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1. Introduction

Let ϕ be an Orlicz function and consider the ϕ-Laplacian system:

−div
(
A(∇u)

) = 0 with A(∇u) = ϕ′(|∇u|)
|∇u| ∇u. (1.1)
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A map u : Ω → R
N that is a solution of the system (1.1) is called ϕ-harmonic. Some examples of

Orlicz functions ϕ for which our assumptions hold true are

ϕ1(t) = t p, ϕ2(t) = t p logβ(e + t), ϕ3(t) = t p log log(e + t)

where p > 1, β > 0.
In a previous paper [7] we proved C1,α regularity for local minimizers of functionals with Uh-

lenbeck structure, that is depending on the modulus of the gradient, via a convex function ϕ , so, in
particular, they are solutions of the ϕ-Laplacian system. Coming to a general vectorial case, partial reg-
ularity comes into the play, as shown in the famous counterexamples of Necas [23], and also Sverak
and Yan [26]. Irregularity of minima is a peculiar feature of the vectorial case; in fact their examples
concern functionals depending only on the gradient of the minimizer. Partial regularity asserts the
pointwise regularity of solutions/minimizers, in an open subset whose complement is negligible. The
proof of partial regularity compares the original solution u in a ball with the solution h in the same
ball of the linearized elliptic system with constant coefficients. The comparison map h is smooth,
and enjoys good a priori estimates. The idea is to establish conditions in order to let u inherit the
regularity estimates of h; for example, u and h should be close enough to each other in some in-
tegral sense. This is achieved if the original system is “close enough” to the linearized one. Such a
linearization idea finds its origins in Geometric Measure Theory, and more precisely in the pioneering
work of De Giorgi [4], on minimal surfaces, and was first implemented by Morrey [22], and Giusti
and Miranda [16], for the case of quasilinear systems. Hildebrandt, Kaul and Widman [18] studied
partial regularity in the setting of harmonic mappings and related elliptic systems, see also [21] and
the book of Simon [25]. For the completely non-linear case we have the indirect method via blow-up
techniques, implemented originally in the papers of Morrey, Giusti and Miranda, and then recovered
directly for the quasiconvex case by Evans [14], Acerbi and Fusco [2], Fusco and Hutchinson [15], and
Hamburger [17]. Another technique is the “A-approximation method”, once again first introduced in
the setting of Geometric Measure Theory by Duzaar and Steffen [13], and applied to partial regularity
for elliptic systems and functionals by Duzaar and Grotowski [9]. This method re-exploits the original
ideas that De Giorgi introduced in his treatment of minimal surfaces, providing a neat and elementary
proof of partial regularity. The linearization is implemented via a suitable variant, for systems with
constant coefficients, of the classical “Harmonic approximation lemma” of De Giorgi.

For the p-Laplacian system with right-hand side of critical growth, Duzaar and Mingione in [11]
proved the C1,α partial regularity via the p-harmonic approximation lemma, that is a non-linear
generalization of the harmonic one to p �= 2.

When dealing with general convex function the blow-up technique doesn’t work so we are
forced to find an analog of the p-harmonic approximation lemma for general convex function, the
ϕ-harmonic approximation lemma.

Lemma 1.1 (ϕ-Harmonic approximation lemma). Let ϕ satisfy Assumption 2.1. For every ε > 0 and θ ∈ (0,1)

there exists δ > 0 which only depends on ε, θ , and the characteristics of ϕ such that the following holds. Let
B ⊂R

n be a ball and let B̃ denote either B or 2B. If u ∈ W 1,ϕ(B̃,RN ) is almost ϕ-harmonic on a ball B ⊂ R
n

in the sense that

−
∫
B

ϕ′(|∇u|) ∇u

|∇u|∇ξ dx � δ

(
−
∫
B̃

ϕ
(|∇u|)dx + ϕ

(‖∇ξ‖∞
))

(1.2)

for all ξ ∈ C∞
0 (B,RN ), then the unique ϕ-harmonic map h ∈ W 1,ϕ(B,RN ) with h = u on ∂ B satisfies

(
−
∫
B

∣∣V(∇u) − V(∇h)
∣∣2θ

dx

) 1
θ

� ε −
∫
B̃

ϕ
(|∇u|)dx, (1.3)

where V(Q ) =
√

ϕ′(|Q |)
|Q | Q .
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First of all our definition of almost ϕ-harmonic slightly differs from the original definition of al-
most p-harmonic from [11,12]. However, as it is easily seen, our definition is weaker; so any almost
p-harmonic function in the sense of [11] is almost ϕ-harmonic for ϕ(t) = 1

p t p in the sense of (1.2). The
reason for choosing this version of almost harmonic is, that (1.2) has very good scaling properties.

