
Ž .JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 227, 166]186 1998
ARTICLE NO. AY986092

An Extension of Hedberg’s Convolution Inequality
and Applications

Andrea Cianchi*

Istituto di Matematica, Facolta di Architettura, Unï ersita di Firenze, Via dell’ Agnolo` `
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1. INTRODUCTION AND FIRST RESULTS

Given any measurable nonnegative function f on R n, we denote by Mf
the Hardy]Littlewood maximal function of f , defined by

1
nMf x s sup f y dy for x g R , 1.1Ž . Ž . Ž .H< <B rŽ . Ž .B rr)0 x x

Ž . < <where B r stands for the ball centered at x and having radius r, and ?x
Ž . < < aynis Lebesgue measure. Moreover, for 0 - a - n, we set I x s x , thea

Riesz kernel, and denote by ) the convolution product, so that

f yŽ .
nI ) f x s dy for x g R , 1.2Ž . Ž .H nyaa

n < <x y yR

the Riesz potential of f.
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w xHedberg 11 proved the following pointwise inequality between I ) fa

and Mf :

1ya prna pr n n
p n5 5I ) f x F C f Mf x for x g R . 1.3Ž . Ž . Ž .L ŽR .a

5 5 p nHere 1 F p - nra , and ? is the usual norm in the Lebesgue spaceL ŽR .
pŽ n.L R . Henceforth, C will denote a positive constant, not necessarily the

same in different occurrences. In particular, C depends only on a , p, and
Ž .n in 1.3 .

Ž .One of the interesting features of estimate 1.3 is that it allows one to
reduce certain problems concerning I ) f to analogous problems for Mf,a

which are often easier to deal with. This is the case, for instance, when
interpolation techniques are involved. Actually, since the operator M is of

Ž . Ž . Žtype `, ` and of weak type 1, 1 , interpolation theorems e.g., of
.Marcinkiewicz type in diagonal form, usually simpler than those off

diagonal, can be applied. Thus, for example, the Sobolev inequality for
potentials

5 5 Žn p rŽnya p.. n 5 5 p nI ) f F C f , 1 - p - nra , 1.4Ž .L ŽR . L ŽR .a

where C is a constant independent of f , immediately follows from inequal-
Ž . pŽ n.ity 1.3 , thanks to the boundedness of the operator M on L R , the

latter being a consequence of the Marcinkiewicz interpolation theorem.
Ž .Our basic result is an optimal Orlicz-space version of inequality 1.3 .

Recall that, given any measurable subset G of R n and any Young function
AŽ .A, the Orlicz space L G is the Banach function space of those functions

f for which the Luxemburg norm

< <f xŽ .
A5 5f s inf l ) 0: A dx F 1 1.5Ž .L ŽG. H½ 5ž /lG

Ž . s Ž .is finite. A is called a Young function if A s s H a r dr for s G 0,0
w . w xwhere a: 0, ` ª 0, ` is left-continuous and nondecreasing. Plainly,

AŽ . pŽ . Ž . p Ž .L G s L G if either 1 F p - ` and A s s s , or p s ` and A s ' 0
Ž .for 0 F s F 1, A s ' ` otherwise.

THEOREM 1. Let 0 - a - n and let A be a Young function such that the
function H , defined bya

Ž .nya rnŽ .ar nyas r
H s s dr for s G 0, 1.6Ž . Ž .Ha ž /ž /A rŽ .0
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is finite. Then a constant C, depending only on a and n, exists such that

Mf xŽ .
n

A n5 5I ) f x F C f H for x g R , 1.7Ž . Ž .L ŽR .a a ž /A n5 5f L ŽR .

AŽ n. Ž .for all nonnegatï e f g L R . Moreo¨er, inequality 1.7 is sharp, in the
Ž .sense that if 1.7 holds with H replaced by some nondecreasing continuousa

w . w . Ž . Ž .function H: 0, ` ª 0, ` , then a constant c exists such that H s F cH sa

for s G 0.

w xLet us mention that a result in the same direction is contained in 14 ;
however, such a result requires additional assumptions on A and is not
optimal.

Theorem 1 will be proved in the next section. As a first application,
we show here how it can be combined with an extension of the Hardy]

ŽLittlewood maximal theorem to give simplified proofs under slightly more
.restrictive assumptions on A of some recent results concerning Sobolev

inequalities in Orlicz spaces. The extension of the maximal theorem we
AŽ n. Ž .need states that the operator M is bounded on L R if and only if the

˜Young conjugate A of A, defined by

Ã s s sup rs y A r : r G 0 for s G 0, 1.8� 4Ž . Ž . Ž .

Žbelongs to the class D this is, e.g., a consequence of Theorem 5.17 of2
w x w x.3, Chap. 3 or Theorem 1.2.1 of 12 . Recall that a function A g D if a2

Ž . Ž .positive constant c exists such that A 2 s F cA s for s G 0. Thus, if we
˜ 5 5assume that A g D and denote by M the norm of the operator M on2

AŽ n. Ž .L R , then we deduce from 1.7 that

< < < <I ) f x 1 I ) f xŽ . Ž .a ay1 y1A H dx F A H dxH Ha a
n nž / ž /A n A nž / ž /5 5 5 5 5 5 5 5C M f M C fR RL ŽR . L ŽR .

< <M f xŽ .
F A dx F 1 1.9Ž .H

n ž /A n5 5 5 5M fR L ŽR .

