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Abstract

We extend some results of DiBenedetto and Vespri (Arch. Rational Mech. Anal 132(3) (1995)
247) proving the interior and boundary continuity of bounded solutions of the singular equation
(�(u))t =Lu where L is a second order elliptic operator with bounded measurable coe7cients
that depend both on space and time in a proper way.
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1. Introduction

Let �(s) be a maximal monotone graph in R× R satisfying

�(s1)− �(s2)¿ �o(s1 − s2) ∀si ∈R �o ¿ 0: (1.1)

We also assume that

for every M ¿ 0; sup
−M6s6M

|�(s)|= �1 ¡∞: (1.2)
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Let  be a Lipschitz domain in RN , let T denote the cross product  × [0; T ] and
consider the singular parabolic equation

(�(u))t =Lu; (1.3)

where L is an elliptic operator with principal part in divergence form.
Needless to say, if �(u)=u we are dealing with the classical heat equation, for which

we refer, for example, to [11]. Here we want to consider more general expressions for
� and the reason lies in the natural connections that equations like (1.3) have with the
modelling of phase transitions or the Kow of Kuids in porous media. For more details
on these models, see, for example, [8] and [18].
Questions of regularity for weak solutions of (1.3) have been considered since the

early 1980s and a certain number of results has been proved, even if things are far
from being completely settled.
Without pretending to mention all the contributions, we can say that when �(s)

exhibits a single jump, say at s=0, continuity in the interior and at the boundary were
proved in [1–3,13,19] and an explicit modulus of continuity was given.
A lot less is known for more general � and actually things lied still for a long

while, from the late 1980s until the mid 1990s, when interior continuity was proved
in [6] for � with superlinear growth. It is worth mentioning that for N = 2 a general
second order uniform elliptic operator is considered, whereas for N¿ 3 the method
used heavily relies on the radial symmetry of L and therefore is limited to the case
of L= �.
Adapting the techniques of [6], more general operators have been considered in

[14–16], where once more, local interior continuity is proved and a quantitive
estimate of the modulus of continuity is provided in the case of the p-laplacian,
anisotropic p-laplacian and non-standard growth operator, respectively. In dimension
N = 2 one can even consider a maximal monotone graph � = �AC + �s of bounded
variation, with �AC strictly increasing and �s¿ 0 (see [7]). More recently, in
[9] it was studied the case of a � which admits an arbitrary but Cnite number of
jumps.
As it should be clear by now, a lot still needs to be done, especially under the point

of view of boundary behavior. This paper is somehow a development of [6], in that
we prove interior and boundary continuity of weak solutions of (1.3) under the same
hypotheses on � but working with a more general elliptic operator. As a matter of
fact, a lot of what we are considering here has been already proved in [17]. However,
since the boundary continuity is new and some of the methods are also new, for the
sake of completeness we chose to prove all the results ex novo. On the other hand,
we decided to focus on what is really new with respect to [6], without entering too
much into details when things are simply adapted.
We can Cnally state the explicit assumptions and our precise results. Here we assume

Lu=
∑
ij

Di(aij(x; t)Dju+ ai(x; t)u) + bi(x; t)Diu+ e(x; t)u;

where aij(x; t); ai(x; t); bi(x; t); e(x; t) are continuous functions with respect to
the time variable and are measurable functions with respect to the spatial variables
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satisfying

1
�1

|�|26
∑
ij

aij(x; t)�i�j6 �1|�|2 (1.4)

∥∥∥∑ a2i ;
∑

b2i ; e
∥∥∥
q; r;T

6 �2; (1.5)

with q and r such that

1
r
+

N
2q

= 1− �1

and q∈ [N=2(1− �1);∞] r ∈ [1=(1− �1);∞] 0¡�1 ¡ 1; N¿ 2.
Moreover we suppose that

∀0¡t¡s¡T
∫ s

t

∫


(
ev−

∑
i

aiDiv

)
dx dt6 0;

∀v¿ 0; v∈C1
0 ( × (t; s)): (1.6)

As it will be clear in Section 4, we assume (1.6) in order to have the maximum
principle in any parabolic cylinder Q("; #"2) ⊂ T .

The equation in (1.3) is meant weakly and in the sense of inclusion of graphs,
namely

De�nition 1. The function u∈L2(0; T ;W 1;2()) is a weak solution of (1.3) if there
exists a selection � ⊂ �(u), the inclusion being intended in the sense of the graphs,
such that

t → �(·; t) is weakly continuous in L2()

and ∫

�&
∣∣∣∣
t2

t1

+
∫


∫ t2

t1

{
−�&t +

∑
ij

(aijDju+ aiu)Di&+ biDiu&+ eu&

}
dx dt = 0

for all &∈W 1;2(0; T ;L2()) ∩ L2(0; T ;W 1;2
0 ()) and for all intervals (t1; t2) ⊂ (0; T ).

Remark 1. Local summability can be considered both for u and & if we are interested
only in the continuity in the interior of  (see for example [6]).

To simplify the presentation, we assume that u is bounded in the whole T , so that

‖u‖∞;T 6M for some given constant M ¿ 0: (1.7)

As in [6] the continuity at a point P ∈T follows showing that the oscillation of u
in a sequence of shrinking boxes with vertex at P tends to zero as the size of such
neighborhoods tends to zero.
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The following theorem is the main result of this paper:

Theorem 1. Let N¿ 3 and let the structural assumptions (1.1)–(1.2) and (1.4)–(1.6)
hold. Let u be a weak solution of (1.3) in the sense of De'nition 1 and assume that
u satis'es (1.7). Then u is continuous in T . Moreover, for every compact subset
K ⊂ T , there exists a continuous, non-negative, increasing function

s �→ !data;K(s); !data;K(0) = 0

that can be determined a priori only in terms of the data and the distance from K
to the parabolic boundary of T s.t.

|u(x1; t1)− u(x2; t2)|6!data; K(|x1 − x2|+ |t1 − t2|(1=2))
for every pair of points (xi; ti)∈K, i = 1; 2.

The plan of the paper is the following: we Crst examine the case of time-independent
coe7cients (Sections 2–5) and we prove Theorem 1 under this restrictive assumption;
then we achieve the general case using a proper approximation argument for coe7cients
continuous in t (Section 6); Cnally we apply the previous results to prove the boundary
continuity of u for homogeneous Dirichlet conditions (For the precise statements of the
assumptions and the theorem in this case and also for the di7culties presented by the
treatment of boundary conditions, we directly refer to Section 7).
We conclude this section with some general remarks. First of all, even if we decided

to concentrate on a linear second order elliptic operator L with coe7cients satisfying
suitable summability hypotheses as described above (see Remark 2 and Section 4 for
some comments and further discussions), the same techniques allow us to prove the
continuity result in a more general context. As we try to highlight in the proof, the
only properties of L(x; t; u; Du) on which we will rely are the following:

(1) L satisCes the maximum principle;
(2) the coe7cients of L are continuous in t;
(3) in the case of time-independent coe7cients the elliptic operator L satisCes a

uniform Harnack inequality t by t.