We want to point out that we improve the result of Duzaar and Mingione in three different di-
rections. First, we use a direct approach without a contradiction argument. This allows us to show
that the constants involved in the approximation only depend on the characteristics on ϕ . Second,
we are able to preserve the boundary values of our original function. In particular, u = h on ∂ B .
Third, we show that h and u are close with respect to the gradients rather than just the functions.
The main tool in the proof of the previous lemma is a Lipschitz approximation of Sobolev functions
that was first introduced by Acerbi and Fusco [1], and then revisited by Diening, Málek and Stein-
hauer [6].

As an application of this method, we consider ϕ-harmonic systems with critical growth and prove
a partial regularity result for the solution. Let us observe that using the closeness of the gradients and
not just of the functions the proof shortened very much.

2. Notation and preliminary results

We use c, C as generic constants, which may change from line to line, but do not depend on the
crucial quantities. Moreover we write f ∼ g iff there exist constants c, C > 0 such that cf � g � C f .
For w ∈ L1

loc(R
n) and a ball B ⊂ R

n we define

〈w〉B := −
∫
B

w(x)dx := 1

|B|
∫
B

w(x)dx, (2.1)

where |B| is the n-dimensional Lebesgue measure of B . For λ > 0 we denote by λB the ball with
the same center as B but λ-times the radius. By e1, . . . , en we denote the unit vectors of R

n . For
U ,Ω ⊂R

n we write U � Ω if the closure of U is a compact subset of Ω .
The following definitions and results are standard in the context of N-functions, see for exam-

ple [20,24]. A real function ϕ : R�0 → R
�0 is said to be an N-function if it satisfies the following

conditions: ϕ(0) = 0 and there exists the derivative ϕ′ of ϕ . This derivative is right continuous,
non-decreasing and satisfies ϕ′(0) = 0, ϕ′(t) > 0 for t > 0, and limt→∞ ϕ′(t) = ∞. Especially, ϕ is
convex.

We say that ϕ satisfies the �2 condition, if there exists c > 0 such that for all t � 0 holds
ϕ(2t) � cϕ(t). We denote the smallest possible constant by �2(ϕ). Since ϕ(t) � ϕ(2t) the �2 condi-
tion is equivalent to ϕ(2t) ∼ ϕ(t).

By Lϕ and W 1,ϕ we denote the classical Orlicz and Sobolev–Orlicz spaces, i.e. f ∈ Lϕ iff∫
ϕ(| f |)dx < ∞ and f ∈ W 1,ϕ iff f ,∇ f ∈ Lϕ . By W 1,ϕ

0 (Ω) we denote the closure of C∞
0 (Ω) in

W 1,ϕ(Ω).
By (ϕ′)−1 : R�0 → R

�0 we denote the function

(
ϕ′)−1

(t) := sup
{

s ∈R
�0: ϕ′(s) � t

}
.

If ϕ′ is strictly increasing then (ϕ′)−1 is the inverse function of ϕ′ . Then ϕ∗ : R�0 → R
�0 with

ϕ∗(t) :=
t∫

0

(
ϕ′)−1

(s)ds

is again an N-function and (ϕ∗)′(t) = (ϕ′)−1(t) for t > 0. It is the complementary function of ϕ .
Note that ϕ∗(t) = sups�0(st − ϕ(s)) and (ϕ∗)∗ = ϕ . For all δ > 0 there exists cδ (only depending on
�2({ϕ,ϕ∗})) such that for all t, s � 0 holds
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ts � δϕ(t) + cδϕ
∗(s),

ts � cδϕ(t) + δϕ∗(s). (2.2)

For δ = 1 we have cδ = 1. This inequality is called Young’s inequality. For all t � 0

t

2
ϕ′

(
t

2

)
� ϕ(t) � tϕ′(t),

ϕ

(
ϕ∗(t)

t

)
� ϕ∗(t) � ϕ

(
2ϕ∗(t)

t

)
. (2.3)

Therefore, uniformly in t � 0

ϕ(t) ∼ ϕ′(t)t, ϕ∗(ϕ′(t)
) ∼ ϕ(t), (2.4)

where the constants only depend on �2({ϕ,ϕ∗}).
Throughout the paper we will assume ϕ satisfies the following assumption.

Assumption 2.1. Let ϕ be an N-function such that ϕ is C1 on [0,∞) and C2 on (0,∞). Further assume
that

ϕ′(t) ∼ tϕ′′(t) (2.5)

uniformly in t > 0. The constants in (2.5) are called the characteristics of ϕ .

We remark that under these assumptions �2({ϕ,ϕ∗}) < ∞ will be automatically satisfied, where
�2({ϕ,ϕ∗}) depends only on the constant in (2.5). In fact, it follows from

c1ϕ
′(t) � tϕ′′(t) � c2ϕ

′(t) (2.6)

that ϕ′(t)
tc2 is decreasing and ϕ′(t)

tc1 is increasing; so the �2 condition holds for ϕ′ . Analogously, it holds
for ϕ and ϕ∗ .

For given ϕ we define the associated N-function ψ by

ψ ′(t) := √
ϕ′(t)t. (2.7)

It is shown in [5, Lemma 25] that if ϕ satisfies Assumption 2.1, then also ϕ∗ , ψ , and ψ∗ satisfy
this assumption.

