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Abstract. In this paper we study a periodic homogenization problem for a
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1. Introduction

In this paper we study some homogenization problems for degenerate elliptic
equations that present a partial nondegeneracy. In particular, we examine the
quasilinear case equations:

−tr
(
A

(x

ε

)
D2uε

)
+ H

(
x,

x

ε
,Duε

)
= 0 (1.1)

with A(y) ≥ 0, A(y) = σ(y)σT (y) where σ is a n × m matrix whose columns
are Hörmander periodic vector fields. So, a mathematical model in terms of
Hörmander vector fields takes into account the degeneracy along some direc-
tions.

More precisely we will consider Dirichlet problems of the following two
types:

{−tr(σ(x
ε )σT (x

ε )D2uε(x)) + H(x, x
ε , σT (x

ε )Duε) = 0, in Ω,
uε = g, on ∂Ω,

(1.2)

and {−tr(σ(x
ε )σT (x

ε )D2uε(x)) + H(x, x
ε ,Duε) = 0, in Ω,

uε = g, on ∂Ω,
(1.3)
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where Ω is a smooth bounded domain in IRn and σ is a matrix whose columns
are Hörmander periodic vector fields.

The first one has a structure where the first order term H contains the
gradient along the vector fields. The second one will be useful in Sect. 6 where
we consider general subelliptic problems.

Note that the periodicity of σ is important since we need the boundedness
of the coefficients uniformly on ε.

The small parameter ε > 0 models two space scales when the medium
has microscopic heterogeneities such as in composite materials. Each space
variable plays a different role: the variable x is called “slow variable” and de-
scribes the system in the limit, the variable y = x

ε is called “fast variable”
and it acts as a periodic perturbation with high frequency. Many applications,
such as porous media or composite materials, involve heterogeneous media de-
scribed by partial differential equations with coefficients that randomly vary
on a small scale. On macroscopic scales (large compared to the dimension of
the heterogeneities) such media often show an effective behavior. Typically
that behavior is simpler, since the complicated, random small scale structure
of the media averages out on large scales, and in many cases the effective be-
havior can be described by a deterministic, macroscopic model with constant
coefficients. This process of averaging is called homogenization. Mathemati-
cally, it means that the replacement of the original random equation by one
with certain constant, deterministic coefficients is a valid approximation in the
limit when the ratio between macro- and microscale tends to infinity. A qual-
itative homogenization result typically states that the solution of the initial
model converges to the solution of the macro model, and provides a char-
acterization of the macro model, e. g. by a homogenization formula for the
homogenized coefficients. As a first approximation, we consider periodic ho-
mogenization with the scale of periodicity of order 1

ε , with a small parameter
ε.

To solve the homogenization problem means to find at a macroscopic
scale the effective behaviour of the oscillating microscopic structure. In fact
we want to study the convergence of the solution uε of equations (1.2) or (1.3)
as ε goes to zero, to a solution u of the effective equation which depends only
on the variable x.

To the Dirichlet problem, one of the main ingredients to prove the con-
vergence of uε to a solution u of the effective equation is the existence of
barrier functions in the boundary points of the domain and this is useful to
find uniform estimates on uε.

Periodic homogenization under uniformly elliptic assumptions is a largely
studied field for linear and quasilinear equations. We want to quote here the
book of Bensoussan et al. [10], the paper of Evans [16] and the references
therein.

For the parabolic quasilinear case we refer to the series of papers of Bardi,
Alvarez, also together with Marchi [1–4], where is developed a full theory for
singular perturbations of optimal stochastic control problems and differential
games arising in the dimension reduction of systems with multiple scales. They
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consider also the hypoelliptic diffusion and for our results we adapt some re-
sults contained there.

However, a considerable difference appears in the construction of the
barrier functions. In fact, while in the parabolic case the barrier functions
for the solutions uε can be straighforwardly derived considering the parabolic
structure of the equation, in the elliptic degenerate case studied in this pa-
per we have to construct the barriers by a method that takes into account
of conditions on every point of the boundary of the domain, distinguishing
between “non characteristic” and “characteristic” points. i.e. the points where
|σT ( z

ε )n(z)| = 0 for some ε (n(z) is the outer normal in a point z of the
boundary of the domain).

These results are established in a very general setting. For example con-
vergence results are obtained if the domain is convex and at the “characteristic
points” Hh, the homogeneous part of the first order ten H is strictly positive
or if the domain is strictly convex and at the “characteristic points” Hh > −C,
with C > 0 suitable constant.

We can explain, in the following informal manner, why the solution uε

should converge to the solution u of the effective equation which is independent
on the fast variable. We write

uε(x) = u(x) + ε2χ
(x

ε

)
,

where χ has to be determined. Taking y = x
ε , equation (1.1) becomes:

−tr(A(y)D2
xxu(x)) − tr(A(y)D2

yyχ(y)) + H(x, y,Dxu(x) + εDyχ(y)) = 0.

Fixing x = x, p = Dxu(x), X = D2
xxu(x) and letting ε → 0, the function

χ(y) satisfies the cell problem

−tr(A(y)D2
yyχ(y)) + H(x, y, p) − tr(A(y)X) = λ(p,X).

If we prove that there exists an unique λ such that the cell problem has
a solution (in a suitable sense), then u is the solution of the effective equation

F (Du,D2u) = λ(Du,D2u). (1.4)

Further references on homogenization results for hypoelliptic diffusion
obtained with probabilistic methods can be found in the paper of Ichihara and
Kunita [21,22]. Other homogenization results involving subelliptic equations
mostly concern stationary variational equations on the Heisenberg group, see
Biroli et al. [12] and Franchi and Tesi [18]. As far as homogenization for the first
order Hamilton–Jacobi equation in Carnot groups we quote here the papers of
Birindelli and Wigniolle [11] and Stroffolini [25].

Hörmander periodic vector fields can be used to model different problems.
For example in the papers of Citti and Sarti ([13] and the references therein)
a periodic subelliptic operator is considered. They study a cortical model in
the roto-traslation space where the matrix σ is of the following type⎡

⎣
cos θ 0
sin θ 0
0 1

⎤
⎦ .



582 P. Mannucci and B. Stroffolini NoDEA

This will be our first example in Sect. 5.
An other class of Hörmander periodic vector fields can be found in Vako-

nomic Mechanics, where constrained non-holonomic systems appear naturally
(see for example the paper of Gomes [17] and Benito and de Diego [9]).

We study the case of quasilinear, degenerate elliptic equations with Dirich-
let conditions, supposing that the diffusion term depends only on the fast vari-
able y, under suitable assumptions at the characteristic points of the boundary.

