- <u>MDPI</u>
- Journals A-Z
- Information & Guidelines
 - For Authors
 - For Reviewers
 - For Editors
 - o <u>For Librarians</u>
 - For Publishers
 - For Societies
 - Open Access Policy
 - Article Processing Charges
 - Institutional Open Access Program
- <u>About</u>
- Editorial Process
- <u>Login</u>
- <u>Register</u>
- <u>Submit</u>
- Switch to Desktop Version
- <u>Close</u>
- •
- <u>MDPI</u>
- Journals A-Z
- Information & Guidelines
- <u>About</u>
- Editorial Process
- Login
- <u>Register</u>
- <u>Submit</u>

Open AccessReview Challenges **2018**, 9(1), 5; doi:<u>10.3390/challe9010005</u>

The Dichotomy of the Poly(ADP-Ribose) Polymerase-Like Thermozyme from Sulfolobus solfataricus

Maria Rosaria Faraone Mennella^{1,2}

Department of Biology, University of Naples "Federico II", 80126 Naples, Italy

National Institute of Biostructures and Biosystems (INBB), via delle Medaglie d'Oro, 00136 Rome, Italy

Received: 13 December 2017 / Revised: 28 January 2018 / Accepted: 30 January 2018 / Published: 31 January 2018

(This article belongs to the Special Issue <u>Poly ADP ribose polymerases (PARP) and post-</u> translational modifications)

<u>View Full-Text</u> | <u>Download PDF</u> [970 KB, uploaded 14 March 2018] | Browse Figures

Abstract

The first evidence of an ADP-ribosylating activity in Archaea was obtained in *Sulfolobus solfataricus*(strain MT-4) where a poly(ADP-ribose) polymerase (PARP)-like thermoprotein, defined with the acronymous PARPSso, was found. Similarly to the eukaryotic counterparts PARPSso cleaves beta-nicotinamide adenine dinucleotide to synthesize oligomers of ADP-ribose; cross-reacts with polyclonal anti-PARP-1 catalytic site antibodies; binds DNA. The main differences rely on the molecular mass (46.5 kDa) and the thermophily of PARPSso which works at 80 °C. Despite the biochemical properties that allow correlating it to PARP enzymes, the N-terminal and partial amino acid sequences available suggest that PARPSso belongs to a different group of enzymes, the DING proteins, an item discussed in detail in this review.This

finding makes PARPSso the first example of a DING protein in Archaea and extends the existence of DING proteins into all the biological kingdoms. PARPSsohas a cell peripheral localization, along with the edge of the cell membrane. The ADP-ribosylation reaction is reverted by a poly(ADP-ribose) glycohydrolase-like activity, able to use the eukaryotic poly(ADP-ribose) as a substrate too. Here we overview the research of (ADP-ribosyl)ation in *Sulfolobus solfataricus* in the past thirty years and discuss the features of PARPSso common with the canonical poly(ADP-ribose) polymerases, and the structure fitting with that of DING proteins. <u>View Full-Text</u>

Keywords: <u>Archaea;</u> <u>Crenarcheota;</u> <u>DING proteins;</u> <u>PARG;</u> <u>PARP;</u> <u>PARPSso;</u> <u>poly(ADP-ribosyl)ation;</u> <u>*Sulfolobus solfataricus*</u>

▼ Figures

- - - - -

- - - - -

Figure 1

This is an open access article distributed under the <u>Creative Commons Attribution License</u> which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. (CC BY 4.0).

scifeed

Never Miss Any Articles
Matching Your Research• Get alerts for new papers matching your research
• Find out the new papers from selected authors
• Updated daily for 49'000+ journals and 6000+ publishers

Share & Cite This Article

MDPI and ACS Style

Faraone Mennella, M.R. The Dichotomy of the Poly(ADP-Ribose) Polymerase-Like Thermozyme from *Sulfolobus solfataricus*. *Challenges* **2018**, *9*, 5.

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details <u>here</u>.

Related Articles

1. <u>Post-transcriptional regulation by poly(ADP-ribosyl)ation of the RNA-binding proteins.</u>

Yingbiao Ji et al., Int J Mol Sci

2. Intracellular Mono-ADP-Ribosylation in Signaling and Disease

Bütepage, Mareike ; Eckei, Laura ; Verheugd, Patricia ; Lüscher, Bernhard et al., Cells

3. <u>The PARP1/ARTD1-Mediated Poly-ADP-Ribosylation and DNA Damage Repair in B</u> <u>Cell Diversification</u>

Lasola, Jackline J.M.; Hodgson, Andrea ; Sun, Xin ; Wan, Fengyi et al., Antibodies

4. <u>Mitochondrial Dysfunction Mediated by Poly(ADP-Ribose) Polymerase-1 Activation</u> <u>Contributes to Hippocampal Neuronal Damage Following Status Epilepticus</u>

Lai, Yi-Chen ; Baker, J. Scott; Donti, Taraka ; Graham, Brett H.; Craigen, William J.; Anderson, Anne E. et al., Int J Mol Sci 1. <u>Nuclear ADP-Ribosylation Reactions in Mammalian Cells: Where Are We Today and Where Are We Going?</u>

Paul O. Hassa, Microbiol Mol Biol Rev

2. <u>Central Role for the Werner Syndrome Protein/Poly(ADP-Ribose) Polymerase 1</u> <u>Complex in the Poly(ADP-Ribosyl)ation Pathway after DNA Damage</u>

Cayetano von Kobbe, Mol Cell Biol

3. <u>Cooperation of the Cockayne Syndrome Group B Protein and Poly(ADP-Ribose)</u> Polymerase 1 in the Response to Oxidative Stress

Tina Thorslund, Mol Cell Biol

4. <u>Stomach-cancer bug linked to cancer-promoting factor</u>

University of Illinois at Urbana-Champaign, ScienceDaily

Powered by TrendMD

Invitation to submit <u>Challenges</u> EISSN 2078-1547 Published by MDPI AG, Basel, Switzerland <u>RSS</u> <u>E-Mail Table of Contents Alert</u>

MDPI Initiatives - © 1996-2018 MDPI (Basel, Switzerland) unless otherwise stated