Define A,V :RN×n →R
N×n in the following way:

A(Q ) = ϕ′(|Q |) Q

|Q | , (2.8a)

V(Q ) = ψ ′(|Q |) Q

|Q | . (2.8b)

The connection between A and V is best reflected in the following lemma [7, Lemma 2.4], see
also [5].
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Lemma 2.2. Let ϕ satisfy Assumption 2.1 and let A and V be defined by (2.8). Then

(
A(P) − A(Q )

) · (P − Q ) ∼ ∣∣V(P) − V(Q )
∣∣2

(2.9a)

uniformly in P,Q ∈ R
N×n. Moreover,

A(Q ) · Q ∼ ∣∣V(Q )
∣∣2 ∼ ϕ

(|Q |), (2.9b)

uniformly in Q ∈ R
N×n.

It has been shown in [7, (4.6)] that for every β > 0 there exists cβ (only depending on ϕ via its
characteristics) such that for all a,b ∈R

nN and t � 0 holds

ϕ
(|a − b|) � cβ

∣∣V(a) − V(b)
∣∣2 + βcϕ

(|a|). (2.10)

The following version of Sobolev–Poincaré can be found in [5, Lemma 7].

Theorem 2.3 (Sobolev–Poincaré). Let ϕ be an N-function with �2({ϕ,ϕ∗}) < ∞. Then there exists 0 < θ0 < 1
and K > 0 such that the following holds. If B ⊂ R

n is some ball with radius R and v ∈ W 1,ϕ(B,RN ),
then

−
∫
B

ϕ

( |v − 〈v〉B |
R

)
dx � K

(
−
∫
B

ϕθ0
(|∇v|)dx

) 1
θ0

, (2.11)

where 〈v〉B := −
∫

B v(x)dx.

The following results on Harnack’s inequality and the decay of the excess functional for local
minimizers can be found in Lemma 5.8 and Theorem 6.4 of [7]. In particular, the results hold for
ϕ-harmonic maps.

Proposition 2.4. Let Ω ⊂R
n be open, let ϕ satisfy Assumption 2.1, and let h ∈ W 1,ϕ(Ω,RN ) be ϕ-harmonic

on Ω . Then for every ball B with 2B � Ω holds

sup
B

ϕ
(|∇h|) � c −

∫
2B

ϕ
(|∇h|)dx, (2.12)

where c depends only on n, N, and the characteristics of ϕ .

Theorem 2.5 (Decay estimate for ϕ-harmonic maps). Let Ω ⊂ R
n be open, let ϕ satisfy Assumption 2.1, and

let h ∈ W 1,ϕ(Ω,RN ) be ϕ-harmonic on Ω . Then there exist β > 0 and c > 0 such that for every ball B � Ω

and every λ ∈ (0,1) holds

−
∫
λB

∣∣V(∇h) − 〈
V(∇h)

〉
λB

∣∣2
dx � cλβ −

∫
B

∣∣V(∇h) − 〈
V(∇h)

〉
B

∣∣2
dx.

Note that c and β depend only on n, N, and the characteristics of ϕ .
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3. The Lipschitz truncation lemma

In this section we introduce the method of Lipschitz truncations of Sobolev function. The ba-
sic idea is that Sobolev functions from W 1,1

0 can be approximated by a λ-Lipschitz functions that
coincide with the originals up to sets of small Lebesgue measure. The Lebesgue measure of these
non-coincidence sets is bounded by the Lebesgue measure of the sets where the Hardy–Littlewood
maximal function of the gradients are above λ. A classical reference for this kind of arguments is [1].
However, we will use a refinement of [1] that has been proved in [6]. Lipschitz truncations of Sobolev
functions are used in various areas of analysis under different aspects.

For f ∈ L1
loc(R

n), we define the non-centered maximal function of f by

M f (x) := sup
B�x

−
∫
B

∣∣ f (y)
∣∣dy,

where the maximum is taken over all balls B ⊂ R
n which contain x. The following result can be found

in [19].

Proposition 3.1. Let ϕ be an N-function with �2(ϕ
∗) < ∞, then there exists c > 0 which only depends on

�2(ϕ
∗) such that

∫
ϕ(M f )dx � c

∫
ϕ( f )dx

for all f ∈ Lϕ(Rn).

Notice that we will confine ourselves on balls where the general assumptions of the Lipschitz
truncation lemma are automatically satisfied. The following version on the Lipschitz truncation of a
Sobolev function is a simplified version of [6, Theorem 2.3]. The original version also cuts out the set
{Mw > θ} with another constant θ > 0 to get an additional L∞-bound in terms of θ . However, this is
not needed in our case.