Note that our results cannot be applied to the general case where the
diffusion term depends also on the slow variable x. In this case the matrix A
in the effective equation (3.6) is not constant but depends on the slow variable
x and then we have to investigate if such matrix has the properties needed to
obtain the converging result as, for example, if the comparison principle holds
for the effective equation [analogously to Theorem (3.4)]. Similar results, for
the hypoelliptic parabolic case, are obtained by Alvarez, Bardi in Corollary
8.2 and Corollary 12.3 of [1] and by Alvarez, Bardi, Marchi, in Corollary 5 of
[4] but also in this case the dependence only on the fast variable y is assumed.

In the uniformly elliptic case, see the monography of Bensoussan et al.
[10], the homogenization problem can be interpreted as a diffusion process on
the torus IRn/Zn and the averaging process leads to a probability measure
on the torus, called the invariant measure. This measure is used to identify
the limit equation by averaging with respect to it. Tipically, the existence and
uniqueness of this measure is proven using either a probabilistic approach or
a PDE approach. Alternatively, there is a connection between the invariant
measure and the Fredholm alternative, see Chapter 3 of [10]. Also in our case
we will identify the effective equation (1.4) by averaging with respect to the
invariant measure.

Here Ω is a open bounded domain of IRn with smooth boundary. The
matrix σ(y) is a C∞ n × m matrix-valued function, σ(y) is periodic and the
vector fields Xj = σj · ∇, j = 1, . . . m, satisfy the Hörmander condition (see
Sect. 2).

First we prove existence and well-posedness of the Dirichlet problem at
the microscopic scale. This can be done using the results proved in [7] and [24]
where existence and uniqueness of a viscosity solution of non totally degen-
erate fully nonlinear equations are considered. Then, we prove the existence
of barriers and uniform estimates of the solutions and this part contain the
main results of the paper. We identify the limit equation by averaging with
respect to the invariant measure thus proving, using the perturbed test func-
tion, [16], and the semi-limits technique, the convergence of the solutions uε

to the solution u of the effective equation.

2. Assumptions

In this section we set the assumptions of our problems. We suppose that the
boundary of Ω is regular: there exists Φ(x) ∈ C2 such that Ω = {x ∈ IRn :
Φ(x) > 0},DΦ(x) �= 0,∀x ∈ ∂Ω. We will denote by n(z) = −DΦ(z)

|DΦ(z)| the outer
unit normal to Ω at z ∈ ∂Ω.
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The matrix σ(y) is a C∞ n × m matrix-valued function, σ(y) is periodic
of period 1 (σ(y) = σ(y + k) for any k ∈ Z), and the vector fields Xj =
σj · ∇, j = 1, . . . m, satisfy the Hörmander condition, i.e. X1, . . . Xm and their
commutators of any order span IRn at each point of Ω, [20].

Since at no point of Ω all vector fields can vanish this means that

tr(σ(y)σT (y)) =
∑
i,k

σ2
ik(y) ≥ M > 0, ∀y ∈ IRn, (2.1)

which expresses a partial degeneracy assumption. We will take (2.1) as the
main assumption on σ.

The Hamiltonian H verifies the following assumptions:
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

H : Ω × IRn × IRn → IR, continuous,
H(x, y, p) is periodic with respect to y,

|H(x, y, p + q) − H(x, y, p)| ≤ L|q|, ∀x, y, p, q,

|H(x1, y1, α(x1 − x2)) − H(x2, y2, α(x1 − x2))| ≤
ω(|x1 − x2| + |y1 − y2| + α|x1 − x2|2), for all α > 0 and all x1, x2, y1, y2,

where ω is a modulus, i.e. ω : [0,+∞) → [0,+∞), ω(0+) = 0.

(2.2)

⎧
⎪⎨
⎪⎩

H(x, y, p) ≥ Hh(x, y, p) − M,

Hh continuous and positively 1-homogeneous
(i.e. Hh(x, y, ρp) = ρHh(x, y, p),∀ρ > 0).

(2.3)

H(x, y, 0) ≤ 0, for any (x, y). (2.4)
g : ∂Ω → IR, continuous. (2.5)

3. The ε-problems and the effective equation

We take here the assumptions set in the previous Sect. 2, in particular we
recall that Φ is the function defining the domain Ω.

We first verify the existence of solutions for the ε- problems.

Theorem 3.1. Let us fix ε > 0. If for any z ∈ ∂Ω:

either

|σT
(z

ε

)
· DΦ(z)| > 0, (3.1)

or

−tr(σ
(z

ε

)
σT

(z

ε

)
D2Φ(z)) + Hh

(
z,

z

ε
, σT

(z

ε

)
DΦ(z)

)
> 0, (3.2)

then there exists an unique continuous viscosity solution uε of the ε-problem
(1.2).

Proof. The uniqueness of the solution follows from the comparison principle
proved in Corollary 4.1 of [7] under the assumption

tr(σ(y)σT (y)) =
∑
i,k

σ2
ik(y) ≥ M > 0, ∀y ∈ IRn,
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which is verified if the columns of σ satisfy the Hörmander condition. The exis-
tence of a continuous viscosity solution follows from Theorem 6.1 and Corollary
6.1 of [7]. �

The same result holds to problem (1.3), taking into account the assump-
tion that for some coordinate axis at all points y ∈ IRn at least one column of
σ does not vanish in the direction of that axis, i.e. a non-degeneracy condition
in a fixed direction:

there exists a j such that
∑

k

σ2
jk(y) ≥ N > 0, ∀y ∈ IRn. (3.3)

Theorem 3.2. Let us fix ε > 0 and suppose that (3.3) holds. If for any z ∈ ∂Ω:

either

|σT
(z

ε

)
· DΦ(z)| > 0, (3.4)

or

−tr(σ
(z

ε

)
σT

(z

ε

)
D2Φ(z)) + Hh

(
z,

z

ε
,DΦ(z)

)
> 0, (3.5)

then there exists a unique continuous viscosity solution uε of the ε-problem
(1.3).

Proof. The uniqueness of the solution follows from the comparison principle
proved in Corollary 4.1 of [7] under assumption (24). The existence of a con-
tinuous viscosity solution follows from Theorem 6.1 and Corollary 6.1 of [7].

�

Remark 3.1. Assumption (3.2) (resp. (3.5)) is satisfied if Ω is convex, i.e.
D2Φ(z) ≤ 0, and at the points of the boundary ∂Ω such that |σT ( z

ε )·n(z)| = 0,
we have Hh(z, z

ε , σT ( z
ε )DΦ(z)) > 0 (resp. Hh(z, z

ε ,DΦ(z)) > 0).