AŽ n. Ž .for every f g L R . Observe that the first inequality in 1.9 is due to the
5 5 y1fact that M G 1 and that the left-continuous inverse H of H is aa a

Ž .Young function. Inequality 1.9 yields the following

COROLLARY 1. Under the same assumptions as Theorem 1, suppose in
˜addition that A g D . Let A be the Young function defined by2 a

A s s A Hy1 s for s G 0. 1.10Ž . Ž . Ž .Ž .a a
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Then a constant C, depending only on a , n, and A exists such that

5 5 A n 5 5 A nI ) f F C f 1.11Ž .aL ŽR . L ŽR .a

AŽ n.for all f g L R .

Corollary 1 can be used to derive, in a standard way, Sobolev]
Poincare]type inequalities for functions from the Orlicz]Sobolev space´

k , AŽ n.W R , defined for a positive integer k as

W k , A R n s u g LA R n : u has weak derivatives Dk u�Ž . Ž .

of order k and Dk u g LA R n .4Ž .
Indeed, the estimate

< < < k < nu x F CI ) D u x for a.e. x g R 1.12Ž . Ž . Ž .k

holds, with C depending only on k and n, for all compactly supported
n Žfunctions u on R which are weakly differentiable up to the order k see

w x. Ž . Ž .18, Remark 2.8.6 . Inequalities 1.11 ] 1.12 imply

˜COROLLARY 2. Let A be a Young function such that A g D and let k be2
a positï e integer - n. Assume that the function H is finite. Then a constantk
C, depending only on k, n, and A exists such that

5 5 A n 5 k 5 A nu F C D u 1.13Ž .kL ŽR . L ŽR .

k , AŽ n.for all functions u g W R ha¨ing compact support.

Ž .Remark 1. We emphasize that inequality 1.11 is sharp, in the sense
AaŽ n.that L R cannot be replaced by any smaller Orlicz space. This can be

shown by an argument similar to that which proves the optimality of
Ž . Ž . w xinequality 1.7 Section 2 . See also 7 , where a complete characterization

of norm inequalities between I ) f and f in Orlicz spaces is established.a

Ž . w xNotice that, in the case where k s 1, inequality 1.13 was proved in 6
to hold and to be sharp, via rearrangement and interpolation techniques,

˜even without the assumption A g D .2
Let us mention that earlier results about convolutions and about Sobolev

w x w xinequalities in Orlicz spaces are contained in 15 and 8 , respectively.

Remark 2. Consider the situation when functions f whose support
Ž .sprt f has finite measure are taken into account. Then inequalities

Ž . Ž .analogous to 1.7 and 1.11 can be shown to hold, with constants C
< Ž . <depending also on A and sprt f , even if the integral on the right-hand

Ž .side of 1.6 diverges. If this is the case, one has just to replace A in the
definition of H and A by a Young function A which makes thea a 0

Ž .integral in 1.6 converge and is equivalent to A near infinity, in the sense
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Ž . Ž . Ž .that A c s F A s F A c s for some fixed c , c ) 0 and for suffi-0 1 0 2 1 2
ciently large s. This follows from the same arguments as in the proofs of
Theorem 1, Section 2, and of Corollary 1, above, and from the fact that, in
an Orlicz space over a set of finite measure, replacing the defining Young
function with a Young function equivalent near infinity results in an
equivalent Luxemburg norm. Such an equivalence of norms allows one

˜also to weaken the assumption that A g D in Corollary 1. Actually, for2
˜Ž . Ž < Ž . <.1.11 to hold with C depending on sprt f it suffices that A g D near2

˜infinity. This amounts to requiring that A be finite and that the inequality
˜in the definition of the class D be satisfied by A for large values of the2

argument. An analogous remark applies to Corollary 2.

Ž . pEXAMPLES. When A s s s with 1 F p - nra , then

H s s c sŽnya p.r n and A s s c sn prŽnya p.Ž . Ž .a 1 a 2

for suitable constants c and c . Thus, in particular, Theorem 1 includes1 2
Ž .Hedberg’s inequality 1.3 and Corollaries 1 and 2 include Sobolev’s

theorem.
Ž . n ra Ž .In the borderline case where A s s s , H s is equivalent toa

1ya r nŽ . Ž . Ž n rŽnya ..log 1 q s near infinity and A s is equivalent to exp s y 1a

near infinity. Therefore, Theorem 1 and Remark 2 yield that

Mf xŽ .
1ya r n n

n r a n5 5I ) f x F C f log 1 q for x g R ,Ž . L ŽR .a ž /n r a n5 5f L ŽR .

1.14Ž .

for nonnegative functions f whose support has finite measure, with C
< Ž . <depending on a , n and sprt f . Moreover, Corollaries 1 and 2 reproduce

w x w xthe limiting inequalities by Trudinger 17 and Strichartz 16 . Let us notice
Ž . Ž . w xthat inequality 1.14 is very close to inequality 4 of 11 , which was used

in that paper to prove a sharper version of Trudinger’s and Strichartz’s
results.

Ž .Sobolev inequalities in the borderline situation where A s is equivalent
n ra b Ž .to s log 1 q s near infinity for some b g R, which have been re-

w x w xcently proved in 9 and 10 , can be recovered from Corollaries 1 and 2 as
well; for instance, the double exponential integrability result contained in
w x Ž . Ž Ž n rŽnya ...9 is reproduced, since A s is equivalent to exp exp s y e neara

Ž .infinity when b s n y a ra . Further examples can be easily worked out
on choosing special Young functions. In particular, Theorem 1 tells us that