Theorem 3.2. Let B ⊂ R
n be a ball. Let w ∈ W 1,1

0 (B,RN ). Then for every λ > 0 there exists a truncation

wλ ∈ W 1,∞
0 (B,RN ) such that

‖∇wλ‖∞ � cλ, (3.1)

where c > 0 does only depend on n and N. Moreover, up to a null set (a set of Lebesgue measure zero)

{wλ �= w} ⊂ B ∩ {
M

(|∇w|) > λ
}
. (3.2)

Based on the previous result, we prove the following theorem in the setting of Sobolev–Orlicz
spaces W 1,ϕ

0 (B).

Theorem 3.3 (Lipschitz truncation). Let B ⊂ R
n be a ball and let ϕ be an N-function with �2({ϕ,ϕ∗}) < ∞.

If w ∈ W 1,ϕ
0 (B,RN ), then for every m0 ∈ N and γ > 0 there exists λ ∈ [γ ,2m0γ ] such that the Lipschitz

truncation wλ ∈ W 1,∞
0 (B,RN ) of Theorem 3.2 satisfies

‖∇wλ‖∞ � cλ,
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∫
B

ϕ
(|∇wλ|χ{wλ �=w}

)
dx � c

∫
B

ϕ(λ)χ{wλ �=w} dx � c

m0

∫
B

ϕ
(|∇w|)dx,

∫
B

ϕ
(|∇wλ|

)
dx � c

∫
B

ϕ
(|∇w|)dx.

The constant c depends only on A1 , �2({ϕ,ϕ∗}), n, and N.

Proof. Let w ∈ W 1,1
0 (B) and extend w by zero outside of B . Due to Proposition 3.1 we have

∫
B

ϕ
(
M

(|∇w|))dx � c

∫
B

ϕ
(|∇w|)dx.

Next, we observe that for m0 ∈N and γ > 0 we have

∫
B

ϕ
(
M

(|∇w|))dx =
∫
B

∞∫
0

ϕ′(t)χ{M(|∇w|)>t} dt dx �
∫
B

m0−1∑
m=0

ϕ
(
2mγ

)
χ{M(|∇w|)>2m+1γ } dx

where we used ϕ′(t)t � ϕ(t), see (2.3). Therefore, there exists m1 ∈ {0, . . . ,m0 − 1} such that

∫
B

ϕ
(
2m1γ

)
χ{M(|∇w|)>2m1+1γ } dx � c

m0

∫
B

ϕ
(|∇w|)dx.

The Lipschitz truncation wλ of Theorem 3.2 with λ = 2m1+1γ satisfies ‖∇wλ‖∞ � cλ and

∫
B

ϕ
(|∇wλ|χ{wλ �=w}

)
dx � c

∫
B

ϕ(λχ{wλ �=w})dx � c

m0

∫
B

ϕ
(|∇w|)dx,

where we used {wλ �= w} ⊂ B ∩ {M|∇w| > λ}. �
4. The ϕ-harmonic approximation

We present a generalization of the p-harmonic approximation introduced by Duzaar and Min-
gione [11], and by Duzaar, Grotowski, Kronz [10], to the setting of ϕ-harmonic maps.

Proof of Lemma 1.1. In the definition of almost ϕ-harmonicity in (1.2) we required that the test func-
tions ξ are from C∞

0 (B). However, we will explain now that by a simple density argument (1.2)

automatically also holds for all W 1,∞
0 (B) functions.

Indeed, for ξ ∈ W 1,∞
0 (B), we define ξ j(x) := ρ j ∗ (r jξ(x/r j)), where r j := (1 − 1

j )r and ρ j is a
smooth mollifier with support in B r

2 j
(0). We notice that ξ j ∈ C∞

0 (B) and

‖∇ξ j‖∞ � ‖∇ξ‖∞,

∇ξ j → ∇ξ almost everywhere. (4.1)

Since ξ j ∈ C∞
0 (B) we have by (1.2)
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−
∫
B

ϕ′(|∇u|) ∇u

|∇u|∇ξ j dx � δ

(
−
∫
B̃

ϕ
(|∇u|)dx + ϕ

(‖∇ξ j‖∞
))

� δ

(
−
∫
B̃

ϕ
(|∇u|)dx + ϕ

(‖∇ξ‖∞
))

.

Now ∇u ∈ Lϕ(B̃) and (4.1) imply by the dominated convergence theorem that

lim
j→∞

−
∫
B

ϕ′(|∇u|) ∇u

|∇u|∇ξ j dx = −
∫
B

ϕ′(|∇u|) ∇u

|∇u|∇ξ dx.

This and the previous estimate prove that (1.2) is also valid for ξ ∈ W 1,∞
0 (B).

Let us define γ � 0 by ϕ(γ ) := −
∫

B̃ ϕ(|∇u|)dx. If u = const on B , then we can just take h = 0 as
well. Thus, we can assume in the following that γ > 0.