Using the comparison principle and the assumptions for the uniform bar-
riers we will get in Sect. 4 that the sequence uε is equibounded and so it
admits a subsequence converging uniformly. We need to identify the limit of
the sequence.

Following Evans paper [16], we identify the limit equations by averaging
the coefficients with respect to the invariant measure and we prove that the
viscosity limit is a solution of this equation, using the perturbed test function.

Theorem 3.3. Under assumptions (2.1) there exists an unique probability mea-
sure μ invariant for the diffusion process dys =

√
2σ(ys)dWs, y(0) = x. More-

over the effective problems associated with the ε-problems (1.2) and (1.3) are
respectively

{−tr(AD2u) + H(x,Du) = 0, in Ω,
u = g, on ∂Ω,

(3.6)

where A is the constant positive definite matrix whose elements are

aij =
∫

(0,1)n

∑
k

σik(y)σjk(y)dμ and H(x,Du) =
∫

(0,1)n

H(x, y, σ(y)Du)dμ
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and {−tr(AD2u) + H(x,Du) = 0, in Ω,
u = g, on ∂Ω,

(3.7)

where A is the constant positive definite matrix whose elements are

aij =
∫

(0,1)n

∑
k

σik(y)σjk(y)dμ and H(x,Du) =
∫

(0,1)n

H(x, y,Du)dμ

Proof. In the diffusive case the result, for the hypoelliptic operators, has been
established in [1]. We consider the solution of

∑
i,j,k

∂2

∂yi∂yj
(σik(y)σjk(y)μ(y)) = 0, in IRn,

μ Y -periodic,
∫

(0,1)n

dμ(y) = 1 Y = (0, 1)n.

By Hörmander’s hypoellipticity theorem it has C∞ density, in addition it
is also a distributional solution. Alternatively, the existence (and uniqueness) of
the invariant measure for more general hypoelliptic operators has been proved
using a probabilistic approach in [21,22]. The convergence to the solution of
the effective equation is postponed in Sect. 4. �

Theorem 3.4. Under assumptions (2.1) and (2.2), the comparison principle
between viscosity sub- and supersolutions holds for the limit problem (3.6).
Moreover if also (3.3) holds then the comparison principle holds also for prob-
lem (3.7).

Proof. Since A is a semidefinite positive constant matrix, the proof follows the
same lines as the comparison principle in Theorem 3.2 proved in [7], but here
the first order term has the special form

H(x,Du) =
∫

(0,1)n

H(x, y, σT (y)Du)dμ.

From standard viscosity solutions theory [14] we know that, under some
structural assumptions (see (3.14) p.18 of [14]), the comparison principle holds
between a supersolution v and a strict subsolution uη. The structural assump-
tions hold for equation (3.6) because of (2.2). Therefore, for a given subsolution
u of equation (3.6) we want to built a strict subsolution uη such that uη ≤ u,
uη → u if η → 0.

We consider uη(x) = u(x)+η(eν |x|2
2 −λ), where u is a subsolution of equation

(3.6), ν and λ are to be suitably chosen. First of all we take λ sufficiently large
such that uη ≤ u.
Next we want to prove that −tr(AD2uη(x)) + H(x,Duη(x)) < 0, for any
x ∈ Ω, for a suitable choice of λ and ν, independent of η > 0. We have

Duη = Du + ηνxeν |x|2
2 , D2uη = D2u + ηνeν |x|2

2 (I + νx ⊗ x).
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Since tr(σ(y)σT (y)) ≥ M > 0, for any y ∈ IRn (see (2.1)), and H is
Lipschitz continuous with respect to p (2.2), we have

−tr(AD2uη) + H(x,Duη) (3.8)

= −tr(AD2u) − ηνeν |x|2
2 tr(A(I + νx ⊗ x))

+
∫

(0,1)n

H(x, y, σT (y)Du + ηνeν |x|2
2 σT (y)x)dμ ≤ −tr(AD2u)

+
∫

(0,1)n

H(x, y, σT (y)Du)dμ − ηνeν |x|2
2

(
tr(A) + νtr(Ax ⊗ x)

)

+Lηνeν |x|2
2

∫

(0,1)n

|σT (y)x|dμ

≤ ηνeν |x|2
2

(
L

∫

(0,1)n

|σT (y)x|dμ − tr(A) − νtr(Ax ⊗ x)
)

.

Note that

tr(A) =
∑

i

Aii =
∑
i,j

∫

(0,1)n

σ2
ij(y)dμ =

∫

(0,1)n

tr(σ(y)σT (y))dμ,

and

tr(Ax ⊗ x) =
∑
i,j

Aijxjxi =
∑
i,j,k

∫

(0,1)n

σikxiσjkxjdμ

=
∑

k

∫

(0,1)n

(σT (y)x)2kdμ =
∫

(0,1)n

|σT (y)x|2dμ.

Putting these equalities in (3.8) we obtain

−tr(AD2uη) + H(x,Duη)

≤ ηνeν |x|2
2

∫

(0,1)n

(
L|σT (y)x| − ν|σT (y)x|2 − tr(σ(y)σT (y))

)
dμ.

If we choose a ν sufficiently large such that

ν|σT (y)x|2 − L|σT (y)x| + tr(σ(y)σT (y)) > 0,

for any x ∈ Ω and any y ∈ IRn, i.e. choosing

ν >
L2

4tr(σ(y)σT (y))
,

then −tr(AD2uη) + H(x,Duη) < 0 for any x ∈ Ω, which means that uη is a
strict subsolution of equation (3.6).

In the case of problem (3.7), under assumptions (3.3) we have that the
operator −tr(AM) satisfies a condition of non-degeneracy in a fixed direction,
i.e. −tr(A(M + rDj)) ≤ −tr(AM) − ηr, with η > 0 and Dj is the diagonal
matrix whose elements are Dj

ii = δij (see (20) in [7]). In fact tr(ADj) =∫
(0,1)

∑
k σ2

jk(y)dμ ≥ η > 0. Then we are under the assumptions of Theorem
3.3 of [7], and also in this case the comparison principle holds. �
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4. Convergence of uε to the solution of the effective equation

In this section, for the sake of simplicity, we take the boundary condition
g = 0 but the problem with a general continuous g ∈ C(∂Ω) can be treated
analogously. We prove two convergence results for the solution of the following
problems.

{−tr(σ(x
ε )σT (x

ε )D2uε(x)) + H(x, x
ε , σT (x

ε )Duε) = 0, in Ω,
uε = 0, on ∂Ω.

