

The presented results can be used to establish further
new useful theorems for the tracking of trajectories for
relevant MIMO systems, like e.g. the robots.

In this direction the research of the author is going on.
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