Let h be the unique minimizer of z �→ ∫
B ϕ(|∇z|)dx among all z ∈ u + W 1,ϕ

0 (B). Then h is
ϕ-harmonic, i.e.,

∫
B

A(∇h) : ∇ξ dx = 0

for all ξ ∈ W 1,ϕ
0 (B) and

∫
B

ϕ
(|∇h|)dx �

∫
B

ϕ
(|∇u|)dx. (4.2)

Let w := h − u ∈ W 1,ϕ
0 (B), then by convexity and �2(ϕ) < ∞ follows

−
∫
B

ϕ
(|∇w|)dx � c −

∫
B

ϕ
(|∇u|)dx � cϕ(γ ). (4.3)

Let m0 ∈N (will be fixed later). Then by Theorem 3.3 we can find λ ∈ [γ ,2m0γ ] such that the Lipschitz
truncation wλ of Theorem 3.2 satisfies

‖∇wλ‖∞ � cλ, (4.4)

−
∫
B

ϕ(λ)χ{wλ �=w} dx � cϕ(γ )

m0
. (4.5)

Now we compute

−
∫
B

(
A(∇h) − A(∇u)

)∇wλ dx = − −
∫
B

A(∇u) : ∇wλ dx

and define
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(I) := −
∫
B

(
A(∇h) − A(∇u)

)
(∇h − ∇u)χ{w=wλ} dx

= −
∫
B

(
A(∇h) − A(∇u)

)∇wλχ{w=wλ} dx

= − −
∫
B

A(∇u) : ∇wλ dx − −
∫
B

(
A(∇h) − A(∇u)

)∇wλχ{w�=wλ} dx

=: (II) + (III).

By assumption (1.2), (4.4), λ � 2m0γ , �2(ϕ) < ∞, and (4.3) we estimate

∣∣(II)
∣∣ �

∣∣∣∣−
∫
B

A(∇u)∇wλ dx

∣∣∣∣ � δ

(
−
∫
B̃

ϕ
(|∇u|)dx + cϕ

(
2m0γ

))
� δ

(
ϕ(γ ) + cϕ

(
2m0γ

))
.

Due to the growth condition on A, Young’s inequality (2.2), (4.3), and (4.5) we get for δ2 > 0

∣∣(III)
∣∣ � −

∫
B

(
ϕ′(|∇h|) + ϕ′(|∇u|))λχ{w�=wλ} dx

� δ2 −
∫
B

ϕ
(|∇h|) + ϕ

(|∇u|)dx + cδ2 −
∫
B

ϕ(λ)χ{w�=wλ} dx

�
(

δ2c + cδ2 c

m0

)
ϕ(γ ).

We combine the estimates for (II) and (III) with (4.3).

(I) = (II) + (III) �
(

δ + δ2c + cδ2 c

m0

)
ϕ(γ ) + δϕ

(
2m0γ

)
.

Since

(
A(P) − A(Q )

)
(P − Q) ∼ ∣∣V(P) − V(Q )

∣∣2
, (4.6)

we have

−
∫
B

∣∣V(∇h) − V(∇u)
∣∣2

χ{w=wλ} dx � c(I).

Let θ ∈ (0,1), then by Jensen’s inequality

(
−
∫ ∣∣V(∇h) − V(∇u)

∣∣2θ
χ{w=wλ} dx

) 1
θ

� c(I). (4.7)
B
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Define

(IV) :=
(

−
∫
B

∣∣V(∇h) − V(∇u)
∣∣2θ

χ{w�=wλ} dx

) 1
θ

.

Then Hölder’s inequality implies

(IV) �
(

−
∫
B

∣∣V(∇h) − V(∇u)
∣∣2

dx

)(
−
∫
B

χ{w�=wλ} dx

) 1−θ
θ

� cϕ(γ )

( |{w �= wλ}|
|B|

) 1−θ
θ

.

If follows from γ � λ and (4.5) that

|{w �= wλ}|
|B| � cϕ(γ )

m0ϕ(λ)
� c

m0
.

Therefore,

(IV) � cϕ(γ )m
θ−1
θ

0 .

Combining (4.7) and the estimates for (I) and (IV) gives

(
−
∫
B

∣∣V(∇h) − V(∇u)
∣∣2θ

dx

) 1
θ

�
(

cm
θ−1
θ

0 + δ + δ2c + cδ2 c

m0

)
ϕ(γ ) + cδϕ

(
2m0γ

)
.

Thus for every θ ∈ (0,1) and every ε > 0, we can find first small δ2 > 0, second large m0 > 0, and
third small δ > 0 such that

(
−
∫
B

∣∣V(∇h) − V(∇u)
∣∣2θ

dx

) 1
θ

� εϕ(γ ).

This is just our claim. �
Remark 4.1. It is possible to derive form Lemma 1.1 other approximation properties of u by h. For
example for given ε > 0 and θ ∈ (0,1) we can choose δ > 0 such that additionally

(
−
∫
B

(
ϕ

(|∇u − ∇h|))θ
dx

) 1
θ

< ε −
∫
B̃

ϕ
(|∇u|)dx, (4.8)

−
∫
B

ϕ

( |u − h|
R

)
dx < ε −

∫
B̃

ϕ
(|∇u|)dx. (4.9)

From (2.10) with a = 0, b = ∇u, and t = |∇u − ∇h|, (2.9), and (1.3) of Lemma 1.1 we get (4.8).
Now (4.9) is a consequence of (4.8) and Poincaré (see Theorem 2.3).
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5. Regularity for ϕ-harmonic systems with critical growth

In this section we will apply the ϕ-harmonic approximation to get Hölder continuity for the gra-
dient of a solution of a ϕ-harmonic system with critical growth. We will follow the main ideas of the
paper [11].