(4.1)
{−tr(σ(x

ε )σT (x
ε )D2uε(x)) + H(x, x

ε ,Duε) = 0, in Ω,
uε = 0, on ∂Ω.

(4.2)

To prove the convergence of uε to the solution of the effective equation
we need to find a lower and a upper barrier independent of ε to obtain the
equiboundedness of uε with respect to ε.

Definition 4.1. We say that w is a lower (resp. upper) barrier for problem (4.1)
(or problem (4.2)) at a point z ∈ ∂Ω if w ∈ BUSC(Ω) is a subsolution (resp.
supersolution w ∈ BLSC(Ω)) of (4.1) (or problem (4.2)), w ≤ 0 (resp. w ≥ 0)
on ∂Ω and limx→z w(x) = 0.

To construct an upper barrier for problem (4.1) or problem (4.2) at any
point of ∂Ω we need the following Lemmata proving the existence of a super-
solution independent on ε.

Lemma 4.1. Let

Z := {w ∈ BLSC(Ω) : w supersolution of (4.1) in Ω, (4.3)
for any ε sufficiently small, and w ≥ 0 on ∂Ω}.

Under assumptions (2.1), (2.2) we have that Z �= ∅.

Proof. We prove that w(x) = k(λ − eμ |x|2
2 ) ∈ Z, for a suitable choice of k, λ

and μ, independent of ε > 0. We have

Dw = −kμxeμ |x|2
2 , D2w = −kμeμ |x|2

2 (I + μx ⊗ x).

Since tr(σ(y)σT (y)) ≥ M > 0 for any y ∈ IRn (see (2.1)), and H is
Lipschitz continuous with respect to p (2.2), we have

−tr
(
σ

(x

ε

)
σT

(x

ε

)
D2w

)
+ H

(
x,

x

ε
, σT

(x

ε

)
Dw(x)

)

≥ kμ

(
M + μ|σT

(x

ε

)
x|2 − L|σT

(x

ε

)
x|

)
+ H

(
x,

x

ε
, 0

)
. (4.4)

First of all we can choose μ independent of ε > 0, such that

M + μ|σT
(x

ε

)
x|2 − L|σT

(x

ε

)
x| >

M

2
, (4.5)

for any ε > 0 and for any x ∈ Ω, i.e.

μ|σT
(x

ε

)
x|2 − L|σT

(x

ε

)
x| +

M

2
> 0,
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for any ε > 0 and for any x ∈ Ω. To obtain this we choose μ such that
L2 −2Mμ < 0, then this is true for any value of |σT (x

ε )x|. Hence putting (4.5)
into (4.4), we have

−tr
(
σ

(x

ε

)
σT

(x

ε

)
D2w

)
+ H

(
x,

x

ε
, σT

(x

ε

)
Dw(x)

)

≥ kμ
M

2
+ H

(
x,

x

ε
, 0

)
≥ 0, for any ε > 0,

and the last inequality is obtained by taking k sufficiently large, independent
of ε because of the periodicity of H with respect to y. Finally choosing λ
sufficiently large we have that w ≥ 0 on ∂Ω. �

An analogous result holds for supersolutions of problem (4.2), taking
account the assumption that for some coordinate axis at all points y ∈ IRn

at least one column of σ does not vanish in the direction of that axis, i.e.
condition (3.3).

Lemma 4.2. Let

Z := {w ∈ BLSC(Ω) : w supersolution of (4.2) in Ω, (4.6)
for any ε sufficiently small, and w ≥ 0 on ∂Ω}.

Under assumptions (3.3) and (2.2), then Z �= ∅.
Proof. In this case we prove that w(x) = k(λ − eμxj ) ∈ Z , where j is defined
in (3.3), for a suitable choice of k, λ and μ, independent of ε. We have

(Dw)i = −kμxeμxj δij , D2w = −kμ2eμxj Dj ,

where Dj is the diagonal matrix whose elements are Dj
ii = δij (δij is the

Kronecker symbol).
Since H is Lipschitz continuous with respect to p (2.2), and from assump-

tion (3.3) we have

−tr
(
σ

(x

ε

)
σT

(x

ε

)
D2w

)
+ H

(
x,

x

ε
,Dw(x)

)
(4.7)

≥ kμeμxj (μN − L) + H
(
x,

x

ε
, 0

)
. (4.8)

We can choose a μ independent of ε such that μN − L > 0, and a k such
that

−tr
(
σ

(x

ε

)
σT

(x

ε

)
D2w

)
+ H

(
x,

x

ε
,Dw(x)

)

≥ kμeμxj (μN − L) + H
(
x,

x

ε
, 0

)
≥ 0, for any ε > 0.

Finally choosing λ sufficiently large we have that w ≥ 0 on ∂Ω. �

The following Theorems 4.1 and 4.2 prove that the family of solutions uε

is equibounded in Ω. We will construct, at any point z of ∂Ω, a lower and a
upper barrier for problem (4.1) or problem (4.2).
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Theorem 4.1. Assume (2.1), (2.2), (2.3), (2.4). Assume that for any z ∈ ∂Ω
either

|σT
(z

ε

)
DΦ(z)|2 > 0, for any ε > 0, (4.9)

or
{

there exists a sequence εk, εk → 0, such that |σT( z
εk

)DΦ(z)|2 = 0,

and − tr(σ( z
εk

)σT( z
εk

)D2Φ(z)) + Hh(z, z
εk

, 0) > 0, for any εk.
(4.10)

Let uε be the continuous viscosity solution of problem (4.1). Then there
exists a function V (x) such that 0 ≤ uεk

(x) ≤ V (x) for any εk defined in (4.9)
or (4.10) and for any x ∈ Ω, V (x) ≥ 0 for any x ∈ ∂Ω and V (z) = 0 (i.e.
V(x) is a upper barrier at z, independent on ε).

Proof. From H(x, y, 0) ≤ 0 we have that u = 0 is a lower barrier to problem
(4.1). We find now an upper barrier V to the problem (4.1), for any ε sufficiently
small.

First of all we find a uniform strict upper local barrier at a point z ∈ ∂Ω
to the problem

{−tr(σ(x
ε )σT (x

ε )D2uε(x)) + Hh(x, x
ε , σT (x

ε )Duε) = 0, in Ω,
uε = 0, on ∂Ω.

(4.11)

By uniform strict upper local barrier at a point z ∈ ∂Ω, we mean a
function W , independent on ε, W ∈ BLSC(B(z, r) ∩ Ω), r > 0, W ≥ 0, such
that −tr(σ(x

ε )σT (x
ε )D2W (x)) + Hh(x, x

ε , σ(x
ε )DW ) > 0 for any ε sufficiently

small, in B(z, r) ∩ Ω, limx→z W (x) = 0 and W (x) ≥ δ > 0, for all |x − z| = r.
Let us consider

W (x) = 1 − e−μ(Φ(x)+ λ
2 |x−z|2), μ, λ > 0. (4.12)

W (z) = 0, for any z ∈ ∂Ω, W (x) > 0, for any x ∈ Ω and for any x ∈ ∂Ω,
x �= z.