The most important of these three assumptions is the last one and this shows once more
how the Harnack inequality is crucial when proving regularity results for solutions of
partial di.erential equations.

2. Local energy estimates

We assume that u can be constructed as the limit in the weak topology of L2(0; T ;
W 1;2()) of a sequence of local smooth solutions for smooth �(·). This is the same
approach used in [6], to which we refer for further details. Hence we will be working
with smooth solutions of

�′(u)ut =
∑
ij

Di(aij(x; t)Dju+ ai(x; t)u) + bi(x; t)Diu+ e(x; t)u; (2.1)
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where �(·) is regular and satisCes

�′(s)¿ �0; ∀s∈ (−M;M):

However all our estimates depend only upon the data. Finally, we use the same notation
of [6], that we recall for sake of completeness.
For "¿ 0 we denote by K" the cube of wedge 2" centered at the origin, i.e.

K" =
{
x∈RN

∣∣∣∣ max
16i6N

|xi|¡"
}

and by [y + K"] the cube centered at y and congruent to K". For #¿ 0 by Q("; #"2)
we denote the cylinder of cross section K", height #"2, and vertex at the origin, i.e.

Q("; #"2) = K" × (−#"2; 0)

and for a point (y; s)∈RN+1 we let [(y; s) + Q("; #"2)] be the cylinder of vertex at
(y; s) and congruent to Q("; #"2).
For k ∈R the truncations (u− k)+ and (u− k)− are deCned by

(u− k)+ = max{u− k; 0} (u− k)− =max{k − u; 0}:
Next we deCne

A±
k;"(t) = {x∈K"|(u(x; t)− k)± ¿ 0};

introduce the numbers

H±
k = ‖(u− k)±‖∞; [(y;s)+Q(";#"2]; q̂=

2q(1 + �)
q− 1

; r̂ =
2r(1 + �)

r − 1
;

� =
2
N

�1

and the function

-(H±
k ; (u− k)±; c) = ln+

{
H±

k

H±
k − (u− k)± + c

}

=max
{
ln
{

H±
k

H±
k − (u− k)± + c

}
; 0
}

0¡c¡H±
k :

Proposition 1. There exist constants � = �(data) and /0 = /0(data) such that for
all cylinders [(y; s) + Q(0"; #0"2)] ⊂ [(y; s) + Q("; #"2)]; 0∈ (0; 1) and for all
levels k satisfying ess supQ(";#"2) |(u− k)±|= /6 /0 we get

sup
s−#"26t6s

∫
y+K0"

(u− k)2±(x; t) dx +
∫ ∫

(y;s)+Q(0";0#"2)
|D(u− k)±|2 dx dt

6
�

(1− 0)2"2

∫ ∫
(y;s)+Q(";#"2)

(u− k)2± dx dt
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+
�

(1− 0)#"2

∫ ∫
(y;s)+Q(";#"2)

(u− k)± dx dt

+
∥∥∥∑ a2i +

∑
b2i + |e|

∥∥∥
q; r

(∫ 0

−#"2
|A±

k;"(1)|r̂=q̂ d1
)2(1+�)=r̂

; (2.2)

sup
s−#"26t6s

∫
y+K0"

-2(H±
k ; (u− k)±; c)(x; t) dx

6
�(data)

(1− 02)"2

∫ ∫
(y;s)+Q(";#"2)

-(H±
k ; (u− k)±; c) dx d1

+
�(data)

c

∫
y+K"

-(H±
k ; (u− k)±; c)(x; s− #"2)

+
�
c2

(
1 + ln

H±
k

c

)
�1

{∫ s

s−#"2
|A±

k;"(1)|r̂=q̂ d1
}2(1+�)=r̂

: (2.3)

Proof. See [6], Proposition 2.1. The only di.erence is given by the lower order terms,
but these are handled in a standard way.

Remark 2. The estimate (2.2) holds true even under more general hypotheses,
namely

(a) (a(x; t; u; Du)Du¿C0|Du|2 − &0(x; t),
(b) |a(x; t; u; Du)|6C1|Du|+ &1(x; t),
(c) |b(x; t; u; Du)|6C2|Du|+ &2;

where &0; &2
1; &2 ∈Lq;r(T ).

Remark 3. In the proofs we will Cnd quantities of the type Ai"N�!−2, where Ai are
constants that can be determined a priori only in terms of the data and are independent
of ! and ". Without loss of generality we may assume that they satisfy Ai"N�!−26 1.
Indeed, if not, we would have !6C"20 for C=max Ai and 20=Nk=2 and things would
be trivial.

Fix #¿ 0 and consider [(y; s) + Q(2"; 2#"2)] ⊂ T . We put

�+ = sup
[(y;s)+Q(2";2#"2)]

u; �− = inf
[(y;s)+Q(2";2#"2)]

u

and

!= osc
[(y;s)+Q(2";2#"2)]

u= �+ − �−:
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Let �± ∈ (0; 1) be properly chosen in order to satisfy the assumption H±
k 6 /0 and

deCne the following level sets

A+
�+ ;" = {(x; t)∈ [(y; s) + Q("; #"2] : u(x; t)¿�+ − �+!};

A−
�− ;" = {(x; t)∈ [(y; s) + Q("; #"2] : u(x; t)¡�− + �−!}:

If we Cx 3∈ (0; 1) we have the following estimates

Proposition 2. There exists a number 4+ depending on the structure of � and 3; �+;
#; ! such that

measA+
�+ ;" ¡ 4+|Q("; #"2)| ⇒ u(x; t)¡�+ − 3�+!

∀(x; t)∈
[
(y; s) + Q

(
"
2
;
#"2

2

)]
:

Proposition 3. There exists a number 4− depending on the structure of � and 3; �−;
#; ! such that

measA−
�− ;" ¡ 4−|Q("; #"2)| ⇒ u(x; t)¿�− + 3�−!

∀(x; t)∈
[
(y; s) + Q

(
"
2
;
#"2

2

)]
:

Proof. Let us remark that the numbers 4± are given by the formula:

4± =
c
#

(
#�±!

1 + #�±!

)1+�
0

; 0 =min
{

2
N

�1;
2

N + 2

}
; c = c(dat; 3):

The proof is like the one given in [6] for Propositions 3:1+ and 3:1−. The only
di.erence is in the use of Lemma 4.2 of [5] instead of Lemma 4.1 of the same work.
Once more the reason lies in the presence in our equation of Crst order terms.

Fix #¿ 0 and consider the cylinder [(y; s) + Q("; #"2)]; for �+ ∈ (0; 1) we set

A�+ ;"(t) = {x∈K" : u(x; t)¿�+ − �+!}:
We assume that the function u(·; s − #"2) does not exceed the value �+ − �+0 ! at
the bottom of the cylinder for some �+0 ∈ (0; 1) properly chosen in order to satisfy the
assumption H±

k 6 /0, i.e.

u(x; s− #"2)6 �+ − �+0 ! ∀x∈ [y + K"]:

We have

Proposition 4. For every 4+ ∈ (0; 1) there exists a number �+ ∈ (0; 14�
+
0 ) depending

only upon the data and the numbers �+0 and # such that

|A
�+ ;

1
2 "
(t)|6 4+|K 1

2 "
| ∀t ∈ (s− #"2; s):

The number �+ is chosen to satisfy 4+ = �#=ln(�+0 =2�
+).
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Proof. See Proposition 4:1+ of [6].