Proposition 5.1. Suppose α ∈ (0,1) and cG � 1 are given. Then there exists δ > 0 depending on n, N, α, cG ,
cCacc and the characteristics of ϕ such that whenever u ∈ W 1,ϕ(B R ,RN) satisfies the system:

∫
B R

ϕ′(|∇u|)
|∇u| ∇u : ∇ηdx =

∫
B R

G : ηdx (5.1)

for all η ∈ C∞
0 (B R ,RN ) where G ∈ L1(B R ,RN ) satisfies for a.e. x ∈ B R

∣∣G(x)
∣∣ � cGϕ

(|∇u|) (5.2)

and if u satisfies the Caccioppoli estimate

−
∫
Bρ

ϕ
(|∇u|)dx � cCacc −

∫
2Bρ

ϕ

( |u − 〈u〉2Bρ |
ρ

)
dx

for all Bρ � B R and if u verifies the starting assumption:

−
∫
B R

ϕ
(|∇u|)dx � ϕ

(
δ

R

)

then u is α-Hölder continuous on ( 1
2 B R).

Remark 5.2. Under our assumptions on ϕ , it is standard to prove, [24], that there exist two exponents
1 < p � q < ∞ such that ϕ(t)

t p is increasing and ϕ∗(t)
tq is decreasing and, consequently, the same hold

for its conjugate with the corresponding Hölder exponents: ϕ(t)
tq′ increasing and ϕ∗(t)

t p′ decreasing.

In the particular case of “small solutions”, i.e. u ∈ L∞ such that ‖u‖∞ <
c(�2({ϕ,ϕ∗}))

cG
, one can test

the equation with ηq(u −〈u〉2Bρ ), η cut off between Bρ and B2ρ . Using (2.2) and (2.4) the “smallness
assumption” comes into the play in order to reabsorb the term (coming from the critical growth) on
the left-hand side and so, Caccioppoli inequality yields.

Proof. First step. Let Bρ � B R be a ball such that E(Bρ) := −
∫

Bρ
ϕ(|∇u|)dx � ϕ(δ/ρ). In particular,

the Bρ = B R is a valid choice. Furthermore, let θ ∈ (0, 1
2 ) and let Bθρ be a ball with radius θρ and

2Bθρ ⊂ Bρ . We want to show that E(Bθρ) � 1
2 ϕ(δ/R) for a suitable choice of θ and δ.

Using (5.1) with a test function η ∈ C∞
0 (Bρ,RN ) together with the hypothesis (5.2), we get

∣∣∣∣ −
∫
Bρ

ϕ′(|∇u|)
|∇u| ∇u : ∇ηdx

∣∣∣∣ � c −
∫
Bρ

ϕ
(|∇u|)dx‖η‖∞ � cE(Bρ)ρ‖∇η‖∞.
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We continue with Young’s inequality (2.2) to get∣∣∣∣ −
∫
Bρ

ϕ′(|∇u|)
|∇u| ∇u : ∇ηdx

∣∣∣∣ � cδ1ϕ
∗(ρE(Bρ)

) + δ1ϕ
(‖∇η‖∞

)
.

If follows by our assumption on Bρ , (2.3), and (ϕ∗)′ = (ϕ′)−1 that

(
ϕ∗)′(

ρE(Bρ)
)
�

(
ϕ∗)′

(
ρϕ

(
δ

R

))
�

(
ϕ∗)′

(
δρ

R
ϕ′(δ/R)

)
�

(
ϕ∗)′

(
ϕ′

(
δ

R

))
= δ

R
.

Therefore

ϕ∗(ρE(Bρ)
)
�

(
ϕ∗)′(

ρE(Bρ)
)
ρE(Bρ) � δρ

R
E(Bρ) � δE(Bρ).

Thus, with the previous estimates we have shown that for all η ∈ C∞
0 (Bρ,RN )

∣∣∣∣ −
∫
Bρ

ϕ′(|∇u|)
|∇u| ∇u : ∇ηdx

∣∣∣∣ � (cδ1δ + δ1)E(Bρ) + δ1ϕ
(‖∇η‖∞

)
.