Wxi
(x) = e−μ(Φ(x)+ λ

2 |x−z|2)μ(Φxi
+ λ(xi − zi)).

Wxixj
(x) = e−μ(Φ(x)+ λ

2 |x−z|2)μ
(

Φxixj
− μΦxi

Φxj
+

+λδij − μλΦxj
(xi − zi) − μλΦxi

(xj − zj) − μλ2(xi − zi)(xj − zj)
)

.

In particular

Wxi
(z) = μΦxi

(z),
Wxixj

(z) = μΦxixj
− μ2Φxi

Φxj
(z) + μλδij .
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Then:

−tr
(
σ

(z

ε

)
σT

(z

ε

)
D2W (z)

)
+ Hh

(
z,

z

ε
, σT

(z

ε

)
DW (z)

)
=

= μ

(
μ|σT

(z

ε

)
DΦ(z)|2− tr

(
σ

(z

ε

)
σT

(z

ε

)
D2Φ(z)

)
− λtr

(
σ

(z

ε

)
σT

(z

ε

))

+Hh(z,
z

ε
, σT (

z

ε
)DΦ(z))

)
> 0. (4.13)

Note that, from (2.1), tr(σ(y)σT (y)) ≥ M > 0, for any y ∈ IRn.
We have two cases: (i) If z ∈ ∂Ω is such that |σT ( z

ε )DΦ(z)|2 > 0 for
any ε sufficiently small, there exists a μ such that −tr(σ( z

ε )σT ( z
ε )D2W (z)) +

Hh(z, z
ε , σT ( z

ε )DW (z)) > 0, for any ε sufficiently small, since, from the reg-
ularity of the functions and the periodicity with respect to y of σ, the term
−tr(σ( z

ε )σT ( z
ε )D2Φ(z)) + Hh(z, z

ε , σT ( z
ε )DΦ(z)) is bounded from below for

any ε sufficiently small. More explicitely, we take

μ >
tr(σ( z

ε )σT ( z
ε )D2Φ(z)) − Hh(z, z

ε , σT ( z
ε )DΦ(z)) + λtr(σ( z

ε )σT ( z
ε ))

|σT ( z
ε )DΦ(z)|2 ,

where λ is fixed. Then for such z there exists a local upper barrier independent
on ε.

(ii) If in z ∈ ∂Ω there exists a sequence εk, εk → 0 such that
|σT ( z

εk
)DΦ(z)|2 = 0, then from condition (4.10) there exists a λ > 0 suffi-

ciently small such that W is a local upper barrier for the problem, for any
ε = εk.

By means of W we can construct a upper barrier at a point z ∈ ∂Ω (see
Definition (4.1)) to problem (4.1), following the procedure used in [5] to prove
Proposition 5. Let us fix z ∈ ∂Ω. From Lemma (4.1) we know that there exists
a w ∈ Z (Z was defined by (4.3)), for any ε > 0. Hence we can define

V (x) =
{

min{ρW (x), w(x)}, if x ∈ B(z, r) ∩ Ω,
w(x), otherwise.

(4.14)

We prove that V is an upper barrier in z for ρ sufficiently large and for
any εk determined below. It is obvious that V ≥ 0 on ∂Ω and V (z) = 0. In
Ω \ B(z, r), V is a supersolution. In ∂B(z, r) ∩ Ω, since W (x) ≥ δ > 0, for all
|x − z| = r, we can choose a ρ sufficiently large such that V = w, then also
in this case V is a supersolution. In B(z, r) ∩ Ω, if we check that ρW (x) is a
supersolution we have that also V is a supersolution. From assumption (2.3):

−tr

(
σ

(
z

εk

)
σT

(
z

εk

)
D2 (ρW (z))

)
+ H

(
z,

z

εk
, σT

(
z

εk

)
D (ρW (z))

)

≥ ρ

(
− tr

(
σ

(
z

εk

)
σT

(
z

εk

)
D2W (z)

)
+ Hh

(
z,

z

εk
, σT

(
z

εk

)
DW (z)

))
−M.

Since −tr(σ( z
εk

)σT ( z
εk

)D2W (z))+Hh(z, z
εk

, σT ( z
εk

)DW (z)) > 0 in B(z, r)
∩ Ω, for any εk, we can choose a ρ large enough such that
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−tr

(
σ

(
z

εk

)
σT

(
z

εk

)
D2 (ρW (z))

)
+ H

(
z,

z

εk
, σT

(
z

εk

)
D (ρW (z))

)
≥ 0

in B(z, r) ∩ Ω. �

Remark 4.1. Note that if in z ∈ ∂Ω there exists a ε where |σT ( z
ε )DΦ(z)|2 = 0

then, from the periodicity of σ, there exists a sequence εk, εk → 0 such that

|σT

(
z

εk

)
DΦ(z)|2 = 0

for any εk. It suffices to take εk = εz
z+εk , k ∈ Z.

Remark 4.2. The existence of uniform upper barriers to problem (4.1), as
stated in Theorem (4.1) leeds also to the existence of uniform barrier functions
to the fully nonlinear problem{

F (σ(x
ε )σT (x

ε )D2uε(x)) + H(x, x
ε , σT (x

ε )Duε) = 0, in Ω,
uε = 0, on ∂Ω,

(4.15)

where F (X) is a uniformly elliptic operator (F (X + Y ) ≤ F (X) − νtr(Y ), for
some ν > 0, for any Y ≥ 0), such that F (X) ≥ −Ctr(X). In this case the
upper barriers to problem (4.1) are upper barriers to problems (4.15).

This is the case of the Pucci operators P±(X) (for the definition see for
example [19] ) over a subelliptic structure.

Since P+(X) ≥ −Λtr(X) then the upper barriers to problem (4.1) are
upper barriers to problem{P+(σ(x

ε )σT (x
ε )D2uε) + H(x, x

ε , σT (x
ε Duε) = 0, in Ω,

uε = 0, on ∂Ω.
(4.16)

Uniform barriers functions for problem (4.15) associated with the Heisen-
berg group can be obtained also using the results of Cutri and Tchou [15] under
suitable assumptions on the boundary of the domain.