We conclude this section by stating a proposition that can be found in a more general
way in [6]

Proposition 5. Let v∈W 1;2(K"), satisfying∫
K"

|Dv|2 dx6 �

for a given constant � and meas{x∈K" : v(x)¡ 1}¿ 5|K"| for a given 5∈ (0; 1). Then,
for every 6∈ (0; 1), and 3¿ 1, there exists x∗ ∈K" and a number /∈ (0; 1) such that,
within the cube K/"(x∗) centered in x∗ with wedge 2/", there holds:

meas{x∈K/"(x∗) : v(x)¡3}¿ (1− 6)|K/"|:

3. On the sets where u is near �+ or near �−

If we deCne A+
�+ ;"(t)={x∈K" : u(x; t)¿�+−�+!} and A−

�− ;"(t)={x∈K" : u(x; t)
¡�− − �−!}, we have

measA±
�± ;" =

∫ 0

−"2
|A±

�± ;"(t)| dt:

In the following the quantities 4± are the ones introduced in Propositions 2 and 3.

Proposition 6. If

measA+
�+ ;" =

∫ 0

−"2
|A+

�+ ;"(t)| dt ¿ 4+|Q("; "2)| (3.1)

holds, for all 3¿ 1 and for all 6∈ (0; 1) there exist a point (y∗
+; s

∗
+)∈ [(y; s) +

Q("; "2)], a number /+ ∈ (0; 1) and a cylinder

[(y∗
+; s

∗
+) + Q(/+"; /2+"

2)] ⊂ [(y; s) + Q("; "2)]

such that

meas{(x; t)∈ [(y∗
+; s

∗
+) + Q(/+"; /2+"

2)] : u(x; t)¿�+ − 3�+!}
¿ (1− 6)|[(y∗

+; s
∗
+) + Q(/+"; /2+"

2)]|: (3.2)

The number /+ depends upon the data and the numbers 3; 6; �+ and !.

Proposition 7. If

measA−
�− ;" =

∫ 0

−"2
|A−

�− ;"(t)| dt ¿ 4−|Q("; "2)| (3.3)

holds, for all 3¿ 1 and for all 6∈ (0; 1) there exist a point (y∗
−; s∗−)∈ [(y; s) +

Q("; "2)], a number /− ∈ (0; 1) and a cylinder

[(y∗
−; s∗−) + Q(/−"; /2−"2)] ⊂ [(y; s) + Q("; "2)]
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such that

meas{(x; t)∈ [(y∗
−; s∗−) + Q(/−"; /2−"2)] : u(x; t)¡�− + 3�−!}

¿ (1− 6)|[(y∗
−; s∗−) + Q(/−"; /2−"2)]|: (3.4)

The number /− depends upon the data and the numbers 3; 6; �− and !.

Proof. We write (2.2) over Q("; "2) and Q(2"; 2"2) for which 0 = 1
2 and for the

functions

(u− k+)+ with k+ = �+ − �+!

and

(u− k−)− with k− = �− + �−!:

We take into account that the term {∫ 0−#"̃n
|A+

�n;"n
(1)|q̂=r̂ d1}2=r̂(1+�) is controlled by

�!"N and we obtain∫ ∫
Q(";"2)

|D(�+ − u)|2 dx dt6 �!"N ; (3.5)

∫ ∫
Q(";"2)

|D(u− �−)|2 dx dt6 �!"N : (3.6)

We rewrite (3.1) and (3.5) in terms of v+ = (�+ − u)=!�+, (3.3) and (3.6) in terms
of v− = (u− �−)=!�− to get

meas{(x; t)∈Q("; "2) : v± ¡ 1}¿4±|Q("; "2)|; (3.7)

∫ ∫
Q(";"2)

|Dv±|2 dx dt6 �
!�±2 "

N : (3.8)

Now relying in a fundamental way on Proposition 5 stated in the previous Section, we
conclude exactly as in [6], Propositions 5:1±.

Let the cylinder [(y; s) + Q("; "2)] be Cxed and consider coaxial boxes of the type

[(y; 1) + Q(r; r2)]; 0¡r6 ": (3.9)

The time-location of the vertices ranges over

1∈ [s− ("2 − r2); s] (3.10)

and r is a positive parameter ranging over

r ∈ [/"; "]; where /∈ (0; 1) is to be chosen: (3.11)

We assume that conditions (3.1) and (3.3) both hold for all cylinders deCned in
(3.9)–(3.11). In such a case, within [(y; s) + Q("; "2)], we will identify two disjoint
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subcylinders such that in one of these u is all near �+ and in the other one u is all
near �−.

Proposition 8. Let (3.1) and (3.3) both hold for all coaxial cylinders of the type
(3.9)–(3.11). There exist two points (y∗

1 ; s
∗); (y∗

2 ; s
∗), at the same time level s∗, a

number /∈ (0; 1) and two cylinders

[(y∗
1 ; s

∗) + Q(r; r2)]; [(y∗
2 ; s

∗) + Q(r; r2)] r = /";

contained in [(y; s) + Q("; "2)], such that

u(x; t)¿�− + 2
3(1− 3�+)! ∀(x; t)∈ [(y∗

1 ; s
∗) + Q(r; r2)]

and

u(x; t)¡�+ − 2
3 (1− 3�−)! ∀(x; t)∈ [(y∗

2 ; s
∗) + Q(r; r2)]:

The proof of this Proposition is the same as Proposition 8.1 in [6].
Using Proposition 8 it is possible to derive a local estimate for the gradient Du

exactly as in [6].

Proposition 9. Let (3.1) and (3.3) both hold for all coaxial cylinders de'ned in (3.9)–
(3.11) and choose �+ = �− = 1

12 and 3= 3
2 . There exists a constant � depending only

upon the data and ! such that

"N!2�6
∫ s

s−"2

∫
/"¡‖x−y‖¡"

|Du|2 dx dt:

4. Comparison function

In [6] the key point in the proof of the continuity theorem are some estimates of a
proper function v, which is then compared with the solution u of the original singular
parabolic equation. In these estimates the radial symmetry of the problem is heavily
used, but a careful examination of the whole procedure shows that this assumption can
be done away with, provided the maximum principle and a Harnack inequality for the
corresponding elliptic operator hold for all time levels. This is precisely the way we
will follow in the sequel. Without entering too much into details, let us just remark
that the basic reason to use the comparison function is to mimic a parabolic Harnack
inequality, whose validity is not known in this context.

4.1. Statement of the problem

For d¿ 1 and 20 ∈ (0; 1), let A20 ;d denote the annulus A20 ;d ≡ {20 ¡ |x|¡d} and
for k ¿ 0 consider the cylindrical domain with annular cross section

C(20; 4d; k) ≡ A20 ;4d × (0; k):
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We consider the elliptic operator L introduced in (1.3) and state some further
assumptions:

(1) (H1) The coe7cients aij; ai; bi; e considered in (1.3), (1.4), (1.5) do not depend
on time [Notice that this hypothesis will be removed in the last sections].