Let ε > 0, then for a suitable choice of δ > 0 and δ1 we can apply the ϕ-harmonic approximation of
Lemma 1.1 to get a ϕ-harmonic map h such that h = u on Bρ and

(
−
∫
Bρ

∣∣V(∇u) − V(∇h)
∣∣2θ0 dx

) 1
θ0

< ε −
∫
Bρ

ϕ
(|∇u|)dx. (5.3)

Moreover, since h is ϕ-harmonic on Bρ and h = u on ∂ Bρ (compare with (4.2)) we have∫
Bρ

ϕ
(|∇h|)dx �

∫
Bρ

ϕ
(|∇u|)dx. (5.4)

Using Caccioppoli combined with the Poincaré inequality of Theorem 2.3 and Lemma 2.2 we get

−
∫

Bθρ

ϕ
(|∇u|)dx � c

(
−
∫

2Bθρ

(
ϕ

(|∇u|))θ0 dx

) 1
θ0

� c

(
−
∫

2Bθρ

∣∣V(∇u)
∣∣2θ0 dx

) 1
θ0

. (5.5)

Therefore by triangle inequality and Jensen’s inequality follows

−
∫

Bθρ

ϕ
(|∇u|)dx � c

(
−
∫

2Bθρ

∣∣V(∇u) − V(∇h)
∣∣2θ0 dx

) 1
θ0 + c −

∫
2Bθρ

∣∣V(∇h)
∣∣2

dx.

Since h is ϕ-harmonic, we estimate by Proposition 2.4 combined with ϕ(|∇h|) ∼ |V(∇h)|2

−
∫

2Bθρ

∣∣V(∇h)
∣∣2

dx � c −
∫
Bρ

∣∣V(∇h)
∣∣2

dx � c −
∫
Bρ

ϕ
(|∇h|)dx � c −

∫
Bρ

ϕ
(|∇u|)dx,
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where we have used for the last two steps Lemma 2.2 and (5.4). On the other hand with (5.3) and
2Bθρ ⊂ Bρ we have

(
−
∫

2Bθρ

∣∣V(∇u) − V(∇h)
∣∣2θ0 dx

) 1
θ0

� εθ
− n

θ0 −
∫
Bρ

ϕ
(|∇u|)dx.

Combining the last estimate we get

E(Bθρ) = −
∫

Bθρ

ϕ
(|∇u|)dx �

(
cεθ

− n
θ0 + c

)
︸ ︷︷ ︸

:=c0=c0(θ,ε)

−
∫
Bρ

ϕ
(|∇u|)dx = c0 E(Bρ). (5.6)

We apply ϕ−1 and use ϕ−1(λt) � cλϕ−1(t) for λ � 1 and t � 0 by concavity of ϕ−1 to get

ϕ−1(E(Bθρ)
)
� c1ϕ

−1(E(Bρ)
)

(5.7)

with c1 = c1(θ, ε). For α ∈ (0,1), we define μ = 1 − α, choose first θ ∈ (0, 1
2 ) and then ε > 0 such

that θc0 � 1 and θμc1 � 1. Note that the smallness of ε > 0 requires a suitable choice of δ and δ1
(see above). For this choice of θ , μ, ε, δ, and δ1 we deduce from (5.6) and (5.7)

E(Bθρ) � c0 E(Bρ) � c0ϕ

(
δ

ρ

)
� c0θϕ

(
δ

θρ

)
� ϕ

(
δ

θρ

)
(5.8)

and

(θρ)μϕ−1(E(Bθρ)
)
� ρμϕ−1(E(Bρ)

)
. (5.9)

The first estimate (5.8) ensures that we can iterate this process (beginning with B R ) and then by the
second estimate follows (5.9)

(
θ j R

)μ
ϕ−1(E

(
Bθ j R(y)

))
� Rμϕ−1(E(B R)

)
� δR−α

for all y ∈ 1
2 B R and all j ∈ N. From this the Morrey-type estimate follows:

rμϕ−1(E
(

Br(y)
))

� cRμϕ−1(E(B R)
)
� δcR−α (5.10)

for all y ∈ 1
2 B R and r � 1

2 R .
Second step. For y, z ∈ 1

2 B R with |y − z| � 1
4 R we estimate by telescoping sum

|u(y) − u(z)|
|y − z| �

∑
j∈Z

2− j −
∫
B j

|u − 〈u〉B j |
|y − z| dx �

∑
j∈Z

2− j −
∫
B j

|u − 〈u〉B j |
r j

dx,

where B j = B21− j |y−z|(z) for j � 0 and B j = B21+ j |y−z|(y) for j < 0. With Poincaré’s inequality (com-
pare with Theorem 2.3 for θ0 = 1) we estimate

|u(y) − u(z)|
|y − z| � c

∑
j∈Z

−
∫
B j

|∇u|dx � c
∑
j∈Z

ϕ−1
(

−
∫
B j

ϕ
(|∇u|)dx

)
.
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So with our Morrey-type estimate (5.10) follows

∣∣u(y) − u(z)
∣∣ � δc|y − z|1−μR−α. (5.11)

In particular, u ∈ C0,α( 1
2 B R). �

Remark 5.3. Note that α ∈ (0,1) is arbitrary, while the required smallness of δ depends on α. In fact
δ is chosen according to the ϕ-harmonic approximation depending on ε that in turn depends on α
in order to guarantee (5.8) and (5.9).