Theorem 4.2. Assume (2.2), (2.3), (2.4) and (3.3). Assume that for any z ∈ ∂Ω
either

|σT (
z

ε
)DΦ(z)|2 > 0 for any ε > 0, (4.17)

or{
there exists a sequence εk, εk → 0, such that |σT( z

εk
)DΦ(z)|2 = 0,

and − tr(σ( z
εk

)σT( z
εk

)D2Φ(z)) + Hh(z, z
εk

,DΦ(z)) > 0.
(4.18)

Let uε be the continuous viscosity solution of problem (4.2). Then there
exists a function V (x) such that 0 ≤ uεk

(x) ≤ V (x) for any εk defined in (4.17)
or (4.18) and for any x ∈ Ω, V (x) ≥ 0 for any x ∈ ∂Ω and V (z) = 0 (i.e.
V(x) is a upper barrier at z independent on ε).

Proof. The proof follows the same lines as that of Theorem (4.1), taking ac-
count of Lemma (4.6) to construct the upper barrier (4.14) at any z ∈ ∂Ω.

�
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Example 4.1. Condition (4.10) (resp. (4.18)) is satisfied if Ω is convex and
Hh(z, z

ε , σT ( z
ε )DΦ(z)) > 0 (resp. Hh(z, z

ε ,DΦ(z)) > 0) at the points z ∈ ∂Ω
such that lim infε→0 |σT ( z

ε )DΦ(z)|2 = 0, because Φ can be chosen concave, so
−tr(σ( z

ε )σT ( z
ε )D2Φ(z)) ≥ 0. If Ω is strictly convex, i.e. D2Φ(z) ≤ −νI, ν > 0,

the condition on the first order term can be relaxed to Hh > −νnM (M is
defined by (2.1)) at the points z ∈ ∂Ω such that lim infε→0 |σT ( z

ε )DΦ(z)|2 = 0.

The convergence result is stated with the help of the semi-limits tech-
nique. The lower and upper semi-limits uε are defined as follows:

u(x) := lim inf
ε→0,x′→x

uε(x′) := sup
δ

inf{uε(x) : x ∈ Ω, |x − x′| < δ, 0 < ε < δ},

u(x) := lim sup
ε→0,x′→x

uε(x′) := inf
δ

sup{uε(x) : x ∈ Ω, |x − x′| < δ, 0 < ε < δ}.

The following Lemma is a known result and permits us to prove the main
Theorem (4.3) here below.

Lemma 4.3. Under the assumptions of Theorem 4.1 (resp. Theorem 4.2), if
uε is a solution of equation (4.1) (resp. (4.2)) and if the family {uε} is equi-
bounded in Ω, then the semi-limits u(x) and u(x) are respectively subsolution
and supersolution of the effective equation (3.6) (resp. (3.7)).

Proof. The proof is based on the perturbed test function method of [16] and
makes rigorous the informal way to obtain the effective equation given in the
Introduction.

Since the functions uε are equibounded on Ω then u(x) and u(x) exist
and are finite. We show that u(x) is a subsolution of (3.6). Consider a test
function φ such that u−φ has a strict local maximum at x. We want to prove
that

−tr(AD2φ(x)) + H(x, σT (y)Dφ(x)) ≤ 0,

where A and H are defined in (3.6).
Let ψ(y) the solution of the cell problem in Y⎧

⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−tr(σ(y)σT (y)D2ψ(y)) = −tr

(
σT (y)D2φ(x)σT (y) − AD2φ(x)

)

−
(

H(x, y, σT (y)Dφ(x)) − H(x,Dφ(x))
)

,

ψ(y)Y -periodic.

(4.19)

The term on the right hand side of (4.19) is orthogonal in L2(Y ) to the
invariant measure μ(y), therefore, by the Fredholm alternative, there exists a
smooth solution ψ(y), uniquely defined up to a constant.

Let us introduce

φε(x) = φ(x) + ε2ψ
(x

ε

)

and use the perturbed test function method as in Evans [16]. From the defini-
tion of the upper semilimit u and the uniform convergence φε → φ, since u−φ
has a strict local maximum at x, we get that uε − φε has a local maximum at
some point xε with xε → x.
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We have:

Dφε(xε) = Dφ(xε) + εDψ
(xε

ε

)
,

D2φε(xε) = D2φ(xε) + D2ψ
(xε

ε

)
.

Since uε is solution of (4.1), in particular is a subsolution:

−tr

(
σ

(x

ε

)
σT

(xε

ε

)
D2φε(xε)

)
+ H

(
xε,

xε

ε
, σT

(xε

ε

)
Dφε(xε)

)
≤ 0.

(4.20)

If ε → 0

Dφε(xε) = Dφ(xε) + εDψ
(xε

ε

)

= Dφ(x) + o(1). (4.21)

D2φε(xε) = D2φ(xε) + D2ψ
(xε

ε

)

= D2φ(x) + D2ψ
(xε

ε

)
+ o(1). (4.22)

By inserting (4.21) and (4.22) into (4.20) we deduce

−tr

(
σ

(x

ε

)
σT

(x

ε

) (
D2φ(x) +D2ψ

(xε

ε

)))
+ H(x,

xε

ε
, σT (

x

ε
)Dφ(x))≤o(1).

Putting y = xε

ε in (4.19), we get:

−tr(AD2φ(x)) + H(x,Dφ(x)) ≤ 0.

Thus u is a viscosity subsolution of (3.6). Similarly, if u − φ has a strict
local minimum at x̃ we can show that

−tr(AD2φ(x̃)) + H(x̃,Dφ(x̃)) ≥ 0.

Thus u is a viscosity supersolution of (3.6). Analogously for equation
(3.7). �
Theorem 4.3. Under the assumptions of Theorem 4.1 (resp. Theorem 4.2) the
solution uε of the problem (4.1) (resp. (4.2)) converges uniformly on the com-
pact subsets of Ω as ε → 0 to the unique solution of the effective Dirichlet
problem (3.6) (resp. (3.7)).