(2) (H2) As a consequence of (H1), condition (1.6) becomes∫


(
ev−

∑
i

aiDiv

)
dx6 0; ∀v¿ 0; v∈C1

0 ():

(3) (H3) The local weak solution w of the elliptic equation

Lw = 0 in 

satisCes a Harnack inequality, namely, if w¿ 0 and KR(y) ⊂ , for any 0¿ 0
we have

sup
K0R

w6 C
(
inf
K0R

w + : R5
)

;

where :, 5 and C depend only on the data. Strictly speaking, the ellipticity condi-
tion and the summability hypotheses on the coe7cients ensure that w belongs to
an elliptic De Giorgi class, which in turns guarantees that w satisCes a Harnack
inequality (under this point of view, see for example [12, Chapter 3] [5]); there-
fore there would be no reason to assume this explicitly. On the other hand, as we
mentioned in the Introduction, we want to emphasize the structural assumptions
needed in the proof, so that Theorem 1 still holds for any other operator that
satisCes them.

Remark 4. As already mentioned in Section 1, the meaning of (H2) is to provide us
with the maximum principle. By no means it is the most general hypothesis under this
point of view: in fact more general conditions could be equally-well considered, but
we will not take them into account here.

Let now v be the unique solution of the boundary problem


(�̃(v))t =Lv on A20 ;4d × (0; k)

v(x; t) = 0 in |x|= 4d

v(x; t) = 1 in |x|= 20

v(x; 0) = 0;

(4.1)

where �̃ is a maximal monotone graph in R× R satisfying:

�̃(s1)− �̃(s2)
s1 − s2

¿ �̃0; sup
|s|6M

|�̃(s)|6 �̃1
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for some given constants �̃i. As discussed at the beginning of this section, the function
v will be used as a local comparison function for the solution u of (1.3). Therefore
the quantities 20; d; �̃i will be chosen in dependance of the local oscillation of u. As in
the previous sections, in the following we assume �̃ to be smooth, so that

�̃
′
(s)¿ �̃0 ∀s∈ (−M;M):

Thanks to the previous assumptions, we have

Proposition 10. Let v be the solution of (4.1). Then

06 v(x; t)6 1 for a:e: (x; t)∈C(20; 4d; k):

Proof. Take (v − h)± with 06 h6 1 as test function in (4.1) and then argue as in
the proof of Theorem 7.2, Section III of [11]. Due to the smoothness assumptions on
�̃, we have

(�̃(v))t = �̃
′
(v) vt

and

±�̃
′
(v) vt (v− h)± =

@
@t

∫ (v−h)±

0
�̃
′
(h± s)s ds:

Hence the only di.erence with the non-degenerate parabolic setting is the presence of
the term∫ k

0

∫
A20 ;4d

@
@t

∫ (v−h)±

0
�̃(h± s)s ds

instead of the usual straight time-derivative. However relying on∫ (v−h)±

0
�̃
′
(h± s)s ds¿

�̃0
2
(v− h)2±; (4.2)

∫ (v−h)±

0
�̃
′
(h± s)s ds6 sup

|s|6M
|�̃(s)|(v− h)± (4.3)

we can conclude exactly as in [11].

The rest of this section will be devoted to the proof of the following

Proposition 11. There exist numbers 00 ¿ 0 and k ¿ 0 such that for every y in the
annulus {1¡ |y|¡ 2d} there exists a time level t ∈ (0; k) such that

v(y; t)¿00: (4.4)

4.2. An auxiliary function

We consider the auxiliary function z given by the di.erence of the solution v of the
parabolic problem in the circular cylindric section considered in (4.1) and the solution
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> of the following elliptic problem in the circular annulus A20 ;4d


L>= 0 on A20 ;4d

>(x) = 0 in |x|= 4d

>(x) = 1 in |x|= 20:

(4.5)

Notice that by well-known classical result > is HQolder continuous. Moreover we have
the following

Proposition 12. Under assumptions (H1) and (H2) (4.5) admits a unique weak solu-
tion in W 1;2() and

06 >(x)6 1 for a:e: x∈: (4.6)

Proof. For the existence and uniqueness, see [10] Theorem 8.3. For the maximum
principle stated in (4.6), see [10], Theorem 8.1.

If we now put z = > − v and we set ?(x; ·) = −�̃(>(x) − ·), it is easy to see that z
satisCes



(?(z))t =Lz on A20 ;4d × (0; k)

z(x; t) = 0 in |x|= 4d

z(x; t) = 0 in |x|= 20

z(x; 0) = > in A20 ;4d

(4.7)

in the sense speciCed in Section 2. As with v above, z satisCes a proper maximum
principle, namely

Proposition 13. Let z be the solution of (4.7). Then

z(x; t)¿ 0 for a:e: (x; t)∈C(20; 4d; k):

Proof. Things are the same as considered above in the proof of Proposition 10, to
which we refer.

4.3. Basic energy estimates

Before coming to the proof of Proposition 11, we need some introductory estimates.
For a cylinder [(y; s) + Q(2"; 2#"2)] ⊂ C(20; 4d; k) we set

z+ = sup
[(y;s)+Q(2";2#"2)]

z; z− = inf
[(y;s)+Q(2";2#"2)]

z
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and denote by w a number satisfying:

w¿ z+ − z− = osc
[(y;s)+Q(2";2#"2)]

z:

Relying as before on the properties of �̃, we get

±?′(z) zt --′ =
@
@t

∫ (z−k)±

0
�̃
′
(>− (k ± s))-(s)-′(s) ds:

Moreover∫ (z−k)±

0
�̃
′
(>− (k ± s))s ds¿

�̃0
2
(z − k)2±; (4.8)

∫ (z−k)±

0
�̃
′
(>− (k ± s))s ds6 sup

|s|6M
|�̃(s)|(z − k)±; (4.9)

∫ (z−k)±

0
�̃
′
(>− (k ± s))-(s)-′(s) ds¿

�̃0
2

-2: (4.10)

Hence, by (4.8), (4.9) and (4.10), it is easy to see that the function z satisCes the
energy estimates of Section 2. For the logarithmic estimate, Proposition 4 continues to
hold for the function z. In this context, having Cxed 4± ∈ (0; 1), and �±0 ∈ (0; 1), the
numbers �± for which the analogues of Propositions 2 and 3 hold are chosen from the
formulae

4± =
�(data; w)
ln(�±0 =�±)

:

We extend z(·; t) for |x|¡20 and t ∈ (0; k) by 0 and continue to denote by z such an
extension. Denoting by Bd the ball of radius d about the origin, we have:

z(·; t)∈W 1;2
0 (B4d) for a:e: t ∈ (0; k):