Proposition 5.4. Suppose that the assumptions of Proposition 5.1 hold. Then V(∇u) and ∇u are ν-Hölder

continuous on 1
4 B R for some ν ∈ (0,1).

Proof. In the following let Bρ be a ball with Bρ ⊂ 1
2 B R . Then (5.11) implies

sup
y,z∈Bρ

∣∣u(y) − u(z)
∣∣ � δcρα R−α. (5.12)

Furthermore, let κ ∈ (0, 1
2 ) and let Bκρ be a ball with radius κρ and 2Bκρ ⊂ Bρ . As before, we let

h be the ϕ-harmonic function on Bρ with h = u on ∂ Bρ . It follows from the convex-hull property,
see [3,8], that the image h(Bρ) is contained in the convex hull of h(∂ Bρ) = u(∂ Bρ), so in particular
with (5.12) we get

sup
y,z∈Bρ

∣∣h(y) − h(z)
∣∣ � sup

y,z∈∂ Bρ

∣∣u(y) − u(z)
∣∣ � δcρα R−α.

Since u = h on ∂ Bρ , we deduce from this estimate and (5.12) that

‖h − u‖L∞(Bρ) � cρα R−α.

Using h − u as a test function for the system (5.1) minus the ϕ-harmonic system for h we get (with
a suitable approximation argument)

−
∫
Bρ

∣∣V(∇u) − V(∇h)
∣∣2

dx � c‖u − h‖∞ −
∫
Bρ

ϕ
(|∇u|)dx � cρα R−αϕ

(
δ

R

)
.

Let us define the excess functional Φ by

Φ(u, B) := −
∫
B

∣∣V(∇u) − 〈
V(∇u)

〉
B

∣∣2
dx.

Then

Φ(u, Bκρ) � −
∫
Bρ

∣∣V(∇u) − 〈
V(∇h)

〉
Bκρ

∣∣2
dx

� 2κ−n −
∫
Bρ

∣∣V(∇u) − V(∇h)
∣∣2

dx + 2Φ(h, Bκρ).
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It follows from Theorem 2.5 that there exist β > 0 and c > 0 only depending on n, N , and the char-
acteristics of ϕ such that

Φ(h, Bκρ) � cκβΦ(h, Bρ).

Thus

Φ(u, Bκρ) � 2κ−n −
∫
Bρ

∣∣V(∇u) − V(∇h)
∣∣2

dx + cκβΦ(h, Bρ)

�
(
2κ−n + cκβ

) −
∫
Bρ

∣∣V(∇u) − V(∇h)
∣∣2

dx + cκβΦ(u, Bρ)

�
(
2κ−n + cκβ

)
c

(
ρ

R

)α

ϕ

(
δ

R

)
+ cκβΦ(u, Bρ).

Now, choose κ ∈ (0, 1
2 ) such that cκβ � 1

2 . Then

Φ(u, Bκρ) � cκ

(
ρ

R

)α

ϕ

(
δ

R

)
+ 1

2
Φ(u, Bρ).

We use a standard iteration argument to conclude

Φ(u, Bκ jρ) � c̃κ

(
ρ

R

)α

ϕ

(
δ

R

)
+ 1

2k
Φ(u, Bρ).

Thus there exists β > 0 such that for all r ∈ (0,ρ) and all Br ⊂ Bρ holds

Φ(u, Br) � c

(
ρ

R

)α

ϕ

(
δ

R

)
+

(
r

ρ

)β

Φ(u, Bρ). (5.13)

Recall that at this Bρ was an arbitrary ball with Bρ ⊂ 1
2 B R .

For r ∈ R
4 let Br be such that Br ⊂ 1

2 B R . Then for the specific choice ρ = R/2 and s := (ρ/r)
1
2 r =

(r/ρ)
1
2 ρ = (rR/2)

1
2 and we find balls Bs and Bρ such that Br ⊂ Bs ⊂ Bρ = 1

2 B R . Thus we can ap-
ply (5.13) to Br ⊂ Bs and Bs ⊂ Bρ = 1

2 B R to get

Φ(u, Br) � c

(
s

R

)α

ϕ

(
δ

R

)
+

(
s

R

)β

Φ(u, Bs)

�
(

c

(
s

R

)α

+ c

(
s

R

)α(
ρ

R

)β)
ϕ

(
δ

R

)
+

(
ρ

R

)β

Φ

(
u,

1

2
B R

)

� c

(
r

R

)min{ α
2 ,

β
2 }(

ϕ

(
δ

R

)
+ Φ(u, B R)

)
,

using also Φ(u, 1
2 B R) � cΦ(u, B R). This excess decay estimate proves that V(∇u) ∈ C0,min{ α

4 ,
β
4 }( 1

4 B R).
Since V−1 is γ -Hölder continuous for some γ > 0, where γ only depends on the characteristics

of ϕ , see Lemma 2.10 of [7], we get that u ∈ C1,ν ( 1
4 B R), where ν = γ min{α

4 ,
β
4 }. �
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