Proof. We prove the convergence by means of the relaxed lower and upper
semi-limits of uε defined above. If we prove that u(x) = u(x) in Ω then uε →
u(x) = u(x) =: u(x) locally uniformly (see Lemma 1.9 of [6]). From the defin-
ition, we know that u(x) ≤ u(x). Moreover from Theorem 4.1 (resp. Theorem
4.2), we have that for any z ∈ ∂Ω there exists a upper barrier V (x) of uεk

(x):

0 ≤ uεk
(x) ≤ V (x), for any x ∈ Ω, V (x) ≥ 0 for any x ∈ ∂Ω, V (z) = 0,

(4.23)

for any εk sufficiently small. From the equiboundedness of the functions uεk
(x),

taking account of Lemma 4.3, we obtain that u(x) and u(x) are respectively
supersolution and subsolution of the effective equation (3.6) (resp. (3.7)).
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Moreover still from (4.23) we have u(z) = u(z) = 0 for any z ∈ ∂Ω. Since
the effective equation (3.6) (resp. (3.7)) satisfies the comparison principle (see
Theorem 3.4), then u(x) ≥ u(x) for any x ∈ Ω, hence u(x) = u(x) =: u(x) for
any x ∈ Ω and u(x) is the unique viscosity solution of (3.6) (resp. (3.7)). �

5. Examples

• The Rototraslation geometry. The case of rototraslation geometry is an
example of sub-Riemannian geometry and it was recently studied as a model
for the visual cortex by Citti and Sarti [13].

In IR3 write x = (x1, x2, x3), and take

σ =

⎡
⎣

cos 2πx3 0
sin 2πx3 0
0 1

⎤
⎦ . (5.1)

The vector fields associated with σ satisfy the Hörmander condition and
tr(σ(y)σT (y)) = 2, for any y ∈ IR3. Equation (4.1) becomes

−cos2(2π
x3

ε
)uεx1x1(x) − sin(2π

x3

ε
) cos(2π

x3

ε
)uεx1x2(x)

− sin2
(
2π

x3

ε

)
uεx2x2(x) − uεx3x3(x) + H

(
x, x/ε, σT

(x

ε

)
Duε

)
= 0.

Let z = (z1, z2, z3) ∈ ∂Ω be such that there exists a sequence εk → 0
such that cos(2π z3

εk
)Φx1(z) + sin(2π z3

εk
)Φx2(z) = 0 and Φx3(z) = 0, for any εk.

At these points, condition (4.10) becomes

−cos2(2π
z3

εk
)Φx1x1(z) − sin(2π

z3

εk
) cos(2π

z3

εk
)Φx1x2(z)

−sin2

(
2π

z3

εk

)
φx2x2(z) − Φx3x3(z) + Hh(z, z/εk, 0) > 0,

for any εk.
For example the points z = (z1, z2, z3) ∈ ∂Ω such that z3 = n1(z) =

n3(z) = 0 (n = (n1, n2, n3) is the outer unit normal), are such that
|σT ( z

ε )DΦ(z)|2 = 0 for any ε and in such points condition (4.10) becomes
Hh(z, z/ε, 0) > Φx1x1(z) + Φx3x3(z) for any ε > 0.

At the points z ∈ ∂Ω where n3(z) �= 0, we have |σT ( z
ε )DΦ(z)|2 > 0, for

any ε > 0. As explicit case, taking Ω = BE := {(x1, x2, x3) ∈ IR3 : x2
1 + x2

2 +
x2

3 ≤ 1} the Euclidean ball in IR3, we have Φ(x1, x2, x3) = 1 − (x2
1 + x2

2 + x2
3).

The points of ∂Ω such that |σT ( z
ε )Dφ(z)| = 0 for some ε, are z = (0,±1, 0). At

these points condition (4.10) is Hh(z, z
ε , 0) > −4, for any ε sufficiently small.

• Constrained systems in mechanics. These type of vector fields appear in
the Vakonomic Mechanics (see e.g. [17]) which describes non-holonomic con-
strained systems by a variational principle. It is considered also in [1], as an
example of Remark of Section 8.1.

In IR2 write x = (x1, x2, ), and take

σ =
[

0 cos 2πx2

1 sin 2πx2

]
. (5.2)
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The vector fields associated with this matrix satisfy the Hörmander con-
dition and tr(σ(y)σT (y)) = 2, for any y ∈ IR2. The Lie bracket [X1,X2] =
2π(− sin 2πx2, cos 2πx2) has nonvanishing first component at the points x2 =
1/4, 3/4 where the matrix σ degenerates.

Equation (4.1) is

−cos2
(
2π

x2

ε

)
uεx1x1(x) −

(
1 + sin2

(
2π

x2

ε

))
uεx2x2(x) (5.3)

−2 sin
(
2π

x2

ε

)
cos

(
2π

x2

ε

)
uεx1x2(x) + H

(
x, x/ε, σT

(x

ε

)
Duε(x)

)
= 0.

In this case the points z = (z1, z2) ∈ ∂Ω such that |σT ( z
ε )DΦ(z)|2 = 0

for some ε, are Φx2(z) = 0 and cos(2π z2
ε ) = 0. Any point z ∈ ∂Ω, such that

n2(z) = 0 (n = (n1, n2) is the outer normal), satisfies condition cos(2π z2
εk

) = 0
for a suitable εk → 0. Then condition (4.10) is

Hh(z, z/εk, 0) > −2Φx2x2(z), for any εk sufficiently small.

At the points z = (z1, z2) ∈ ∂Ω, where n2(z) �= 0, we have |σT ( z
ε )

DΦ(z)|2 > 0 for any ε.
Taking Ω = BE := {(x1, x2) ∈ IR2 : x2

1 + x2
2 ≤ 1} the Euclidean ball

in IR2, we have that there is no point on ∂Ω such that |σT ( z
ε )Dφ(z)| = 0 for

some ε. Then we do not have to put additional assumptions on Hh.
• The periodic Heisenberg-like equation. In IR3 write x = (x1, x2, t), and take

σ(x) =

⎡
⎣

1 0
0 1
2 sin 2πx2 −2 sin 2πx1

⎤
⎦ . (5.4)

The vector fields associated with σ satisfy the Hörmander condition
(X1, X2 and their commutators up to order 4, span IR3 at each point) and
tr(σ(y)σT (y)) ≥ 2, for any y ∈ IR3. Equation (4.1) is

−uεx1x1(x) − uεx2x2(x) − 4
(
sin2

(
2π

x2

ε

)
− sin2

(
2π

x1

ε

))
uεtt(x)

−4 sin
(
2π

x2

ε

)
uεx1t(x)+4 sin

(
2π

x1

ε

)
uεx2t(x)+H

(
x,

x

ε
, σT

(x

ε

)
Du(x)

)
=0.

(5.5)

Let z = (z1, z2, t) ∈ ∂Ω such that |σT ( z
ε )DΦ(z)|2 = 0 for some ε, i.e.

there exists a sequence εk → 0 such that Φx1(z) + 2 sin(2π z2
εk

)Φt(z) = 0 and
Φx2(z) − 2 sin(2π z1

εk
)Φt(z) = 0, for any εk.