We can then put z as test function in the equation to obtain∫ k

0

∫
A20 ;4d

(
@
@t

∫ z

0
�̃
′
(>+ s)s ds

)
dx dt +

4
2

∫ k

0

∫
A20 ;4d

|Dz|2 dx dt

6
1
4

∫ k

0

∫
A20 ;4d

(∑
a2i +

∑
b2i + |e|

)
z2 dx dt:

If we now set D = (1=4)
∑

a2i + (1=4)
∑

b2i + |e|, arguing as in [11] Chapter III,
page 139–140 and taking into account the analog of (4.8) and (4.9) we obtain:

min{�0; 4}
[

sup
0¡t6k

∫
A20 ;4d

z2(x; t) dx +
∫ k

0

∫
A20 ;4d

|Dz|2 dx dt
]

6C
∫
A20 ;4d

z(x; 0) dx + �‖D‖q; r
[

sup
0¡t6k

∫
A20 ;4d

z2(x; t) dx +
∫ k

0

∫
A20 ;4d

|Dz|2 dx dt
]
:
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If �‖D‖q; r is less than min{�0; 4} it is possible to estimate

sup
06t6k

∫
A20 ;4d

z2(x; t) dx +
∫ k

0

∫
A20 ;4d

|Dz|2 dx dt in terms of
∫
A20 ;4d

z(x; 0) dx;

but in general this is not the case. Once more we argue as in [11]: we consider a
partition of (0; k) in a Cnite number of intervals in such a way that �‖D‖q; r6 4=2 and
we get

sup
06t6k

∫
A20 ;4d

z2(x; t) dx +
∫ k

0

∫
A20 ;4d

|Dz|2 dx dt6C
∫
A20 ;4d

z(x; 0) dx: (4.11)

4.4. Proof of Proposition 11

We now have all the estimates we need to conclude. We can rewrite (4.11) in the
following way∫ k

0

∫
A20 ;4d

|Dz|2 dx dt6C: (4.12)

There must exist a time level t∗ such that∫
A20 ;4d

|Dz|2 dx =
∫
B4d

|Dz(x; t∗)|2 dx6 10 (4.13)

with 10 a proper small quantity. In fact, if it were not so, integrating on (0; k)
we obtain∫ k

0

∫
B4d

|Dz|2 dx¿ k10

and it’s enough to choose k large enough to get a contradiction. Now we claim that a
consequence of (4.13) is that

∀x∈B2d (>− v)(x; t∗)6 60 (4.14)

with 60 a positive quantity very close to zero. In fact, if it were not true, reproducing
the same argument of [6], Sections 6–??, and using Proposition 5, we conclude that
there exist a y∗ ∈B4d and a small cube K"(y∗) ⊂ B4d such that

∀x∈K"(y∗) (>− v)(x; t∗)¿
60
2
: (4.15)

Due to the previous zero-extension of z, ∀x∈B20 we have that (>−v)(x; t∗)=0. Hence,
reducing the diameter if necessary, we can single out a cube K"(0) with the same radius
as the one in (4.15) s.t. ∀x∈K"(0) we have (> − v)(x; t∗) = 0. Then we can work as
in Section 9 of [6] and get a lower bound for

∫
A20 ;4d

|Dz(x; t∗)|2 dx. Provided 10 is

chosen su7ciently small (or k su7ciently large), we end up with a contradiction, so
that eventually (4.14) must hold.
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Hence we have

∀x∈B2d 0¡ (>− v)(x; t∗)6 60 ⇒ ∀x∈B2d >(x)− 60 ¡v(x; t∗): (4.16)

On the other hand, if we consider A220 ;2d, there must exist y0 ∈A220 ;2d s.t.

0¡ 260 ¡56 >(y0)6 1:

In fact, > is HQolder continuous up to the boundary and 06 >6 1 by the maximum
principle, as we showed before.
Then, by the Harnack inequality, we conclude that there exists 5̃¿ 260 s.t.

∀x∈A220 ;2d >(x)¿ 5̃: (4.17)

Hence, by (4.16) and (4.17) we obtain

v(x; t∗)¿ 5̃− 60 ¿60 ∀x∈A220 ;2d

which implies that

v(x; t∗)¿60 ∀x∈K"(y0); ∀K"(y0) ⊂ A220 ;2d:

We can now apply the logarithmic estimate, to deduce that ∀4∈ (0; 1) there exists a
proper �, dependent only on 60 and # s.t.

|{x∈K"(y0) : v(x; t)¡�}|¡4|K"| ∀t ∈ [t∗; t∗ + #]:

But then, using standard arguments (see for example [4], Chapter III, paragraph 6),
we obtain that

v(x; t)¿�̃ ∀(x; t)∈ [(y0; t∗ + #) + Q("=2; #)]

and from this follows

∀t ∈ (t∗; t∗ + #); ∀y∈ 1¡ |y|¡ 2d v(y; t)¿00

once we set 00 = �̃.

5. Proof of the theorem for time-independent coe.cients

To prove the continuity of u at a point (y; s)∈T , let us Crst assume that such a
point coincides with the origin and work within a cylinder Q("; #"2), with # a positive
number to be chosen. Without loss of generality the number # can be chosen as an
integer, so that the starting cylinder will be partitioned, up to a set of measure zero,
into disjoint layers of the type

[(0; ti) + Q("; "2)]; ti =−i"2; i = 0; 1; : : : ; #− 1: (5.1)

The numbers �± and ! are deCned in Section 2. Within such a layer we will show
that we can locate a small set where u is quantitatively bounded away, either from �+

or from �−.
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We let �± and 3 be deCned as in Proposition 9 and / be determined by Proposition 8.
Notice that the number / depends upon ! and is independent of ".
Fix any box of the type (5.1) and after a translation assume that its vertex coincides

with the origin, so that we can rewrite it as Q("; "2). We partition the cylinder in two
steps. First we partition the cube K", up to a set of measure zero, into mN pairwise
disjoint subcubes of wedge (2=m)", with m a positive integer to be chosen. If we
denote their centres by x‘, ‘ = 1; 2; : : : ; mN , we have

SK" =
mN⋃
‘=1

[x‘ + SK"=m]:

Then we partition the cylinder into mNm2 pairwise disjoint subcylinders. If we denote
by (x‘; th) their vertices, each of them takes the form[

(x‘; th) + Q
(
1
m
";

1
m2 "

2
)]

;

where for each ‘ in the range ‘=1; : : : ; mN we have th=(1−h)"2=m2; h=1; 2; : : : ; m2.
Therefore

SQ("; "2) =
m2⋃
h=1

mN⋃
‘=1

[
(x‘; th) + SQ

(
1
m
";

1
m2 "

2
)]

:

Within each [(x‘; th) + Q((1=m)"; (1=m2)"2)] consider coaxial cylinders of the type
[(x‘; 1)+Q(r; r2)]. The time location of their vertices ranges over 1∈ [th− ((1=m2)"2−
r2); th] and r is a positive parameter ranging over the interval [/(1=m)"; (1=m)"] where
/ is the number determined in Proposition 8 for the proper choices of �± and 3. These
are cylinders of the type (3.9), (3.10), (3.11) where " has been replaced by (1=m)".
For all these cylinders Propositions 2 and 3 hold true for #= 1. We assume that with
the choice �+ = �− = 1