AŽ n.the Riesz potential of order a is a bounded operator from L R into
`Ž n. `Ž Ž ..arŽnya .L R provided that H rrA r dr - `.0
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Ž .Theorem 1 or rather Corollary 1 is also a fundamental tool for an
extension of a well-known result about the capacity of the Lebesgue set of

pŽ n.Riesz potentials. Such result states that if f is any function from L R

and g s I ) f with 1 - p F nra , then there exists a function g such thata

1
lim g y dy s g xŽ . Ž .Hq < <B rŽ .rª0 Ž .B rx x

and
1

q5 5lim g ? y g x s 0 1.15Ž . Ž . Ž .L ŽB Ž r ..x1r qq < <rª0 B rŽ .x

Ž . n Ž .for a , p q.e. x g R . Here, q equals npr n y a p , the Sobolev conju-
gate of p, if p - nra , and is any number G 1 if p s nra. Moreover, the

Ž . Ž .convergence in 1.14 and 1.15 is uniform outside an open set of arbitrar-
Ž . Ž .ily small a , p capacity, g is an a , p quasi-continuous representative for

Ž . Ž w xg and g s I ) f a , p q.e. see, e.g., 1, Theorem 6.2.1 for a proof in thea

.analogous case where I is replaced by the Bessel kernel .a

Our extension will be stated in Theorem 3, Section 3. In Theorem 2
below we limit ourselves to presenting a refinement, in the limiting
situation where p s nra , of the classical result we just recalled. Theorem
2 is a straightforward consequence of Theorem 3 and of the subsequent
Remark 4.

THEOREM 2. Assume that p s nra and that f has compact support in the
Ž .statement abo¨e. Then Eq. 1.15 can be replaced by

1
1ya r n

n rŽnya .5 5lim log 1 q g ? y g x s 0, 1.16Ž . Ž . Ž .ExpŽL .Ž B Ž r ..xq ž /< <B rŽ .rª0 x

Ž n rŽnya ..where Exp L is the Orlicz space associated with the Young function
Ž n rŽnya ..exp s y 1.

2. PROOF OF THEOREM 1

Ž .Inequality 1.7 is a consequence of Lemmas 1 and 2 below. Lemma 1 is
an abstract version, of possible independent interest, of Hedberg’s inequal-
ity in the general framework of rearrangement invariant Banach function

Ž . w xspaces briefly, r.i. spaces . We refer to 3, Chap. 2 for an exhaustive
treatment of r.i. spaces. In view of our purposes, we limit ourselves to

Ž n.recalling here the following facts. An r.i. space X R is a Banach function
n 5 5 nspace on R endowed with a norm ? such thatX ŽR .

5 5 n 5 5 nf s g 2.1Ž .X ŽR . X ŽR .
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whenever f * s g*. Here f * stands for the nonincreasing rearrangement of
w .f , i.e., the nonincreasing, right-continuous function on 0, ` equimeasur-

able with f.
Ž n.Two more r.i. spaces can be associated with every r.i. space X R : the

nŽ . Ž . Ž .representation space X 0, ` and the associate space X 9 R . X 0, ` is
Ž .the unique r.i. space on 0, ` such that

n5 5 5 5f s f * 2.2Ž .X ŽR . X Ž0 , `.

Ž n.for all f g X R . Notice that, for customary r.i. spaces, such as Lebesgue,
5 5Lorentz, and Orlicz spaces, the norm ? can be immediately com-X Ž0, `.

Ž n.puted from the norm in the original space X R ; for a general formula,
w xsee 3, proof of Theorem 4.10, Chap. 2 .

Ž n.The norm in the associate space X 9 R is defined by

n n5 5 5 5f s sup f x g x dx : g F 1 . 2.3Ž . Ž . Ž .X 9ŽR . H X ŽR .½ 5nR

The following Holder-type inequality is an obvious consequence of defini-¨
Ž .tion 2.3 :

n n5 5 5 5f x g x dx F f g . 2.4Ž . Ž . Ž .H X ŽR . X 9ŽR .
nR

Ž n. pŽ n. Ž n. p9Ž n.Observe that, if X R s L R , then X 9 R s L R with p9 s
˜n A n n A nŽ . Ž . Ž . Ž . Ž .pr p y 1 . When X R s L R , one can show that X 9 R s L R

and that
˜ ˜A n A n A n5 5 5 5 5 5f F f F 2 f . 2.5Ž .L ŽR . ŽL .9ŽR . L ŽR .

Ž n.LEMMA 1. Let X R be any r.i. space. Set

5 5f s s x , 2.6Ž . Ž .X Ž0 , `.X Ž0 , s.

Ž n.the fundamental function of X R , and
y1qarn

c s s ? x ? 2.7Ž . Ž . Ž . Ž .a , X Ž s , `. Ž .X 9 0, `

for s G 0. Here x denotes the characteristic function of the set E. AssumeE
Ž .that c s is finite for s ) 0 and definea , X

v s s c (fy1 1rs for s ) 0, 2.8Ž . Ž . Ž .a , X a , X X

where fy1 is the right-continuous in¨erse of f . Then a constant C, depend-X X
ing only on a and n, exists such that

Mf xŽ .
n

n5 5I ) f x F C f v for x g R , 2.9Ž . Ž .X ŽR .a a , X ž /n5 5f X ŽR .

Ž n.for all nonnegatï e f g X R .
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Proof. It is not difficult to see that, for every x g R n and d ) 0,

f y nŽ .
ady F d Mf x 2.10Ž . Ž .H nya< <x y y a� < < 4y : xyy -d

Ž w Ž .x. Ž . Ž .see 1, inequality 3.1.1 . Moreover, by 2.5 and 2.7 ,

f yŽ .
ayn

n5 5 < <dy F f x y ? x ?Ž . nH X ŽR .nya � y : < xyy < G d 4 Ž .X 9 R< <x y y� < < 4y : xyy Gd

Žnya .r n 5 5 n
ns C f c C d , 2.11Ž .Ž .X ŽR .n a , X n

n n r2 Ž .for x g R , where C s p rG 1 q nr2 , the measure of the n-dimen-n
Ž . Ž .sional unit ball. Combining 2.10 and 2.11 and choosing

1rn1
y1

n5 5d s f f rMf xŽ .Ž .X ŽR .Xž /Cn

yield

arn
n5 5n 1 f X ŽR .y1I ) f x F f Mf xŽ . Ž .a X ž /ž /a C Mf xŽ .n

Mf xŽ .
Žnya .r n

n5 5q C f v . 2.12Ž .X ŽR .n a , X ž /n5 5f X ŽR .