For example the points z = (z1, z2, t) ∈ ∂Ω, such that z1 = z2 =
n1(z) = n2(z) = 0 (n = (n1, n2, n3) the outer unit normal), are such that
|σT ( z

ε )DΦ(z)|2 = 0 for any ε and in such points condition (4.10) becomes
Hh(z, z/ε, 0) > Φx1x1(z) + Φx2x2(z), for any ε > 0.

At the points z = (z1, z2, t) ∈ ∂Ω, where n2
1(z) + n2

2(z) �= 0, we have
|σT ( z

ε )DΦ(z)|2 > 0 for any ε > 0.
Taking Ω = BE := {(x1, x2, t) ∈ IR3 : x2

1 + x2
2 + t2 ≤ 1} the Euclidean

ball in IR3, we have that the points of ∂Ω such that |σT ( z
ε )Dφ| = 0 for some ε

satisfy the system z1 + 2t sin(2π z2
ε ) = 0 and z2 − 2t sin(2π z1

ε ) = 0, for some ε.
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For example the points z = (0, 0,±1) are solutions of the system and at these
points condition (4.10) is Hh(z, z

ε , 0) > −4 for any ε sufficiently small.
• The periodic Grushin-like equation. Here x = (x1, x2)

σ =
[

1 0
0 sin 2πx1

]
(5.6)

satisfies the Hörmander condition. In this case tr(σ(y)σT (y)) = 1 + sin2 2πy1

for any y = (y1, y2) ∈ IR2, and equation (4.1) becomes

−uεx1x1(x) − sin2
(
2π

x1

ε

)
uεx2x2(x) + H

(
x,

x

ε
, σT

(x

ε

)
Duε(x)

)
= 0. (5.7)

In this case the points such that |σT ( z
ε )DΦ(z)|2 = 0 are such that Φx1(z) = 0

and sin(2π z1
ε )Φx2(z) = 0, for example the points z such that z1 = n1(z) = 0.

Note that for any point z = (z1, z2) ∈ ∂Ω such that n1(z) = 0, z1 �= 0, there
exists a sequence εk such that sin(2π z1

εk
) = 0. In such points condition (4.10)

is Hh(z, z
εk

, 0) > Φx1x1(z), for any εk > 0.
If Ω = BE := {(x1, x2) ∈ IR2 : x2

1 + x2
2 ≤ 1}, the points on ∂Ω such

that |σT ( z
ε )Dφ(z)| = 0 for some ε are z = (0,±1) and condition (4.10) is

Hh(z, z
ε , 0) > −2.

Remark 5.1. The matrix σ of every example of this section satisfies the as-
sumption of nondegeneracy in a one direction (3.3), then the convergence re-
sult holds also when the first order term is of the type H(x, x

ε ,Duε) in place
of H(x, x

ε , σT (x
ε )Duε).

6. Applications to subelliptic problems

The results of Sect. 4 can be applied to the subelliptic problems of the following
type

{−tr(D2
Xε

uε) + H(x, x
ε ,DXε

uε) = 0, in Ω,
uε = 0, on ∂Ω,

(6.1)

where DX u, D2
X u are the horizontal gradient and the horizontal Hessian of u

with respect to a family of smooth vector fields X1, ...,Xm, m ≤ n,

(DX u)i = Xiu, (D2
X u)ij =

Xi(Xju) + Xj(Xiu)
2

.

We denote by DXε
u and D2

Xε
u the horizontal gradient and the horizontal

Hessian of u where the family of vector fields is Xi(x
ε ), i = 1, . . . m.

If we take the n × m matrix σ whose columns are the elements of
X1, ...,Xm, we see that, for any smooth u

DX u = σT Du, D2
X u = σT D2u σ + Q(x,Du), (6.2)

where Q(x, p) is a m × m matrix whose elements are

Qij(x, p) =
(

Dσj(x)σi(x) + Dσj(x)σi(x)
2

)
· p, (6.3)
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where σj are the columns of σ, σij = σj
i . We will suppose that assumption

(3.3) holds:

there exists a j such that
∑

k

σ2
jk(y) ≥ N > 0, ∀y ∈ IRn.

Let us consider the following effective problem:{−tr(AD2u) + H(x,Du) = 0, in Ω,
u = 0, on ∂Ω,

(6.4)

where

A =
∫

(0,1)n

σ(y)σT (y)dμ

and

H(x, p) =
∫

(0,1)n

(
H(x, y, σT (y)p) −

m∑
j=1

(Dσj(y)σj(y)) · p

)
dμ.

Theorem 6.1. Assume (2.2), (2.3), (2.4) and (3.3). Then the solution uε of the
problem (6.1) converges uniformly on the compact subsets of Ω as ε → 0 to the
unique solution of the effective Dirichlet problem (6.4).

Proof. From (6.2) and (6.3), taking account that tr(σσT D2u) = tr(σT D2uσ),
we have the following expression:

tr(D2
X u) =

m∑
j=1

X2
j u = tr(σσT D2u) +

m∑
j=1

(Dσj(x)σj(x)) · Du.

Hence equation (6.1) becomes

−tr(D2
Xε

uε)) + H(x,
x

ε
,DXε

uε) =

−tr
(
σ

(x

ε

)
σT

(x

ε

)
D2uε

)
−

m∑
j=1

(
Dσj

(x

ε

)
σj

(x

ε

))
· Duε

+H
(
x,

x

ε
, σT

(x

ε

)
Duε

)

= −tr
(
σ

(x

ε

)
σT

(x

ε

)
D2uε

)
+ H̃

(
x,

x

ε
,Duε

)
,

where H̃(x, y, p) = −∑m
j=1(Dσj(y)σj(y))·p+H(x, y, σT (y)p). Then the prob-

lem has the same structure as problem (1.3). If H satisfies assumptions (2.2)
also H̃(x, y, p) satisfies them, then we can apply Theorem 4.3 on the conver-
gence of the solution of problem (4.2) to the solution of the effective problem
(3.7). �

Example 6.1. Every example of Sect. 5 satisfies assumption (3.3).
In particular if we consider the rototraslation case defined by σ in (5.1), the
periodic Heisenberg-like equation (5.4) and the periodic Grushin-like equation
(5.6), it is easy to see that tr(D2

Xε
uε) = tr(σ(x

ε )σT (x
ε )D2uε), i.e.

H̃(x, y, p) = H(x, y, p) and equation (6.1) coincides with equation (4.1).
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In the case of Vakonomic dynamic defined by (5.2), the term
m∑

j=1

(Dσj(y)σj(y)) · Duε =2π sin
(
2π

x2

ε

)(
cos

(
2π

x2

ε

)
uεx2 − sin

(
2π

x2

ε

)
uεx1

)

can be considered in the part of first order terms H̃.
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