12 the bound on H±
k asked for by Proposition 1 is satisCed

(otherwise we simply have to adjust the value). Since �+ and �− are the same, we
denote by 4 the common value of 4±. Now we have

Proposition 14. There exists a positive integer m than can be determined a priori only
in terms of ! and the data, such that for some cylinder [(x‘; th)+Q((1=m)"; (1=m2)"2)]
and for some cylinder [(x‘; 1) + Q(r; r2)] ⊂ [(x‘; th) + Q((1=m)"; (1=m2)"2)] either

meas
{
(x; t)∈ [(x‘; 1) + Q(r; r2)] : u(x; t)¿�+ − 1

12!
}
¡4|Q(r; r2)| (5.2)

or

meas
{
(x; t)∈ [(x‘; 1) + Q(r; r2)] : u(x; t)¡�− + 1

12!
}
¡4|Q(r; r2)|: (5.3)

Proof. If both (5.2) and (5.3) are violated for every cylinder of the type [(x‘; 1) +
Q(r; r2)] and for every [(x‘; th) + Q((1=m)"; (1=m2)"2)], making up the partition of
Q("; "2), by virtue of Proposition 9 there exists a constant that can be determined in
terms of the data and ! and independent of " and m such that:(

1
m
"
)N

!26 �
∫ th

th−("=m)2

∫
[x‘+K"=m]

|Du|2 dx dt ∀‘ = 1; : : : ; mN ; ∀h= 1; : : : ; m2:
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Adding over such indices, we obtain:

m2"N!26 �
∫
Q(";"2)

|Du|2 dx dt:

We combine this with Propositions 6 and 7 and rewrite the resulting inequality as

1¡
�(data; !)

!m2 :

The proposition follows by choosing m so large that the right hand side does not
exceed 1. It follows also that ! → m(!) is a decreasing function of ! and
lim!→0 m(!) =∞.

Now let [(x‘; 1) + Q(r; r2)] be a cylinder for which the alternative holds. Then by
Proposition 3 with 3= 2

3 , we have:

u(x; t)¿�− +
1
18

! ∀(x; t)∈
[
(x‘; 1) + Q

(
/
2m

";
/2

2m2 "
2
)]

:

On the other hand, if the alternative + holds true within [(x‘; 1) + Q(r; r2)], then by
Proposition 2 we get

u(x; t)¡�+ − 1
18

! ∀(x; t)∈
[
(x‘; 1) + Q

(
/
2m

";
/2

2m
"2
)]

:

We may assume that /−1 is an integer. Then we further partition the starting cube K"

up to a set of measure zero into

q(!) =
(
4m(!)
/(!)

)N
disjoint cubes of wedge

/(!)
2m(!)

"= 2/0":

We let x‘; ‘ = 1; 2; : : : ; q(!) denote their centres so that

SK" =
q⋃

‘=1

[x‘ + SK /
2m"

]:

Analogously, we subdivide the cube Q("; "2) into

p(!) =
(
4m(!)
/(!)

)N (4m(!)
/(!)

)2
pairwise disjoint cylinders. If we denote by (x‘; th) their vertices, they take the form:[

(x‘; th) + Q

(
/
2m

";
(

/
2m

)2
"2

)]
; (5.4)

where for each ‘ = 1; 2; : : : ; q(!)

th = (1− h)
(

/
2m

)2
"2 h= 1; 2; : : : ; p(!):



U. Gianazza et al. / Nonlinear Analysis 56 (2004) 157–183 175

We return to the original partition of Q("; #"2) with boxes of the type (5.1) and
conclude

Proposition 15. For each box of the type (5.1) there exists a subcylinder of the type
(5.4) for which either

u(x; t)¡�+ − 1
18 ! ∀(x; t)∈ [(x‘; th) + Q(/0"; /20"

2)] (5.5)

or

u(x; t)¿�− + 1
18 ! ∀(x; t)∈ [(x‘; th) + Q(/0"; /20"

2)]: (5.6)

Let us now concentrate on the lower half of the cylinder Q("; #"2) i.e. [(0;− 1
2#"

2)+
Q("; 1

2#"
2)]. We assume that the number # has been chosen and let

[(x‘; 1) + Q(/0"; /20"
2)] ⊂ [(0;− 1

2#"
2)+ Q

(
"; 1

2#"
2)]

be a cylinder for which say (5.6) holds. We start from such a box and construct a
long, thin cylinder with vertex at the top of Q("; #"2) i.e.

[x‘ + K4r]× [1; 0] 4r ≡ /0":

We rewrite this as

[(x‘; 0) + Q(4r; 4 S#r2)];

where

2/−2
0 (#− 1)6 S#6 4/−2

0 #:

Thanks to (5.6), we have

u(x;−4 S#r2)¿�− + 1
18! ∀x∈ [x‘ + K4r]: (5.7)

Proposition 16. There exists a number �∈ (0; 1
18 ) that can be determined a priori

only in terms of the data and ! such that

u(x; t)¿�− + �! ∀(x; t)∈ [(x‘; 0) + Q(r; S#r2)]: (5.8)

Proof. See [6], Proposition 24.1.

Thanks to Proposition 16 we have thus isolated a long, thin cylinder where u is
bounded below as in (5.8). The abscissa of the vertex of such cylinder is not known;
if x‘ ≡ 0 then it would imply a decrease of the oscillation of a factor (1− �) and we
would be Cnished. However, since the location of x‘ ∈K" is not known, there is the
necessity to show that a version of (5.8) holds within a small thin cylinder with vertex
at the origin. This is achieved into two stages. The Crst stage is some sort of spreading
of positivity, which we can describe in this way. Assume that of the two alternatives
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(5.5) and (5.6) the second one holds; then there exists a time level t0 ∈ (−#"2;− 1
2#"

2)
such that u is quantitatively bounded below in the full cube [x‘+K/0"]. Such positivity
spreads sidewise to a full smaller cube about the origin, after a su7ciently long time:
this is precisely the content of the next Proposition

Proposition 17. There exist numbers �0; /∗ ∈ (0; 1) and #¿ 1, that can be determined
a priori in terms of the data and !, and a time level

−#"26 t06− 1
2#"

2

such that either

u(x; t0)¡�+ − �0! ∀x∈ [y + K/∗"] (5.9)

or

u(x; t0)¿�− + �0! ∀x∈ [y + K/∗"]: (5.10)

Proof. The essential tool is a sequential selection of blocks of positivity (see [6]).
The number # will be a product of a Cnite, increasing sequence of positive integers
#=
∏

kj that determine a partition of Q("; #"2) into disjoint stacks.
There are two alternatives: either among the stacks there exists one where the bound

− (actually (5.6)) is veriCed for the same abscissa x‘ for at least one cube within
a smaller stack or the same with + (actually (5.5)). In fact the case of neither of
the two alternatives being veriCed cannot occur, because otherwise we would have a
contradiction with Proposition 15.
Coming to the details, everything runs exactly as in the proof of Proposition 24.2

of [6], except for the part relative to the comparison function. Hence we will concen-
trate on this part, referring to [6] for the rest: even if this makes this paper some-
how not so self-contained, on the other hand, we avoid the perfect reproduction of
Sections 26–29 of [6].
If we apply the change of variables

x → 4x − x‘
|x‘| t → (tj+1 − t) + 16kj+1"2

16"2

and introduce the function

ũ ≡ u− �−

!�j(!)