Ž .Consequently, inequality 2.9 will follow if we show that

arny1 1ya r ns f 1rs F arn q 1 2 v s for s ) 0. 2.13Ž . Ž . Ž . Ž .Ž .X a , X

Ž .Inequality 2.13 is a consequence of the inequality

ar n 1ya r n 5 5s F arn q 1 2 xŽ . X Ž0 , `.Ž0 , s.

y1qarn
= ? x ? for s ) 0,Ž . Ž .Ž s , `. Ž .X 9 0, `

which, in turn, follows from

`
ar na r

ar ns s q 1 x r drŽ .H Ž0, s.ž /n s0

arn
a ? x ?Ž . Ž .Ž0, s.

5 5F q 1 x for s ) 0,X Ž0 , `.Ž0 , s.ž / Ž .n s X 9 0, `
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since

Uarn
?Ž .

x ? rŽ . Ž .Ž0, s.ž /s

arn arny1s y r x r r q sŽ . Ž . Ž .Ž .Ž0, s. a r ny1s F x r s FŽ .Ž0, s. a r ny1s 2
U

arny11ya r ns 2 ? x ? rŽ . Ž . Ž .ž /Ž s , `.

for r ) 0.

LEMMA 2. Under the same assumptions as Theorem 1, positï e constants
k and k exist such that1 2

k H s F v A s F k H s for s ) 0. 2.14Ž . Ž . Ž . Ž .1 a a , L 2 a

Ž . Ž .Proof. Definitions 2.6 and 1.5 yield

1
Af s s for s ) 0, 2.15Ž . Ž .L y1A 1rsŽ .

y1 Ž .where A is the right-continuous inverse of A. On the other hand, 1.5
and a change of variable show that

y1qa r n
` ry1qarn ˜? x ? s inf l ) 0: A dr F 1Ž . Ž . Ã HŽ s , `. Ž .L 0, ` ½ 5ž /ls

sy1qa r n

s for s ) 0,y1D 1rsŽ .

n rŽnya . s ˜ y1yn rŽnya .Ž . Ž . Ž . Ž .where D s s s E s and E s s H A t t dt for s G 0.0
Thus, on setting

Ž .nr nyay1 n rŽnya .Â s s sE s , 2.16Ž . Ž . Ž .Ž .a

we have

y1qarn y1ˆ? x ? s A 1rs for s ) 0, 2.17Ž . Ž . Ž . Ž .ÃŽ s , `. aŽ .L 0, `

y1 ŷ1where E is the left-continuous inverse of E and A is the right-a
ˆ Ž .continuous inverse of A . Hence, owing to 2.5 , the conclusion will followa
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if we show that positive constants c and c exist such that1 2

ˆA c s F A s F A c s for s G 0. 2.18Ž . Ž . Ž . Ž .a 1 a a 2

Ž . Ž . y1Ž . Ž . Ž .In order to prove 2.18 , let us set L s s 2 srA s and B s s A s rs.
y1 ỹ1 ỹ1Ž . Ž . Ž . Ž .Since A s A s F 2 s, we have A s F L s for s G 0. Denote by

Ly1 and By1 the left-continuous inverses of L and B, respectively. Then,
y1 ˜Ž . Ž . Ž . Ž .since L s F A s and A s rs F a s , the following chain of inequali-

ties is easily verified to hold:

s y1L tŽ .
E s G dtŽ . H 1qn rŽnya .t0

Ž .nr nyay1n y a A ry1 Ž .Ž .L s y1 n rŽayn.s dr y L s sŽ .H ž /ž /n 2 r0

n y a
G

n
Ž .nr nyaty1Ž .B sr2n rŽayn. y1 n rŽayn.= 2 a t dt y L s sŽ . Ž .H ž /ž /A tŽ .0

Ž .ar nyan y a ty1Ž .B sr2n rŽayn. n rŽayn.˜G 2 dt y A s sŽ .H ž /ž /n A tŽ .0

2.19Ž .

˜ n rŽayn.Ž . Ž .for s ) 0. Hence, since A s s F E 2 s , we deduce that a positive
Ž .Žnya .r n Ž y1Ž ..constant c exists such that cE cs G H B s . The last inequal-a

ity implies that there exists a positive constant c such that

Â s F A cs for s ) 0, 2.20Ž . Ž . Ž .a a

y1 n rŽnya .Ž . Ž Ž Ž ...where A s s sB H s . On making use of inequalitiesa a

s A r A rŽ . Ž .2 sa a
dr F A s F dr , 2.21Ž . Ž .H Har r0 0

performing a change of variable in the last integral, taking into account the
y1Ž . y1Ž . Ž .fact that 2 H s F H 2 s for s G 0, and observing that 2.21 alsoa a

Ž .holds with A r replaced by A we geta

n y a
A sr2 F A s F A 2 s for s ) 0. 2.22Ž . Ž . Ž . Ž .a a an

Ž . Ž . Ž .From 2.20 and 2.22 we deduce the second of inequalities 2.18 .
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Ž .As far as the first inequality in 2.18 is concerned, owing to inequalities
˜ y1 y1 y1Ž . Ž . Ž .A s rs F a s F B s , where a is the left-continuous inverse of a,

one has

s y1a t n y a y1Ž . Ž .a s Ž .ar ayn a rŽayn.E s F dt F a r y s drŽ . Ž .H Hn rŽnya . ž /at0 0

Ž .ar nyan y a ty1Ž .B sF dtH ž /ž /a A tŽ .0

n y a Ž .nr nyay1s H B s for s ) 0,Ž .Ž .Ž .aa

y1Ž n rŽnya .. Ž y1Ž ..whence E r G B H cr for r G 0 and for some positivea

Ž . Ž .constant c. Thus, by 2.22 , also the first of inequalities 2.18 follows.