(see [6] for the deCnition of �j(!)), we have that ũ(x; t)¿ 1 in B20×(0; kj+1); moreover
ũ solves the di.erential equation

(�̃(ũ))t = L̃(ũ);

where �̃ and L̃ satisfy the same structural conditions (1.1)–(1.2) and (1.4)–(1.6),
where the corresponding constants �̃0, �̃1, �̃1 and �̃2 all depend on !, which however
is to be considered Cxed when dealing with ũ.
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Finally we are interested in the behaviour of ũ in an annulus contained in {1¡ |x|
¡ 2d}× (0; kj+1). For this reason we introduce a proper comparison function. Namely,
let

v∈C0(0; kj+1;L2(B4d)) ∩ L2(0; kj+1;W
1;2
0 (B4d))

solve the following boundary value problem


(�̃(v))t = L̃v on A20 ;4d × (0; kj+1)

v(x; t) = 0 in |x|= 4d

v(x; t) = 1 in |x|= 20

v(x; 0) = 0:

This is the comparison function studied in Section 4 with k replaced by kj+1. Thanks
to Proposition 10, we have that 06 v6 1. Moreover, by Proposition 11 there exist
numbers 00; j and kj+1 so that

v(y; t)¿00; j ∀1¡ |y|¡ 2d and for some t ∈ (0; kj+1): (5.11)

By the maximum principle ũ¿ v. Hence the same lower bound as for v holds for ũ
too and returning to the original coordinates, we conclude that there exists a time level
t0 such that

u(x; t0)¿�− + �0; j! ∀x∈K/∗; j"

with �0; j ≡ 00; j�j(!) and a proper /∗; j. The rest follows as in [6].

The second stage is the reduction of the oscillation of u near the top of the starting
box Q("; #"2). We have

Proposition 18. There exists numbers �∗; /∗ ∈ (0; 1) and a number #¿ 1 that can be
determined a priori in terms of the data and !, such that either

u(x; t)¡�+ − �∗! ∀(x; t)∈Q(/∗"; #/2∗"
2) (5.12)

or

u(x; t)¿�− + �∗! ∀(x; t)∈Q(/∗"; #/2∗"
2): (5.13)

Proof. Exactly as in [6], Proposition 24.3, the proof starts from (5.10) and uses the
logarithmic estimate (Proposition 4) and Propositions 3 and 2 to conclude.

We can Cnally conclude with the proof of Theorem 1. The argument consists in
showing the existence of a family of nested shrinking cylinders with the same vertex
s.t. for each of them the oscillation is controlled by a sequence !n that tends to zero.

By the previous procedure, we have determined the functions ! → �∗(!); /∗(!); #(!).
Consider now a cylinder with vertex at the origin, contained in T of the form
Q(2"; 2#(!)"2) where ! is any number satisfying

osc
Q(2";2#(!)"2)

u6!;
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applying the previous Proposition, we get

osc
Q[/∗";#/2∗"2]

u6 (1− �∗(!))!:

Consider the sequence

!0 = 2M; !n+1 = (1− �∗(!n))!n:

As in [6] by induction one constructs a sequence of cylinders Qn whose radii "n and
vertical heights #(!n)"2

n decrease to zero. Therefore {Qn}n∈N is a family of nested
shrinking cylinders with the same vertex at the origin. For each of them we have

osc
Qn

u6!n:

and we are Cnished.

6. Coe.cients that depend on t

Now we want to remove hypothesis (H1) of Section 4 and assume that the coe7-
cients are continuous in time. The di7culty lies in this fact: whereas the estimates in
Sections 2 and 3 hold both for time-independent and time-dependent coe7cients, the
properties of the comparison function, studied in Section 4 and applied in Section 5,
heavily rely on the structure of an elliptic operator, whose coe7cients obviously do
not depend on time.
The idea to deal with the new situation is simply stated: provided we work in a

su7ciently small cylinder, the time-dependent coe7cients can be regarded as a small
and controllable perturbation to time-independent coe7cients, so that everything can
be brought back to the case previously considered.
This method is widely used in the context of variable coe7cients, so that we will

sketch the general approach, without entering too much into details. It is worth remark-
ing that the main point is in checking that the ‘controllable perturbation’ mentioned
above does not destroy assumptions (H2) and (H3) of Section 4, which are crucial
in proving the estimates on the comparison function v needed to conclude about the
continuity of u.
Let us now Cx "¡ 1, choose # of the order of the unity and Cx (x0; t0)∈T such

that the parabolic cylinder [(x0; t0) + Q("; #"2)] ⊂  × (0; T ). We can rewrite the
operator L in the following way

Lu=
∑
ij

Di(aij(x; t)Dju+ ai(x; t)u) + bi(x; t)Diu+ e(x; t)u

=
∑
ij

Di(aij(x; t0)Dju+ (aij(x; t)− aij(x; t0))Dju

+ ai(x; t0)u+ (ai(x; t)− ai(x; t0))u) + bi(x; t0)Diu

+(bi(x; t)− bi(x; t0))Diu+ e(x; t0)u+ (e(x; t)− e(x; t0))u:
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If we now set

Ai(x; t; u; Du) = aij(x; t0)Dju+ (aij(x; t)− aij(x; t0))Dju

+ ai(x; t0)u+ (ai(x; t)− ai(x; t0))u;

B(x; t; u; Du) = bi(x; t0)Diu+ (bi(x; t)− bi(x; t0))Diu

+ e(x; t0)u+ (e(x; t)− e(x; t0))u

we can write

Lu= DiAi(x; t; u; Du) + B(x; t; u; Du):

Notice that we use the kind of notation which is fairly common for quasilinear elliptic
equations in divergence form for the sake of compactness, even if the operator we are
dealing with is actually linear.
Thanks to the time continuity of the coe7cients, with no loss of generality we can

assume that

|aij(x; t)− aij(x; t0)|6!1(x; |t − t0|);

|ai(x; t)− ai(x; t0)|6!2(x; |t − t0|);

|bi(x; t)− bi(x; t0)|6!3(x; |t − t0|);

|e(x; t)− e(x; t0)|6!4(x; |t − t0|);
where !i = !i(x; s) :RN × R+ → R+ are measurable in x, continuous and increasing
in s such that !i(x; 0) = 0. Moreover !1 is bounded as the coe7cients aij in (1.4),
whereas !2, !3 and !4 satisfy the same summability conditions as stated in (1.5).
Let us now estimate Ai and B. We have

|Ai(x; t; u; Du)| = |aij(x; t0)Dju+ (aij(x; t)− aij(x; t0))Dju

+ ai(x; t0)u+ (ai(x; t)− ai(x; t0))u|
6 |aij(x; t0)‖Du|+ |aij(x; t)− aij(x; t0)‖Du|