Let us now prove the second part of Theorem 1. Assume that an
Ž .inequality of type 1.7 holds with H replaced by H. On taking nonin-a

creasing rearrangements of both sides, we get

I ) f * s Mf * sŽ . Ž . Ž . Ž .a F CH for s ) 0. 2.23Ž .ž /A n A n5 5 5 5f fL ŽR . L ŽR .

Consider radially symmetric functions f , namely, functions having the form
Ž . Ž < < n. w . w .f x s f C x for some f : 0, ` ª 0, ` . It is easily verified thatn

f yŽ .
I ) f x G dyŽ . H nyaa < <x y y� < < < <4y : y ) x

`
1ya r n ayn y1qa r n nG C 2 f r r dr for x g R ,Ž .Hn n< <C xn

whence

`
1ya r n ayn y1qa r nI ) f * s G C 2 f r r dr for s ) 0. 2.24Ž . Ž . Ž . Ž .Ha n

s

w xMoreover, by 3, Theorem 3.8, Chap. 3 , a constant C, depending only on
n, exists such that

s sC C
Mf * s F f * r dr s f* r dr for s ) 0. 2.25Ž . Ž . Ž . Ž . Ž .H Hs s0 0
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Ž . Ž . Ž .Inequalities 2.23 , 2.24 , and 2.25 yield

H` f r ry1qa r n dr Crs H s f* r drŽ . Ž . Ž .s 0F CH for s ) 0, 2.26Ž .ž /A A5 5 5 5f fL Ž0 , `. L Ž0 , `.

for some constant C independent of f. For fixed s, we have

H s f* r drŽ .0

A5 5f L Ž0 , `.

H` f* r x r drŽ . Ž .0 Ž0 , s.s
A5 5f L Ž0 , `.

2 1
y1

Ã5 5F 2 x s F 2 sA . 2.27Ž .L Ž0 , `.Ž0 , s. y1 ž /˜ sA 1rsŽ .

Ž . Ž .Notice that the first inequality is due to 2.2 and 2.5 , and the last
y1 ỹ1Ž . Ž .inequality holds because r F A r A r for r G 0. On the other hand,

H` f r ry1qa r nx r drŽ . Ž .0 Ž s , `. y1qarn
Ã5 5sup G ? x ?Ž . Ž . L Ž0 , `.Ž s , `.

A5 5fA L Ž0 , `.Ž .fgL 0, `

1 1
y1 y1ˆs A G CA 2.28Ž .a až / ž /s s

for some constant C independent of s. The first inequality, the equation,
Ž . Ž . Ž .and the last inequality in 2.28 are consequences of 2.5 , 2.17 , and

Ž .2.18 , respectively.
Ž . Ž . y1Ž .From 2.26 ] 2.28 we deduce that a constant C exists such that A sa

Ž y1Ž .. Ž . Ž .F CH A Cs for s ) 0. Hence, CH Cs F H s for some positive Ca

Ž .and, since H is concave and vanishes at 0, we can conclude that CH sa a

Ž .F H s for some positive C and for all s ) 0.
The proof of Theorem 1 is complete.

3. CAPACITY AND LEBESGUE POINTS

The present section deals with capacitary estimates for the Lebesgue set
AŽ n.of Riesz potentials of functions from an Orlicz space L R . Our results

Ž .are in terms of the a , A capacity defined as follows.
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DEFINITION. Let 0 - a - n and let A be a Young function. For any
E : R n the quantity

5 5 A n
A nC E s inf f : f g L R and I ) f x G 1 for x g EŽ . Ž . Ž .� 4L ŽR .a , A a

3.1Ž .

Ž .will be called the a , A capacity of E.

C satisfies the customary properties of a capacity, namely:a , A

C B s 0; 3.2Ž . Ž .a , A

E : F implies C E F C F ; 3.3Ž . Ž . Ž .a , A a , A

� 4C E F C E for every countable family of sets E .Ž .D Ýa , A i a , A i iž /
i i

3.4Ž .

Ž . Ž . Ž .Properties 3.2 and 3.3 are straightforward; 3.4 is a special case of
w xProposition 2 below. We refer to 2 for a more extensive study of C .a , A

Ž . p w .In the case where A s s s for some p g 1, ` , C will be simplya , A
w x Ždenoted by C . Note that, by Proposition 2.3.13 of 1 , C agrees up toa , p a , p

. Ž . Ž .a multiplicative constant with the 1rp th power of the classical a , p
capacity.