+

(
N∑
i=1

a2i (x; t0)

)1=2
|u|+ |ai(x; t)− ai(x; t0)‖u|

6 (� + !1(x; #"2))|Du|+

( N∑

i=1

a2i (x; t0)

)1=2
+ !2(x; #"2)


 |u|

= 51(x)|Du|+ 52(x)|u|: (6.1)
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Analogously

|B(x; t; u; Du)| = |bi(x; t0)Diu+ (bi(x; t)− bi(x; t0))Diu

+ e(x; t0)u+ (e(x; t)− e(x; t0))u|

6

(
N∑
i=1

b2i (x; t0)

)1=2
|Du|+ |bi(x; t)− bi(x; t0)‖Du|

+ |e(x; t0)‖u|+ |e(x; t)− e(x; t0)‖u|

6


( N∑

i=1

b2i (x; t0)

)1=2
+ !3(x; #"2)


 |Du|

+(|e(x; t0)|+ !4(x; #"2))|u|
= �1(x)|Du|+ �2(x)|u|: (6.2)

Finally

Ai · Diu = aij(x; t0)DjuDiu+ (aij(x; t)− aij(x; t0))DjuDiu

+ ai(x; t0)uDiu+ (ai(x; t)− ai(x; t0))uDiu

¿
1
�1

|Du|2 − !1(x; #"2)|Du|2 −
(

N∑
i=1

a2i (x; t0)

)1=2
|u‖Du|

−!2(x; #"2)|u‖Du|

¿


 1

�1
− !1(x; #"2)− 21

(
N∑
i=1

a2i (x; t0)

)1=2
− 22!2(x; #"2)


 |Du|2

+


C(21)

(
N∑
i=1

a2i (x; t0)

)1=2
+ C(22)!2(x; #"2)


 |u|2

¿ �1(x)|Du|2 − �2(x)|u|2: (6.3)

With a proper choice of 21 and 22, provided that " is taken su7ciently small we
have that

�1 =
1
�1

− !1(x; #"2)− 21

(
N∑
i=1

a2i (x; t0)

)1=2
− 22!2(x; #"2)¿ 0

and thanks to (1.4) and (1.5) the coe7cients 5i, �i and �i satisfy the same summability
hypotheses as aij, ai, bi, e but do not depend on t.
As we have already said at the beginning of this Section, to conclude the proof of

the continuity of u in the case of time-independent coe7cients, we had to compare
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u with the solution v of an elliptic equation, to which we were led after a suitable
change of variables, namely

x → 4x − x‘
|x‘| t → (tj+1 − t) + 16kj+1"2

16"2 :

Let us repeat the same procedure in the new context of time-dependent coe7cients we
are considering now.
Due to the smallness of the perturbation (remember that " is Cxed), it is easy to

see that the structural conditions (6.1)–(6.3) considered above still hold.
As largely discussed in [12], these are the natural assumptions under which we have

a Harnack inequality like the one discussed in (H3) in Section 4. The same can be
said for the comparison principle, which is implied by (H2).
Hence we are basically dealing with a time-independent operator, so that the whole

procedure of Sections 4 and 5 can be repeated here without any restriction. In this way
we are brought back to the case studied in the previous Section and we can conclude.

7. Boundary regularity under homogeneous Dirichlet conditions

Boundary regularity for degenerate and singular parabolic equations is not a simple
task. When dealing with equations like

ut − div(|Du|p−2 Du) = 0 in T ; p¿ 1

the proof of the interior continuity is based only on the energy and logarithmic esti-
mates, like the ones proved here in Section 2 (see [4] for all details under this point
of view).
With this in mind, coming to boundary regularity for variational data for the same

kind of problems, one realizes that the only thing to do is to show the validity of the
corresponding energy and logarithmic boundary estimates.
In the case of Dirichlet data, things are slightly more di7cult and a proper care has

to be used with the levels k, but once more basically the idea is to mimic what has
been done in the interior.
For singular equations like the ones we are dealing with here, things are much more

involved. In the case of � with a single jump, interior regularity is again a matter of
energy and logarithmic inequalities and this allows a complete solution of boundary
regularity for variational data, as in [2].
Even if we didn’t write it down explicitly anywhere, we feel that the same could be

repeated for � with an arbitrary but Cnite number of jumps, as considered in [9].
Looking at things more properly, the main di7culty in the proof of continuity for

weak solutions of

(�(u))t =Lu

lies in the term∫ ∫
Q(";#"2)

(u− k)± dx d1
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in the right-hand side of the energy inequality like (2.2) here, as largely discussed
in [3]. Roughly speaking, this sets some constraints on the possible values of the
levels k.
On the other hand the study of the boundary regularity for Dirichlet data poses

further limits on the levels k.
As a consequence, when switching from homogeneous to inhomogeneous Dirichlet

data, a new method is required, even if the interior regularity is purely based on
the energy and logarithmic estimates and this is precisely the case dealt with in [2]
and [3].
In our case things are more di7cult since the proof does not rely uniquely on

suitable estimates satisCed by u, but uses a proper comparison function v as discussed
at a larger extent in the previous Section.
Therefore if it remains an open problem to devise a proof technique based only on

energy and logarithmic estimates, more speciCcally, under our point of view, variational
boundary conditions cannot be treated simply referring to interior regularity and the
same holds for general Dirichlet data.
The only thing we could do was to consider homogeneous Dirichlet boundary con-

ditions under mild assumptions on @ and following a strategy already outlined in [7],
without taking into account initial conditions, we could prove the following

Theorem 2. Let  be a bounded Lipschitz domain and let u be a weak solution of

(�(u))t =Lu in  × (0; T );

u(·; t)|@ = 0 a:e: t ∈ (2; T );

where with respect to De'nition 1, we say that u(·; t) = 0 on @ in the sense of the
traces of functions in W 1;2(). Moreover let us assume that

u∈L∞( S × [2; T ]); 2∈ (0; T ):

Then u∈C( S× [2; T ]) and there exists a continuous non-negative, increasing function
s → !D(s) :R+ → R+ with !D(0) = 0 that can be determined a priori only in terms
of the data such that

|u(x1; t1)− u(x2; t2)|6!D(|x1 − x2|+ |t1 − t2|
1
2 )

for every pair of points (x1; t1); (x2; t2)∈ S × [2; T ].

Proof. Even if the theorem is stated in a global way, the proof has a typical local
Kavour. We limit ourselves to a simple sketch.
Due to the compactness of  we can cover @ with a Cnite number of neighborhood

centered at points of @. The Lipschitz continuity of the boundary allows us to Cnd a
map from every neighborhood into a half ball of RN . The transformed equation via this
map has coe7cients which are still measurable with respect to x, properly summable
with respect to the couple (x; t), continuous with respect to t and satisfy structural
conditions (1.4) and (1.6). Now we reKect the operator through the entire ball and
notice that this reKection does not a.ect the (�(u))t term, since it’s done only with
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respect the x variable. We have therefore reduced ourselves to study a problem in the
interior and we can apply the previous results to conclude.
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