Ž .In what follows, we shall say that some property holds for a , A q.e.
n Ž .x g R if it holds outside a set of zero a , A capacity. Furthermore, a

Ž .function f will be said to be a , A quasi-continuous if for every e ) 0
Ž .there exists an open set V such that C V - e and f , restricted toa , A

R n _ V, is continuous.
Notions of a geometric nature which will play a role in our discussion

Ž w x.are those of upper p-estimate and lower q-estimate for norms see 13 .
AŽ n.Recall that an Orlicz space L R is said to satisfy an upper p-estimate

or a lower q-estimate if there exists a constant N or N such that, forp q
� 4every sequence f of functions with disjoint supports, we havei

p
p

A n5 5f F N f , 3.5Ž .Ý Ý L ŽR .i p i
A nŽ .i iL R

or
q

q
A n5 5f G N f , 3.6Ž .Ý Ý L ŽR .i q i

A nŽ .i iL R

pŽ n.respectively. For instance, L R simultaneously satisfies an upper and a
lower p-estimate with N s 1. Notice that every Orlicz space satisfies anp
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Ž .upper 1-estimate, with N s 1 in 3.5 , by the triangle inequality. A1
Ž . Ž .characterization of those ps or qs for which 3.5 or 3.6 holds is known in

terms of the Matuszewska]Orlicz indices of Ay1, defined by

log inf Ay1 ls rAy1 sŽ . Ž .Ž .Ž .s) 0
i s lim and

log llªq`

3.7Ž .
log sup Ay1 ls rAy1 sŽ . Ž .Ž .Ž .s) 0

I s lim ,
log llªq`

w xand satisfying 0 F i F I F 1 4 . Actually, from Remark 2 after Proposition
w x w x2.b.5 of 13 and from the Theorem of 5 , we get

1rI s sup p: LA R n satisfies an upper p-estimate , 3.8� 4Ž . Ž .

1ri s inf q : LA R n satisfies a lower q-estimate . 3.9� 4Ž . Ž .

˜In particular, inasmuch as A g D if and only if i ) 0 and A g D if and2 2
w x AŽ n.only if I - 1, then there exists q - `, resp. p ) 1 such that L R

w xsatisfies a lower q-estimate upper p-estimate if and only if A g D2
˜ A nw x Ž .A g D . Moreover, if L R satisfies an upper p-estimate and a lower2

q-estimate, then p F q.
We are now in a position to state the main result of this section.

THEOREM 3. Let 0 - a - n. Let A be a Young function such that
˜ A nŽ .A, A g D and let p and q be numbers such that L R satisfies an upper2

p-estimate and a lower q-estimate. Assume that

Ž .ar nyar
dr - ` 3.10Ž .H ž /A rŽ .0

and

Ž .ar nya
` r

dr s `. 3.11Ž .H ž /A rŽ .

A nŽ .Gï en any f g L R , set g s I ) f. Then a function g exists such thata

1
lim g y dy s g x 3.12Ž . Ž . Ž .Hq < <B rŽ .rª0 Ž .B rx x
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and

prq1
y1

A5 5lim A g ? y g x s 0 3.13Ž . Ž . Ž .aL ŽB Ž r ..a xq ž /ž /< <B rŽ .rª0 x

Ž . n Ž . Ž .for a , A q.e. x g R . Moreo¨er, the con¨ergence in 3.12 and 3.13 is
Ž .uniform outside an open set of arbitrarily small a , A capacity, g is an

Ž . Ž .a , A quasi-continuous representatï e for g, and g s g a , A q.e.
y1Ž < Ž . <.Remark 3. Observe that the expression A 1r B r , appearing ina x

Ž . 5 5 A3.13 , is nothing but 1r 1 .aL ŽB Ž r ..x

Remark 4. An inspection of the proof of Theorem 3, below, and
Remark 2, Section 1, show that, for functions f supported in a set of finite
measure, similar conclusions as in Theorem 3 hold even without assump-

Ž . Ž .tion 3.10 . If such assumption is dropped, A has to be replaced in 1.10
by any Young function which is equivalent to A near infinity and makes

Ž .the integral in 3.10 converge.

Ž . Ž .As a consequence of Eqs. 3.8 ] 3.9 , we have the following corollary of
Theorem 3.

COROLLARY 3. Under the same assumptions as Theorem 3, we ha¨e for
e¨ery e ) 0

Ž .irI ye1
y1

A5 5lim A g ? y g x s 0Ž . Ž . aL ŽB Ž r ..a xq ž /ž /< <B rŽ .rª0 x

Ž . nfor a , A q.e. x g R .

Ž . n ra Žnya .r a Ž .EXAMPLE. Assume that A s is equivalent to s log 1 q s
near infinity. Since i s I s arn, from Corollary 3 and Remark 4 we have

< < Ž .that, if sprt f - `, then for any s - n y a rn

s
1

n rŽnya .5 5lim log log 1 q g ? y g x s 0Ž . Ž . ExpŽExpŽL ..Ž B Ž r ..xq ž /ž /ž /< <B rŽ .rª0 x

Ž . n Ž Ž n rŽnya ...for a , A q.e. x g R . Here, Exp Exp L stands for the Orlicz
Ž Ž n rŽnya ...space associated with the Young function exp exp s y e.

w xOur Proof of Theorem 3 is patterned on that of Theorem 6.2.1 of 1 .
Preliminary steps are certain capacitary estimates for the level sets of the
maximal function of I ) f and of a suitable fractional maximal function ofa

I ) f which will be established in Lemma 3 and Lemma 4, respectively,a

below.
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LEMMA 3. Let 0 - a - n and let A be a Young function such that
˜ A nŽ .A g D . Let f be any nonnegatï e function from L R and set g s I ) f.2 a

Then there exists a constant C, independent of f , such that

C
A n5 5C x : Mg x ) l F f 3.14� 4Ž . Ž .Ž . L ŽR .a , A l

for l ) 0.
n Ž < <.Proof. Given any subset E of R , we define x s 1r E x . Then, forE E

every x g R n and r ) 0, we have

x ) g x s x ) I ) f x s I ) x ) f x F I ) Mf x .Ž . Ž . Ž . Ž .B Ž r . B Ž r . a a B Ž r . ax x x

Ž . Ž . nHence, Mg x F I ) Mf x for x g R . Thus, by the very definition ofa
AŽ n.C and by the maximal theorem in L R , a constant C exists such thata , A

1 C
A n A n5 5 5 5C x : Mg x ) l F Mf F f� 4Ž .Ž . L ŽR . L ŽR .a , A l l

for l ) 0.

LEMMA 4. Under the same assumptions and with the same notation as
Theorem 3, define

prq1
y1 n

A5 5M g x s sup A g for x g R .Ž . aL ŽB Ž r ..a , A a xž /ž /< <B rŽ .r)0 x

3.15Ž .

Then there exist constants C and C, independent of f , such that

qrp1
A n5 5C x : M g x ) l F C f 3.16� 4Ž . Ž .Ž . L ŽR .a , A a , A ž /l

A n5 5for l ) C f .L ŽR .

The proof of Lemma 4 requires the following propositions.

PROPOSITION 1. Let 0 - a - n and let A be a Young function such that
Ž . Ž . n3.10 holds. Let B r be any ball of radius r in R . Then a constant C,
depending only on a and n, exists such that

C
C B r F for r ) 0. 3.17Ž . Ž .Ž .a , A y1 < <A 1r B rŽ .Ž .a
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Proof. An application of the minimax theorem yields

˜ q
A n5 5C K s sup 1r I )m : m g MM K , m K s 1 , 3.18Ž . Ž . Ž . Ž .� 4L ŽR .a , A a

n qŽ .for every compact subset K of R , where MM K is the set of positive
Ž w x.measures supported in K see, e.g., 2, proof of Theorem 11 . Now, let

qŽ Ž .. Ž Ž .. < < < <m g MM B r be such that m B r s 1. Since x y y F 2 x whenever
Ž . Ž . Ž . Ž .y g B r and x f B r , then, owing to 2.17 and 2.18 , one has

1
ayn

Ã n5 5 < <I )m G ? x ?Ž . Ã nL ŽR .a � x : < x < G r4 Ž .nya L R2

C1ya r n 1 1n y1 y1ˆs A G CA 3.19Ž .a anya ž / ž /< < < <2 B r B rŽ . Ž .

Ž . Ž .for some positive constant C. The conclusion follows from 3.18 ] 3.19 .

PROPOSITION 2. Let A be a Young function. Assume that p is a num-
AŽ n.ber G1 such that L R satisfies an upper p-estimate. Then

C p E F N C p E 3.20Ž . Ž .D Ýa , A i p a , A iž /
i i

� 4for e¨ery countable family E of disjoint sets. Here, N is the constanti p
Ž .appearing in 3.5 .

Proof. Let e ) 0 and let f be nonnegative functions such thati
Ž . 5 5 A n

p p Ž . yi Ž .I ) f x G 1 for x g E and f F C E q e 2 . Set f x sL ŽR .a i i i a , A i
Ž . Ž . Ž .sup f x and f x s sup f x . Thus,i i m iF m i

m

f x s f x x x , whereŽ . Ž . Ž .Ým i Fi
is1

iy1

F s x : f x s f x _ x : f x s f x .Ž . Ž . Ž . Ž .� 4 ½ 5Di m i m j
js1

Ž .Inasmuch as F are disjoint sets, then, by 3.5 ,i

pm m
p p

A n A n5 5 5 5f F f x F N fÝ ÝL ŽR . L ŽR .m i F p ii
A nŽ .is1 is1L R

`
pF N C E q N e . 3.21Ž . Ž .Ýp a , A i p

is1
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Ž . 5 5 A n
pOn passing to the limit in 3.21 as m goes to infinity we get f FL ŽR .

` p
A n A nŽ . 5 5 5 5N Ý C E q N e , since lim f s f , f being anL ŽR . L ŽR .p is1 a , A i p mª` m m

` p Ž .increasing sequence converging to f. On the other hand, Ý C E Fis1 a , A i
5 5 A n

p Ž . `f , inasmuch as I ) f x G 1 for x g D E . The conclusionL ŽR . a is1 i
follows, thanks to the arbitrariness of e .

Proof of Lemma 4. Without loss of generality, we may assume that f is
� n Ž . 4nonnegative. Set E s x g R : M g x ) l and let x g E . Thenl a , A 0 l

there exists r ) 0 such that

l
A5 5I ) f ) . 3.22Ž .aL ŽB Ž r ..a x prq0 y1 < <A 1r B rŽ .Ž .ž /a x 0

Ž . Ž .Combining 3.22 with inequality 1.11 tells us that

prqy1
A n< < 5 5B r - 1 provided that l ) C A 1 f , 3.23Ž . Ž . Ž .Ž . L ŽR .x a0

Ž .where C is the constant appearing in 1.11 . Now, let us split f as
Ž . Ž . Ž .f s f q f , where f x equals f x in B 2 r and vanishes elsewhere.1 2 1 x 0

Ž .From 3.22 , via the triangle inequality, we deduce that one of the
following alternatives holds:

l
A5 5I ) f ) 3.24Ž .aL ŽB Ž r ..a 1 x prq0 y1 n2 A 1rC rŽ .Ž .a n

or
l

A5 5I ) f ) . 3.25Ž .aL ŽB Ž r ..a 2 x prq0 y1 n2 A 1rC rŽ .Ž .a n

Ž . Ž .In the case where 3.24 is in force, on exploiting inequality 1.11 again we
get that a constant C exists such that

l
A5 5- C f . 3.26Ž .L ŽB Ž2 r ..xprq 0y1 nA 1rC rŽ .Ž .a n

Ž .Assume now that 3.25 holds. It is not difficult to verify that a positive
Ž . Ž .constant C exists such that inf I ) f x G CI ) f y for everyx g B Ž r . a a 2x0Ž . Ž . Ž .y g B r . Hence, owing to 3.25 and 3.22 and to the fact that p F q, wex 0

have

qr p 5 5 A n
Ž pyq.r pI ) f x G Cl f 3.27Ž . Ž .L ŽR .a 0

for some constant C ) 0.
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Ž .Denote by U the set of those x g E for which 3.26 holds for somel

Ž .r s r . If l is as in 3.23 , then by Vitali’s covering lemma there exists ax
� Ž .4 Ž .sequence B 2 r of disjoint balls such that x g U and U ; D B 10 r .x x i i x xi i i i

Therefore, there exists a constant C such that

1
p pC U F N C B 10 r F N CŽ . Ž .Ž .Ý Ý pa , A p a , A x x pi i ny1i i A 1rC 10 rŽ .ž /a n xž /i

1 10 n pN Cp qn p
A5 5F 10 N C F fÝ Ý L ŽB Ž2 r ..pp x xq i iy1 n lA 1rC ri iŽ .Ž .a n x i

10 n pN Cp q
A n5 5F f . 3.28Ž .L ŽR .ql Nq

Ž .Notice that the first inequality in 3.28 is due to Proposition 2, the second
to Proposition 1, the third to the fact that A is a Young function, thea

Ž . Ž .fourth to 3.26 , and the last one to 3.6 .
Ž .On the other hand, inequality 3.27 must be true for every x g E _ U,l

whence

1 qrp
A n5 5C E _ U F f rl . 3.29Ž . Ž .Ž .L ŽR .a , A l C

Ž . Ž .The conclusion follows from 3.28 and 3.29 .

Ž . nProof of Theorem 3. Consider Eq. 3.12 . Define for d ) 0 and x g R

L g x s sup x ) g x y inf x ) g x .Ž . Ž . Ž .d B Ž r . B Ž r .x x0-r-d0-r-d

`Ž n.Since A g D , the set C R of smooth compactly supported functions in2 0
n AŽ n. `Ž n.R is dense in L R . Thus, for every e ) 0 there exists f g C R0 0

5 5 A nsuch that f y f - e . Set g s I ) f . Then g is smooth andL ŽR .0 0 a 0 0
Ž .decays to zero at infinity. Consequently, lim x ) g x s g uni-r ª 0 B Ž r . 0 0xn Ž . Ž .formly for x g R and there exists d e ) 0 such that L g x - e ifd 0

Ž . Ž .Ž . Ž .Ž . nd - d e . Moreover, L g y g x F M g y g x for x g R . Hence,d 0 0
Ž . Ž .Ž . Ž . Ž .Ž . nL g x F L g y g x q L g x F M g y g x q e for x g R ifd d 0 d 0 0
Ž . � Ž . 4 � Ž .Ž . 4d - d e . Thus, for e - lr2, x: L g x ) l : x: M g y g x ) lr2 ,d 0

and, by Lemma 3, there exists a constant C such that

C Ce
A n5 5C x : L g x ) l F f y f F . 3.30� 4Ž . Ž .Ž . L ŽR .a , A d 0l l
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On choosing l s 2ym and e s 4ym for m g N, and setting

`
ym ymd s d 4 , E s x : L g x ) 2 , F s E ,Ž . Ž .� 4 Dm m d j mm

msj

Ž . Ž .one easily deduces from 3.30 that lim C F s 0 andjª ` a , A j
`Ž . Ž .C F F s 0. The last two equations ensure that lim x ) g xa , A js1 j r ª 0 B Ž r .x

` Ž .exists for x f F F , uniformly outside every F . The proof of 3.14 isjs1 j j
Ž . ncomplete. As far as 3.15 is concerned, we set for d ) 0 and x g R

prq1
y1

A5 5L g x s sup A g ? y g x .Ž . Ž . Ž . Ž . aL ŽB Ž r ..a , A , d a xž /ž /< <B rŽ .0-r-d x

3.31Ž .

If f and g are as above, then g ' g ; moreover, given e ) 0, d can be0 0 0 0
Ž . nchosen so small that L g - e for x g R . On adding and subtract-a , A, d 0

Ž .ing g y g x in the argument of the norm on the right-hand side of0 0
Ž .3.31 , it is not difficult to verify that

< <L g x F M g y g x q g x y g x q eŽ . Ž . Ž . Ž . Ž . Ž .Ž .a , A , d a , A 0 0

for x g R n and for sufficiently small d . On choosing e - lr3, one gets

x : L g x ) l : x : M g y g x ) lr3� 4 � 4Ž . Ž . Ž . Ž .a , A , d a , A 0

< <j x : g x y g x ) lr3 .� 4Ž . Ž .0

n< Ž . Ž . < < <Ž . Ž .Therefore, since g x y g x F I ) f y f x for a , A a.e. x g R ,0 a 0
Ž .we infer from Lemma 4 and the definition of a , A capacity that, if

erl - 1, then a constant C exists such that

C x : L g x ) l� 4Ž . Ž .Ž .a , A a , A

qrp1 1
A n A n5 5 5 5F C f y f q f y fL ŽR . L ŽR .0 0ž /ž /l l

qrpe e e
F C q F 2C . 3.32Ž .ž /ž /l l l

Ž . Ž . Ž .On starting from 3.32 instead of 3.30 , Eq. 3.15 can be established via
the same argument as before.
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